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We propose an iterative algorithm for incomplete quantum process tomography with the help of quantum state
estimation. The algorithm, which is based on the combined principles of maximum likelihood and maximum
entropy, yields a unique estimator for an unknown quantum process when one has less than a complete set of
linearly independent measurement data to specify the quantum process uniquely. We apply this iterative algorithm
adaptively in various situations and so optimize the amount of resources required to estimate a quantum process
with incomplete data.
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I. INTRODUCTION

Quantum process tomography (QPT) is an important tool to
characterize the operation of a given quantum channel [1–4].
Such a characterization is needed, for example, when one
attempts to construct a quantum channel comprising multiple
logic gates, each carrying out a specific quantum process.
One such quantum channel for entanglement distillation, for
instance, would consist of controlled NOT (CNOT) gates. A
physical quantum process is described by a completely positive
map M. That is, given a particular input quantum state ρi

residing in the Di-dimensional Hilbert space H, the resulting
output state ρo in the Do-dimensional Hilbert space K is given
by

ρo = M (ρi) =
∑
m

KmρiK
†
m, (1)

with the Kraus operators Km satisfying the relation∑
m K

†
mKm = 1K. The Kms are not unique and any other set

of Kraus operators

K ′
m =

∑
m′

um′mKm′ , (2)

where the um′ms are the elements of a unitary matrix, also
parametrizes the completely positive map M [5].

The idea behind QPT is to estimate such completely positive
maps with measurements. Much like quantum state tomogra-
phy, the estimation of an unknown quantum process can be
perceived as the estimation of a positive Choi-Jamiółkowski
operator Etrue that is represented by a DiDo × DiDo matrix
[6]. Such an operator contains all accessible information about
the quantum process. The standard QPT procedure involves
the measurement of N copies of L different output states,
with each output state corresponding to one of the L linearly
independent input states ρ(l)

i , thereby using a probability
operator measurement (POM) of, say, M outcomes. The
unknown operator Etrue is estimated by linear inversion of
the LM measurement frequencies, which consists of D2

i D
2
o

linearly independent constraints. Like the linear-inversion
procedure for quantum state estimation, the resulting estimator
obtained may not be positive. If that is the case, the estimator
cannot be used for statistical predictions. This failure occurs

whenever the observed relative frequencies of the measure-
ment outcomes do not have a consistent interpretation as
probabilities. What is, therefore, called for, is an estimation
procedure that ensures a physically meaningful estimator
whatever the measurement data may be.

One statistically meaningful technique to obtain a positive
estimator for Etrue is the maximum-likelihood estimation
procedure (ML) [7]. This can be applied to yield a unique
estimator ÊML as long as the measurement data obtained
form a set of D2

i D
2
o linearly independent constraints. We

say that this set of measurement data is informationally
complete. However, the number of linearly independent
parameters increases rapidly with the dimensions and a
complete characterization of Etrue becomes unfeasible for
complex processes. This is especially true when the quantum
process acts on an infinite-dimensional Hilbert space [8]. The
well-known method of Direct Characterization of Quantum
Dynamics (DCQD) [2] was introduced to reduce the amount
of measurement resources (the total number LN of copies
measured) that are used for quantum process tomography.
However, this method requires entangled input states and
postprocessing strategies that can be expensive when dealing
with more complex quantum processes.

A more straightforward and conceptually different ap-
proach is to resort to informationally incomplete QPT. With
this approach, fewer input states and, consequently, fewer
measurement resources are used to obtain an estimator for the
unknown quantum process to a fair amount of accuracy. As a
consequence, there exists a convex set of infinitely many ML
estimators which are consistent with the measurement data.
To choose the estimator which is least biased from the convex
set, we invoke the maximum-entropy principle [9] and choose
the estimator with the largest entropy. Such an incomplete
QPT can also give useful information about the quantum
channel. In a typical tomography experiment, with data from
measuring a finite number of copies, the resulting quantum
process estimator can never be exactly equal to Etrue since
experimental fluctuations are inevitable. One can only obtain
an estimator that is close to Etrue within a certain tomographic
precision. Thus, MLME QPT is typically useful in providing
a unique estimator for an unknown quantum process within
a suitable tomographic precision using fewer input states. As

062125-11050-2947/2011/84(6)/062125(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.062125
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will be shown, this reduction in the total number of measured
copies is more pronounced for unitary quantum channels.
Since Etrue is unknown, one common practice is to gauge such
a tomographic precision with another operator Eprior that is
close to Etrue, based on some prior information one has about
the constructed quantum channel. The availability of such an
Eprior for a given Etrue will become useful and important in
subsequent discussions.

