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Decoherence and the nature of system-environment correlations
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We investigate system-environment correlations based on the exact dynamics of a qubit and its environment in
the framework of pure decoherence (phase damping). We focus on the relation of decoherence and the buildup
of system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit state. In the commonly employed
regime where the qubit dynamics can be described by a Markov master equation of the Lindblad type, we find
that for almost all qubit initial states inside the Bloch sphere, decoherence is complete while the total state is
still separable—no entanglement is involved. In general, both “separable” and “entangling” decoherence occurs,
depending on the temperature and initial qubit state. Moreover, we find situations where classical and quantum
correlations periodically alternate as a function of time in the regime of low temperatures.
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I. INTRODUCTION

The increasing possibilities and sophisticated ways to
control larger and larger quantum systems require a thorough
understanding of the dynamics of open quantum systems [1,2].
As a prime example, the phenomenon of decoherence is
an effect of the environmental impact on quantum behavior
of the system, leading to a—sometimes rapid—decay of its
coherences in a certain basis [3–7].

With respect to quantum information processing, deco-
herence is the main obstacle that needs to be overcome.
However, the influence of the environment on an open quantum
system is not always of a disturbing nature. For example, an
environment can also mediate quantum correlations between
two qubits [8,9], which implies that in the process, the system
and environment must get quantum-mechanically correlated.
An interesting question is under which circumstances and how
exactly those correlations develop. Many interesting results
about correlations and entanglement in quantum many-body
systems have been obtained in the last few years [10]. The issue
of system-environment correlations is also of importance for
the quantum foundations of thermodynamics [11–13].

Although there are methods to detect the formation of
system-environment correlations at the level of reduced
dynamics [14], a detailed analysis of the role of quantum
correlations in decoherence phenomena lies beyond such
an approach. To gain a deeper understanding, one surely
has to investigate the total (sometimes thermal) state of the
composite quantum system, which in fact has been done
for a couple of model systems [12,15–19]. Some of the
authors find decoherence accompanied by system-reservoir
entanglement, and some of them report of certain conditions
under which decoherence appears without it. Still, we lack a
complete picture of entanglement dynamics, including finite-
temperature environments and arbitrary system initial states.

Here we present an approach to this problem, based on
a partial P representation of the total state, investigating a
purely decohering qubit. It enables us to make detailed state-
and temperature-dependent statements on the evolution of the
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correlations between the system and environment, which we
relate to the decoherence process.

II. OPEN QUANTUM SYSTEM MODEL FOR
DECOHERENCE AND REDUCED DYNAMICS

Describing pure decoherence (phase damping), we will
assume a standard model [20,21], Htot = Hsys + Hint +
Henv, by coupling a qubit Hsys = h̄�

2 σz via Hint = σz ⊗
(
∑N

λ=1 g∗
λa

†
λ + H.c.) nondissipatively to a bath of harmonic

oscillators, Henv = ∑N
λ=1 h̄ωλa

†
λaλ [9,22–25]. Here, � denotes

the transition frequency of the qubit and the coefficients
gλ describe the coupling strength between the qubit and
each environmental mode of frequency ωλ. Assuming the
environment to be initially in the thermal state, ρtherm =
exp(−Henv/kBT )/Tr[exp(−Henv/kBT )], at temperature T ,
and the total initial state to be the product ρtot(0) = ρsys(0) ⊗
ρtherm, the exact time-local master equation for the reduced
density operator ρred = Trenv[ρtot] follows as

ρ̇red = −i
�

2
[σz,ρred] − γ (t)

2
(ρred − σz ρred σz) . (1)

Its solution reads

ρred(t) =
(

ρ00 D(t)ρ01

D∗(t)ρ10 ρ11

)
, (2)

with D(t) = exp[−i�t − ∫ t

0 γ (s)ds]. Here, ρij represents the
initial state of the qubit, with Bloch vector r = (x,y,z) =
〈σ 〉. For the following, it is essential to consider arbitrary
(mixed) initial qubit states. This choice reflects experimental
limitations in the preparation process, and also allows us to
investigate decoherence and qubit-environment correlations
in cases where the qubit is part of an entangled many-qubit
state [26,27]. While pure initial qubit states will always lead
to system-environment entanglement, even a slight decrease
of the initial purity may have a significant effect on the nature
of the ensuing system-environment correlations.

In (1) and (2), we have introduced the time-dependent
decoherence rate γ (t), which by means of the spectral density
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of the environment, J (ω) = ∑N
λ=0 |gλ|2δ(ω − ωλ), can be

written as

γ (t) = 4
∫ t

0
ds

∫ ∞

0
dωJ (ω) coth[h̄ω/2kBT ] cos[ωs]. (3)

For a time-independent γ (t) ≡ γ , qubit coherences decay on
the decoherence time scale, τdec = γ −1, sometimes referred to
as “T2.” For the general case considered here, we define the
decoherence time τdec through the relation

∫ τdec

0 γ (s)ds = 1.
The off-diagonal elements of the qubit have then decayed to a
fraction e−1 of the initially present quantum coherences.

Indeed, a constant decoherence rate γ (t) ≡ γ is obtained
for an Ohmic spectral density with a cutoff frequency ωc, in
the limit of high temperatures kBT � h̄ωc and large times
ωct � 1. Then Eq. (1) is of the Lindblad type, and the
corresponding dynamics is Markovian. For our studies, we
choose a sharp cutoff, J (ω) = κω�(ω − ωc) [28], where κ

parametrizes the coupling strength between the system and
environment. Accordingly, the asymptotic decoherence rate is
given by h̄γ = 4πκkBT .