The estimators obtained using the aforementioned method
are least biased with respect to the set of incomplete measure-
ment data in the sense of the entropy of the quantum process.
In Ref. [10], which is an analytical study of the conventional
maximum-entropy method, the entropy functional for the
Choi-Jamiółkowski operator E describing a quantum channel
was introduced as S(E) = −tr{(E/Di) log(E/Di)}, and this
was shown to exhibit nice properties. Here and in what follows,
log(x) is the natural logarithm of x. In particular, this concave
channel entropy functional has a unique maximum in E and
is zero only when the quantum channel is unitary since E/Di

is then a rank-1 projector. However, the analytical results in
Ref. [10] apply only to simple qubit channels and are difficult
to extend to general quantum channels of greater complexity.

In this article, we shall extend the strategy in Ref. [11]
and establish an adaptive iterative algorithm to search for the
MLME estimator ÊMLME which maximizes both the likelihood
and entropy functionals using the channel entropy functional
in Ref. [10]. We first give some preliminary ideas about
quantum process estimation in Sec. II. Then, in Sec. III,
we present the iterative MLME algorithm using variational
principles to derive a steepest-ascent scheme and apply it to
numerical simulations of two-qubit and three-qubit quantum
channels. In Sec. IV, we establish adaptive strategies to apply
the MLME algorithm with the aim of minimizing the amount
of measurement resources needed to perform incomplete QPT.

II. PRELIMINARIES OF QUANTUM PROCESS
ESTIMATION

The estimation of the completely positive map M that de-
scribes an unknown quantum process, in the manner presented
in Eq. (1), is isomorphic to the estimation of an unknown
quantum state. This is a consequence of the well-known
Choi-Jamiółkowski isomorphism [6,7]. Let us define a maxi-
mally entangled pure state |�+〉 = ∑

j |j 〉H ⊗ |j 〉H′/
√

Di in
terms of the computational basis kets |j 〉H ⊗ |j 〉H′ . Here, the
dimensions of the Hilbert spaces H and H′ are both equal to
the dimension Di of the input Hilbert space. Using this basis,
there exists a one-to-one correspondence between the map M
and a unique positive operator E defined as follows:

E ≡ Di(IH ⊗ EH′ )(|�+〉〈�+|) (3)

=̂
∑
jk

(|j 〉〈k|) ⊗ M(|j 〉〈k|), (4)

with IH being the identity map. From Eq. (1), the alternative
expression

E =
∑
m

|ψm〉〈ψm|, (5)

with

|ψm〉 = (1H ⊗ Km)|�+〉
√

Di, (6)

implies that the rank of E is equal to the number of linearly
independent Kms. It follows that E is rank-1 if the completely
positive map is described by a single unitary Kraus operator,
and only then.

The output state can be expressed in terms of E by means
of

ρo = trH
{
E

(
ρT

i ⊗ 1K
)}

, (7)

where the transposition is defined with respect to the com-
putational basis. Hence, reconstructing the quantum process
amounts to estimating the positive operator E. To do so, one
requires a total of D2

i D
2
o real parameters to specify the corre-

sponding matrix. In the subsequent analyses, we shall consider
trace-preserving maps; that is, tr{ρi} = tr{ρo} for any ρi, in
which case the number of independent parameters is reduced
to D2

i (D2
o − 1), with the constraints compactly written as

trK {E} = 1H. (8)

To estimate E, typically a set of L input states ρ(l)
i , with N

copies each, are sent through the quantum channel, one state at
a time. The output state ρ(l)

o that corresponds to ρ(l)
i is measured

with a POM consisting of M outcomes �m � 0 such that∑
m �m = 1K. The probability of getting outcome �m for the

input state ρ(l)
i is given by plm = tr{E(ρ(l)T

i ⊗ �m)}/L. Here,
p′

l ≡ ∑
m plm = 1/L. If the LM parameters comprise D2

i D
2
o

linearly independent parameters, the measurement data will be
informationally complete. One can thus perform a complete
quantum process estimation using the maximum-likelihood
(ML) algorithm [7] and so obtain a unique positive estimator
ÊML by maximizing the likelihood functional

L(E) =
L∏

l=1

(
M∏

m=1

p
nlm

lm

)
, (9)

where the number of occurrences nlm for the outcome �m

obtained in an experiment with the input state ρ(l)
i are such

that n′
l ≡ ∑

m nlm = N .
In what follows, we shall discuss the situation in which one

performs quantum process estimation with a set of informa-
tionally incomplete measurement data. All processes consid-
ered henceforth will be trace preserving, but a generalization
to those which are not trace preserving is straightforward.

III. ITERATIVE ALGORITHM

We consider the optimization of the information functional

I (λ; E) = λS(E) + 1

LN
logL(E), (10)

where λ is a parameter which scales the entropy relative to the
normalized log-likelihood and should be chosen to be a very
small value. When the measurement data are informationally
complete, one sets λ to zero and optimizing I (λ = 0; E)
amounts to the ML problem [7]. In the same spirit as in
Ref. [11], both our knowledge from the measurement data—
contained in log[L(E)]/(LN ) which measures the information
gain—and our ignorance—reflected in S(E) which measures
the lack of information—about the operator E are taken into
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account in such a way that our ignorance takes an infinitesimal
weight, a general property irrespective of the POM and
measurement data. This introduces a small and smooth convex
hill over the set of positive ML estimators which selects the
one with the largest entropy. As in Ref. [11], the value of λ may
be chosen such that both log[L(E)]/(LN ) and S(E) remain
almost constant with respect to λ.

To maximize I (λ; E) with respect to E, we define the
variation E + δE = (1 + Z†)E(1 + Z), where Z is a small
arbitrary operator such that Eq. (8) is satisfied; that is,
tr{δE} = 0. Thus the most general expression for Z is

1 + Z = (1 + δA)[
√

trK{(1 + δA†)E(1 + δA)} ⊗ 1K]−1,

(11)
with an unrestricted infinitesimal δA. On the other hand, the
variation of I (λ; E) with respect to E gives tr{δEW }, where

W = 1

L

∑
lm

flm

plm

ρ(l)T
i ⊗ �m − λ

Di

[
1 + log

(
E

Di

)]
(12)

and flm = nlm/(LN ). Keeping only first-order variations
systematically and imposing δI (λ; E) > 0, the method of
steepest ascent leads us to

δA = δA† = ε

2

(
W − 1

2
trK {WE + EW } ⊗ 1K

)
, (13)

for some small ε > 0. Hence, to obtain the MLME estimator
ÊMLME, one simply fixes λ � 1 and iterates the equations

En+1 = (1 + Z†
n)En(1 + Zn),

(δA)n = ε

2

(
Wn − 1

2
trK {WnEn + EnWn} ⊗ 1K

)
, (14)

where the expression for Zn follows from Eq. (11) and Wn

denotes the operator W in Eq. (12) evaluated for En. One may
do so by starting from a randomly chosen operator E0 and
continue until the extremal equation for ÊMLME is satisfied with
some prechosen numerical precision. To derive this extremal
equation, we define the Lagrange functional [7]

D(E) = I (λ; E) − tr{	E}, (15)

with the Lagrange operator 	 ≡ h ⊗ 1K for the constraints in
Eq. (8), where h is a Hermitian operator. Setting the variation
of D(E) to zero gives the extremal equation

	ÊMLME	 = WMLMEÊMLMEWMLME, (16)

with 	 = (trK{WMLMEÊMLMEWMLME})1/2 ⊗ 1K.
Thus far, we have been assuming that the measurement

outcomes �m give perfect detection of quantum systems. The
iterative equations in Eq. (14) can be generalized to the case of
imperfect detection. In this case, it is clear that, if each of the M

measurement outcomes �m is assigned a detection efficiency
ηm � 1, one can always define a new set of M measurement
outcomes �̃m ≡ ηm�m such that G ≡ ∑

m �̃m 	= 1K. The
iteration procedure of Eq. (14) can still be used with the new
set of POM outcomes �̃m provided that the operator W in
Eq. (12) is replaced by W − W0, where

W0 = 1

L
∑

l′ p
′
l′

∑
l

ρ(l)T
i ⊗ G (17)

accounts for the copies that escape detection.

As an example, we apply the algorithm to numerical
simulations on two-qubit channels, the CNOT gate described
by the unitary operator

UCNOT =̂

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠ (18)

and a randomly generated nonunitary quantum channel de-
scribed by a full-rank Choi-Jamiółkowski matrix, as well as
the three-qubit Toffoli gate described by the unitary operator

UToffoli =̂

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

To quantify the discrepancy between an MLME estimator and
the true Choi-Jamiółkowski operator Etrue, we use the trace-
class distance

Dtr(ÊMLME,Etrue) = 1

2Di
tr{|ÊMLME − Etrue|}, (20)

where |A| =
√

A†A for any operator A. In these simulations,
we take the Di-dimensional projectors of a symmetrically
informationally complete POM (SIC POM) as the input states
[12]. One such set of states contains the minimal number of
D2

i pure states |ψj 〉〈ψj | such that

|〈ψj |ψk〉|2 = Diδjk + 1

Di + 1
. (21)

As shown in Fig. 1, using the MLME algorithm for
QPT can give fast convergence in terms of tomographic
efficiency with a reduced number of input states. This
reduction is especially significant for unitary processes, where
the Choi-Jamiółkowski operators are rank-1. For nonunitary
quantum processes described by matrices of larger rank, the
tomographic efficiency will be lower, as shown in the first
plot of Fig. 1. This is expected in analogy with quantum
state tomography where it is more difficult to reliably estimate
highly mixed states than nearly pure ones.

IV. ADAPTIVE STRATEGIES

An interesting question to ask with regard to incomplete
QPT is whether one can perform it in an optimal way
given the available resources by means of adaptive strategies.
Here optimality refers to the minimization of the amount of
resources (input states or measurements) used to perform
incomplete QPT such that the distance between ÊMLME

and Etrue reaches a certain desired value. Very frequently,
despite the fact that Etrue is always unknown, one has a
rough idea of an operator Eprior which may be close to Etrue

based on some prior information about the unknown Etrue.
This scenario is reasonable and typical when one designs a
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FIG. 1. Numerical simulations on the two-qubit (d = 22) and
three-qubit (d = 23) quantum channels where Di = Do = d . The
projectors of symmetric informationally complete POMs (SIC POMs)
are chosen as the linearly independent input states for all the simu-
lations (L = d2). For the measurements, informationally complete
POMs consisting of tensor products of qubit SIC POMs are used
(M = d2). Each qubit SIC POM consists of a set of pure states whose
Bloch vectors form the “legs of a tetrahedron” in the Bloch sphere. For
the two-qubit channels, N = 104 and an average over 50 experiments
is taken to compute the trace-class distances. For the three-qubit
channel, the measurement data are generated without statistical noise.
For unitary channels, one can see that the MLME algorithm can
still give fairly accurate estimations with a smaller number of input
states than that of a linearly independent set. Numerical simulations
of arbitrary two-qubit and three-qubit unitary channels suggest that
the number is approximately d2/2 for SIC POM input states for
an average trace distance of about 0.025; for instance, above which
there is insignificant tomographic improvement. This gives an average
reduction of Nd2/2 in the measurement resources as compared with
the usual ML scheme.

quantum channel experimentally which performs an expected
quantum operation, with errors arising from imperfections of
the components that make up the channel. We shall establish
adaptive strategies which make use of such an operator in
order to select, with the help of the MLME algorithm, input
states for incomplete QPT in an optimal way. We refer to such
tomography schemes as the adaptive MLME quantum process
tomography (AMLME QPT) schemes.

We will focus on adaptive strategies to choose the input
states optimally. This can be reviewed in two separate cases:

The case in which a fixed set of linearly independent input
states is used (Sec. IV A) and that in which arbitrary input
states can be generated for incomplete QPT (Sec. IV B). The
optimization of the POM will be studied on a later occasion.

A. Optimization over a fixed set of linearly
independent input states

In the previous section, we considered the projectors of the
SIC POMs, which are known to have optimal tomographic
efficiencies, as input states in the numerical simulations. Since
these POMs are symmetric in the sense of Eq. (21), any
ordering of the input states in a given set gives the same
plots in Fig. 1. In practice, however, such entangled states
are difficult to produce and one typically has access to a set of
separable states [13] for measurements instead. In this case,
there no longer exists such a symmetry and the tomographic
performance depends on the order of the input states chosen,
possibly strongly so. We propose to optimize the tomographic
performance by choosing the input states adaptively based on
the measurement data collected from the previously chosen
input states, thereby using the prior Eprior.

To describe the adaptive strategy, let us consider a set of L �
D2

i input states in which D2
i of them are linearly independent.

Suppose that N copies (where N is a fixed integer for all
input states) of a randomly chosen input state ρ(1)

i are sent
through the quantum channel and the first set of measurement
data {ν11, . . . ,ν1M}, ∑

m ν1m = 1 is collected. With these data
f1m ≡ ν1m, one obtains the first MLME estimator Ê

(1)
MLME.

To select the next input state out of the remaining L − 1
states, we take Eprior as a gauge for Etrue to generate L − 1
sets of probabilities respectively from the L − 1 states. Each
set of probabilities is then treated as the set of frequencies
{ν(k)

21 , . . . ,ν
(k)
2M}, for the corresponding input state k. Hence,

one has L − 1 sets of measurement data, each set being
the combined data {ν11, . . . ,ν1M,ν

(k)
21 , . . . ,ν

(k)
2M}/2 with the

normalized frequencies f1m ≡ ν1m/2 and f
(k)
2m ≡ ν

(k)
2m/2 such

that
∑

m(f1m + f
(k)
2m ) = 1 for each k, and the corresponding

L − 1 projected MLME estimators Ê
(2)
MLME,k .

The value of k is selected such that a chosen figure of merit
which quantifies the distance between Ê

(2)
MLME,k and Ê

(1)
MLME is

the largest, so that there is a high chance for the next MLME es-
timator to be closer to Etrue. As an example, the figure of merit
is taken to be the trace-class distance Dtr(Ê

(2)
MLME,k,Ê

(1)
MLME).

With this input state, the second estimator Ê
(2)
MLME is then

obtained with MLME QPT. One repeats this procedure for
subsequent input states until the distance Dtr(Ê

(l+1)
MLME,Ê

(l)
MLME)

is below some preset threshold. An alternative to this would
be to minimize the trace-class distance Dtr(Ê

(l+1)
MLME,k,Eprior).

It is important to understand that, in this strategy, the prior
information Eprior is not used to reconstruct the unknown
quantum process in any way. It serves only as a means
to optimally select the input states from the given set so
as to maximize the tomographic convergence. This adaptive
strategy also relies partially on the measurement data obtained
in the experiment. We have thus introduced an operational
method of using the prior information to minimize the number
of input states needed to perform reliable MLME QPT without
introducing any artifacts coming from the prior information
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into the reconstruction procedure. To summarize, the adaptive
MLME strategy is as follows:

(1) Randomly choose ρ(1)
i from the set of L input states and

set l = 1.
(a) Perform QPT using ρ(l)

i and obtain the set of
frequencies {νl1, . . . ,νlM}, ∑

m νlm = 1.
(b) Set ν = ⋃l

j=1{νj1, . . . ,νjM}/l.
(c) Invoke the MLME algorithm with ν and obtain

Ê
(l)
MLME. Use Eprior to compute the frequencies

{ν(k)
l+1 1, . . . ,ν

(k)
l+1 M}, ∑m ν

(k)
l+1 m = 1 from the remain-

ing input states, with k labeling the remaining L − l

states.
(d) Define L − l sets of accumulated frequencies (ν ∪

{ν(k)
l+1 1, . . . ,ν

(k)
l+1 M})/(l + 1) and calculate the L − l

projected MLME estimators Ê
(l+1)
MLME,k .

(e) Set ρ(l+1)
i as the input state corresponding to k such

that Dtr(Ê
(l+1)
MLME,k,Ê

(l)
MLME) is largest.

(f) Set l = l + 1 and repeat Steps 1(a)–1(e).

B. Optimization over the input Hilbert space

More generally, the adaptive strategy may be extended to
the case in which one has access to the entire Hilbert space of
states. In other words, the task is to search for the next optimal
input state ρ(L+1)

i from the Di-dimensional Hilbert space based
on the measurement data νlm obtained in the experiment from
L previously chosen input states, where

∑
m νlm = 1 for all l,

and the prior information Eprior about the unknown quantum
process.

To this end, we define the normalized projected log-
likelihood functional

log L̃(E,ρ) =
∑
lm

νlm

L + 1
log(p̃lm) +

∑
m

ν̃m

L + 1
log(p̃m),

(22)
where

p̃lm = tr

{
E

ρ(l)T
i ⊗ �m

L + 1

}
,

ν̃m = tr
{
Epriorρ

T ⊗ �m

}
and p̃m = tr

{
E

ρT ⊗ �m

L + 1

}
,

with l always running from 1 to L over all previously used
input-state labels. This projected log-likelihood functional is
a good approximation to the log-likelihood functional for the
situation in which the state ρ is chosen as the next input state for
the experiment as long as Eprior is not too far away from Etrue.
The projected frequencies ν̃m estimate the actual frequencies
one gets when measuring the input state ρ. An optimal
input state ρ(L+1)

i and the corresponding Choi-Jamiółkowski
operator are chosen as the positive estimators that maximize
this projected log-likelihood functional.

Coincidentally, this maximum projected log-likelihood
(MPL) procedure is equivalent to minimizing the cross entropy
functional C(E,ρ) = − log L̃(E,ρ) [14,15] over all positive
operators subjected to the respective constraints for ρ and E.
Hence, another way of understanding this procedure is to first
regard both the incomplete measurement data collected after
using L input states and Eprior as the full prior knowledge
one has about the unknown Etrue. The statistical motivation

for MPL or minimizing C(E,ρ) is, loosely speaking, to obtain
estimators which are as compatible with this prior knowledge
as possible by minimizing the entropy of the prior knowledge
C(E,ρ). We will provide some more arguments related to this
optimization technique in the later part of this section.

To carry out the optimization, we consider the response of
log L̃(E,ρ) to small variations of both ρ and E. After some
similar calculations as in Sec. III, we obtain the MPL iterative
equations

En+1 = (1 + Z†
n)En(1 + Zn),

(23)

ρn+1 = (1 + ε2�n)ρn(1 + ε2�n)

trH{(1 + ε2�n)ρn(1 + ε2�n)} ,

where Zn is defined by Eq. (11), with

(δA)n = ε1

2

(
Xn − 1

2
trK {XnEn + EnXn} ⊗ 1K

)
,

(24)

Xn =
∑
lm

νlm

p̃lm

ρ(l)T
i ⊗ �m

(L + 1)2
+

∑
m

ν̃m

p̃m

ρT ⊗ �m

(L + 1)2
,

and

�n ≡ Yn − trH{Ynρn},

Yn = trK

{[ ∑
m

1H ⊗ �m

L + 1

(
log(p̃m)Eprior

+ ν̃m

(L + 1)p̃m

E

)]T }
. (25)

The MPL estimators satisfy the extremal equations

	̃ÊMPL	̃ = XMPLÊMPLXMPL,
(26)

ρ̂MPLYMPL = YMPLρ̂MPL = trH{YMPLρ̂MPL}ρ̂MPL,

where

	̃ =
√

trK{XMPLÊMPLXMPL} ⊗ 1K. (27)

The small parameters ε1 and ε2 are positive numbers. Thus,
to carry out the MPL procedure, one iterates Eqs. (23) until
Eqs. (26) are satisfied with a preset numerical precision.

There is one important feature of this optimization scheme.
From Eq. (22), we note that log L̃(E,ρ) is neither convex
nor concave in ρ and hence can have multiple local maxima.
Thus, the MPL optimization is nonconvex. To generate these
local-maxima estimators, one can start from multiple randomly
chosen starting points and perform the iterations. Thereafter,
the state estimator ρ̂MPL to be chosen as the next input
state ρ(L+1)

i is such that its corresponding ÊMPL gives the
largest trace-class distance away from the previous MLME
estimator Ê

(L)
MLME, which is obtained from the data of the

previously chosen L input states, over all generated pairs of
MPL estimators (ρ̂MPL,ÊMPL). Again, one may also minimize
the distance between ÊMPL and Eprior. Let us summarize the
adaptive MPL-MLME strategy with the following scheme:

(1) Randomly choose ρ(1)
i as the first input state and set

l = 1.
(a) Perform QPT using ρ(l)

i and obtain the set of
frequencies {νl1, . . . ,νlM}, ∑

m νlm = 1.
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(b) Set ν = ⋃l
j=1{νj1, . . . ,νjM}/l.

(c) Invoke the MLME algorithm with ν and obtain
Ê

(l)
MLME.

(d) Using Eprior, generate a set of pairs of MPL estimators
(ρ̂MPL,ÊMPL), where the states ρ̂MPL were not part
of the l input states previously used, by iterating
Eqs. (26) from different, randomly chosen starting
points.

(e) Set ρ(l+1)
i as the input state corresponding to the state

estimator ρ̂MPL such that Dtr(ÊMPL,Ê
(l)
MLME) is the

largest.
(f) Set l = l + 1 and repeat Steps 1(a)–1(e).

With this, let us first compare the performances of the three
proposed schemes; namely the nonadaptive MLME scheme
in Sec. III, the adaptive MLME scheme in Sec. IV A, and the
adaptive MPL-MLME scheme. For this purpose, we consider
two quantum processes, the first being an imperfect CNOT gate
whose action is described by the Kraus operators

K1 = √
1 − εUCNOT and K2 = √

ε. (28)

This first channel is a CNOT gate with probability 1 − ε and
does nothing to the input states with probability ε, an imperfect
CNOT gate represented by a rank-2 Choi-Jamiółkowski opera-
tor. The second process is described by the Kraus operators

K1 = √
1 − εUCNOT and {Kj = √

εBj }16
j=2, (29)

where the 15 operators Bj are randomly generated and satisfy
the equation

∑
j B

†
jBj = 1K. This second channel, which

is represented by a full-rank matrix, is a CNOT gate with
probability 1 − ε and randomly perturbs the input states with
probability ε due to additional noise. As an example, we set
ε = 0.1. Figure 2 shows the numerical results.

Next, to understand how this adaptive MPL-MLME strat-
egy can lead to an optimization in tomographic performance,
we need to know how increasing the number of input states
used in AMLME QPT can affect the corresponding MLME es-
timators. Since we are considering only a subset of the full lin-
early independent input states in general, there exists a convex
set of estimators ÊML maximizing the likelihood functional for
a given set of informationally incomplete measurement data.
This means that the likelihood functional possesses a plateau
hovering over this convex set of estimators. As the number
of input states L used increases, the likelihood plateau will
either remain unchanged (if no additional information about
Etrue is gained after performing QPT with new input states) or
decrease in size (if new independent information is obtained).
Thus, in general, the plateau will continue to shrink to a point
when a full set of linearly independent input states is used.

We conjecture that the adaptive MPL-MLME strategy
optimizes the rate of decrease in the size of the likeli-
hood plateau by maximizing the normalized projected log-
likelihood functional with respect to the next input state.
A point of view to justify this conjecture is to interpret
the maximum of the normalized log-likelihood functional
log[L(E)]/(LN ) as the maximum information gain from
the measurement data. When the number of copies N is
infinite, the data are noiseless and the resulting maximum
information gain is

∑
lm flm log(flm), which is the negative

of the Shannon entropy of the measurement data. For finite
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FIG. 2. Comparison of three incomplete QPT schemes: the
nonadaptive MLME scheme, the adaptive MLME scheme, and the
adaptive MPL-MLME scheme. Monte Carlo simulations are carried
out on two different types of imperfect CNOT gates described in the
text. Here, N = 104 and an average over 50 experiments is taken to
compute the trace-class distances. For both the nonadaptive as well
as the adaptive MLME schemes, the 16 linearly independent input
states are chosen to be tensor products of projectors of the kets |0〉, |1〉,
(|0〉 + |1〉)/√2, and (|0〉 + |1〉i)/√2 [16]. For all schemes, the POM
outcomes are chosen to be the tensor products of qubit SIC POMs.
The tomographic performance of the adaptive MPL-MLME scheme
is the best out of the three. The plots show that the tomographic
efficiency can be further improved by optimizing the input states
over the Hilbert space instead of restricting to a fixed set of linearly
independent input states, albeit the small difference in tomographic
performance between the two adaptive schemes for some quantum
processes.

N , the maximum information gain over the space of density
operators will typically be lower than the true maximum due
to the positivity constraint, especially when Etrue is highly
rank deficient. In this language, the MPL-MLME strategy
attempts to maximize this maximum information gain as
much as possible via the optimization of future input states
over the entire Hilbert space of density operators, using the
normalized projected log-likelihood functional as an estimate
for the actual normalized log-likelihood functional describing
future measurements. This is a possible explanation for the
optimal decrease in the likelihood plateau size since one has
maximal knowledge about the unknown Etrue gained with the
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optimized input states and so the ambiguity in the estimators
is minimized.

We illustrate this point by considering the imperfect CNOT

gate with ε = 0.1 described by Eq. (28). Since the boundary
of the likelihood plateau is complicated, we shall estimate its
size numerically by first generating N0 = 103 ML estimators
Ê

(j )
ML labeled with the index j for a given set of measurement

data. Next, in the same spirit as in numerical sampling, we can
define the operator centroid

ĒML = 1

N0

N0∑
j=1

Ê
(j )
ML (30)

for this generated set of estimators and the normalized Hilbert-
Schmidt standard deviation


 = 1

Di

√∑N0
j=1 tr

{(
Ê

(j )
ML − ĒML

)2}
2N0

(31)

away from the centroid. Thus, 0 � 
 � 1. For sufficiently
large N0, the size of the plateau may be well approximated by
the spread 
. Figure 3 compares the respective performances
of the the three proposed schemes by analyzing the size of the
likelihood plateau and the maximum of the normalized log-
likelihood functional. From Fig. 3, it is crucial to understand
that 
 does not, strictly speaking, decrease monotonically with
increasing height of the normalized log-likelihood functional.
A counterexample is shown in the figure: a significant decrease
in 
 for the adaptive MLME scheme as compared with the
nonadaptive scheme with the corresponding slight decrease
in its normalized log-likelihood maxima. We emphasize that
what the adaptive MPL-MLME strategy exploits is the possible
trend of this behavior.

To end this part of the section, we comment that the
aforementioned idea can be applied to adaptively choose
the next set of POM outcomes �j based on the collected
measurement data. However, to perform the optimization
successfully requires the solutions to more technical problems
which include ensuring that the POM outcomes are linearly
independent after the optimization. This project is left for
future studies.

C. Combination of both adaptive strategies

Let us begin this final part of the section by reviewing the
nonconvex feature of the MPL-MLME strategy discussed in
Sec. IV B. The presence of multiple local-maxima estimators
which are linearly independent is an important element of
the MPL-MLME strategy as it provides linearly independent
input states which are optimal for measurements based on
the data obtained from experiments. In general, because of
the nonlinearity of Eq. (26), it is difficult to determine the
number of such linearly independent extremal solutions for a
given set of measurement data by analytical means. One can
only search for as many linearly independent local-maxima
estimators ρ̂MPL as possible via numerical optimizations from
different starting points within a reasonable time period.

Another technical subtlety is that these local-maxima
estimators tend to repeat themselves during the optimization.
Hence, a local-maxima estimator which was chosen as one of
the input states earlier may reappear in later optimizations. The
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FIG. 3. Dependence of the size of the likelihood plateau (
)
and the normalized log-likelihood maximum on the number of
input states. The respective performances of the nonadaptive MLME
scheme, the adaptive MLME scheme, and the adaptive MPL-MLME
scheme are computed based on noiseless measurement data for
an imperfect CNOT gate with ε = 0.1. For both the nonadaptive
MLME scheme and the adaptive MLME scheme, the 16 linearly
independent input states are chosen to be tensor products of projectors
of the kets |0〉, |1〉, (|0〉 + |1〉)/√2, and (|0〉 + |1〉i)/√2. For all
schemes, the POM outcomes are chosen to be the tensor products
of qubit SIC POMs. From the plot, the rate of decrease of 
 is the
greatest with the adaptive MPL-MLME scheme. The increase in the
normalized log-likelihood maxima with the adaptive MPL-MLME
scheme may also be interpreted as greater maximum information
gain after measurements using the optimal input states as compared
with the other schemes.

repetition frequency strongly depends on the POM chosen to
measure the output states. The examples given thus far make
use of the product tetrahedron measurements as the POM and
the resulting MPL optimizations give linearly independent
estimators with few repetitions. This may not be the case
for other types of POM. In view of this, another way of
doing AMLME QPT is to use both adaptive strategies in
Secs. IV A and IV B interchangeably, which is the hybrid
MLME strategy. For example, one can start with the adaptive
MPL-MLME strategy for tomography and when the repetition
rate increases as more input states are used, one may switch to
the first adaptive MLME strategy. Figure 4 suggests that such
a hybrid MLME strategy can further improve the tomographic
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FIG. 4. Comparison of three incomplete QPT schemes: the
nonadaptive MLME scheme, the adaptive MLME scheme, and a
combination of the adaptive MPL-MLME scheme and the adaptive
MLME scheme (hybrid scheme). Monte Carlo simulations are carried
out on the imperfect CNOT gate with ε = 0.1. Here, N = 104 and
an average over 50 experiments is taken to compute the trace-class
distances. For both the nonadaptive as well as the adaptive MLME
schemes, the default set of 16 linearly independent input states
are chosen to be tensor products of projectors of the kets |0〉,
|1〉, (|0〉 + |1〉)/√2, and (|0〉 + |1〉i)/√2. For all schemes, a set of
16 randomly generated positive operators, which are all linearly
independent of one another, are used to form the POM. For this POM,
the average repetition frequency of the adaptive MPL-MLME scheme
is very high after four input states are used. The first input state for
all schemes is chosen to be the same separable state ρ(1)

i = |00〉〈00|.
For the third scheme, the second to the fourth input states (shaded
region) are optimized using the adaptive MPL-MLME strategy and
the subsequent input states are chosen via the adaptive MLME
strategy using the default set of input states which excludes |00〉〈00|.
The plot shows that the overall performance of the combined strategy
is better than the adaptive MLME strategy alone.

performance as compared with the adaptive MLME strategy
alone.

D. Fixed measurement resources

Finally, we try to answer, with numerics, the following
question: For a fixed value of LN , is it more beneficial, in
terms of tomographic performance, to measure more input
states with fewer copies per input state or to measure fewer
input states with more copies per input state? In quantum
state estimation, it is well known that, for a fixed number
of measurement copies, it is better to measure more POM
outcomes—an overcomplete set if possible [17]. To see if
there exists an analogous benefit to measure more input states
in QPT, we performed a simulation with a fixed value of LN

and show the results in Fig. 5.
It turns out that the average trace-class distance is a

monotonically decreasing function of L, with the maximal
L = LML = 16. Hence, for a fixed amount of measurement
resources, the advantage of increasing the different types of
measurements carries over to quantum process estimation.
However, it is important to note that this does not contradict
the fact that, for a fixed average trace-class distance, one
can use MLME to reduce the total number of measurement
resources and settings by simply reducing the number of input
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FIG. 5. Numerical simulation of the imperfect two-qubit CNOT

gate with random noise for fixed LN = 104. An average over
50 experiments is taken to compute the trace-class distances. The
adaptive MPL-MLME strategy is used when the number of input
states L is less than 16.

states necessary to achieve this distance. This is because, as
discussed previously in Sec. III and also shown in Figs. 1
and 5, the improvement gained by increasing the number of
input states L decreases rapidly with L, especially when the
input states are chosen optimally. Put differently, it is not worth
the trouble to increase L after some point, beyond which there
is very little tomographic improvement. This point, which
is the essence of AMLME QPT, cannot be overemphasized.
Experimentally, this means that one need not perform full
tomography to obtain a quantum process estimator within a
certain preset error margin since other confounding variables
contribute to the total experimental error anyway.

V. SUMMARY

We have established adaptive numerical strategies to
perform incomplete quantum process tomography. One may
choose whichever strategy is convenient to carry out to-
mography depending on the available types of measurement
resources at hand. Each of these strategies combines the
simplicity of incomplete quantum process tomography using
quantum state estimation with good tomographic perfor-
mances using optimization techniques. It can never be overem-
phasized that, although some prior information is necessary
for each adaptive strategy, such information is never used in
the estimation of the unknown quantum process. Rather, the
prior information is utilized to adaptively select future input
states, the input states in our context, based on the current
measurement data, to optimize the tomographic performance.
The discussions presented in this article, therefore, provide
a means of obtaining estimators for the unknown quantum
process using incomplete resources which are typically within
reasonably good experimental precisions. These estimators
are statistically meaningful in that they are least biased with
respect to a set of informationally incomplete measurement
data and are hence suitable for partial characterization of
quantum processes. This is in contrast with the standard
quantum process tomography which generally requires a huge
amount of informationally complete measurement resources.
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by M. Paris and J. Řeháček (Springer, Berlin, Heidelberg,
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