Decoherence of qubits is sometimes modeled by random
unitary dynamics [26,29]. It is known that on the level of
the reduced state, single-qubit decoherence can always be
modeled that way, while for two qubits or more, there is
genuine “quantum” decoherence—i.e., there is decoherence
that, even on the reduced level, can only be modeled by
coupling the system to a quantum environment [30–32].
Considering a single qubit and its given quantum environment,
this raises the question of to what extent the total state involves
any quantum correlations.

In fact, the most general class of total initial states, which
allows for completely positive reduced dynamics, is classically
correlated, with zero discord [33,34]. We emphasize that for
our special choice of the spectral density, the map ρred(ti) →
ρred(tf ) induced by (1) is completely positive for all 0 < ti <

tf . This is due to the positivity of γ (t) in our case, which also
implies the “Markovianity” of the reduced dynamics for all
times in the sense of both works [35,36].

For all of these recent investigations, it is relevant to
gain a deeper understanding of the buildup of quantum
correlations between the system and environment. In this
paper, we investigate the correlation dynamics of the total state
for a mixed initial product state and identify entangled and
classically correlated regimes. It turns out that in general the
dynamics of system-environment correlations can be markedly
rich. Let us provide the framework necessary to extract the
desired information from the total state.

III. THE TOTAL STATE

We are interested in an exact expression for the total state
ρtot(t), which we will represent in a coherent-state basis. In
a sense, our approach here is a mixed-state generalization
of the non-Markovian quantum state diffusion approach to
open quantum system dynamics [37,38]. We will combine
the environmental coherent-state labels into the vector ξ =
(ξ1,ξ2, . . .) of complex numbers and consistently make use of
the notation d2ξ/π := d2ξ1/π · d2ξ2/π · · · · (see also [38]).
Furthermore, by introducing the average thermal occupation

number nλ of the λth environmental mode, it is possible to
expand the total state in terms of coherent states |ξ 〉,

ρtot(t) =
∫

d2ξ

π

1

n
e−|ξ |2/n P̂ (t ; ξ,ξ ∗) ⊗ |ξ 〉〈ξ |, (4)

defining the matrix-valued partial P function P̂ (t) with values
in the 2 × 2 dimensional state space of the qubit. Here we sym-
bolically write exp[−|ξ |2/n]/n := ∏

λ exp[−|ξλ|2/nλ]/nλ.
We find that expression (4) is a solution of the total von

Neumann equation with initial ρtot(0) = ρsys(0) ⊗ ρtherm if

P̂ (t ; ξ,ξ ∗) =
(
A+(t ; ξ,ξ ∗)ρ00 B(t ; ξ,ξ ∗)ρ01

B∗(t ; ξ,ξ ∗)ρ10 A−(t ; ξ,ξ ∗)ρ11

)
, (5)

where A± = exp[−A(t) ± {(a(t)|ξ ) + (ξ |a(t))}] and B =
exp[−i�t] exp[B(t) − {(b(t)|ξ ) − (ξ |b(t))}]. Here we have
introduced the complex time-dependent vectors a(t) =
(a1(t),a2(t), . . . ) and b(t), with scalar product (a(t)|ξ ) ≡∑

λ a∗
λ(t)ξλ and vector components

aλ(t) = 1

nλ

∫ t

0
(gλe

iωλs)ds,

bλ(t) = 2nλ + 1

nλ

∫ t

0
(gλe

iωλs)ds.

Furthermore, we use the abbreviations

A(t) = 2Re
∫ t

0
ds

∫ s

0
dτ

[∑
λ

1

nλ

|gλ|2e−iωλ(t−s)

]

B(t) = 2Re
∫ t

0
ds

∫ s

0
dτ

[∑
λ

2nλ + 1

nλ

|gλ|2e−iωλ(t−s)

]
.

Initially, P̂ = ρsys(0) = ρred(0), and note that there are no
approximations necessary to achieve result (5) and thus, via
(4), to obtain the exact state of the composite system.

IV. SYSTEM-ENVIRONMENT SEPARABILITY AND
DECOHERENCE

Having the total state at hand, we now want to draw
conclusions on its separability. For this purpose, we argue
as follows:

As long as the partial P function is positive semidefinite,
the total state ρtot(t) in representation (4) is trivially separable.
Since one eigenvalue of P̂ is always positive, a good indicator
for this circumstance is the determinant det[P̂ ], which in fact
is independent of the coherent-state labels ξ and ξ ∗:

det[P̂ (t)] = e−2A(t)[1 − z2] − e2B(t)(x2 + y2). (6)

Recall that (x,y,z) are the Bloch coordinates of the initial state
of the qubit. This expression is positive as long as the following
condition is fulfilled:

S(t) := A(t) + B(t) � 1

2
ln

[
1 − z2

x2 + y2

]
. (7)
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FIG. 1. Separability of system and environment vs decoherence
time—Lindblad regime: for temperatures kBT � h̄ωc, the qubit may
decohere without becoming entangled to its environment despite an
initial purity of r = 0.98.

The quantity on the left-hand side depends on the temperature
of the surrounding heat bath via the thermal occupation
numbers nλ = (exp[h̄ω/kBT ] − 1)−1, and reads

S(T ,t) = 4
∫ t

0
ds

∫ s

0
dτ

∫ ∞

0
dω

× J (ω) exp [h̄ω/kT ] cos[ω(s − τ )]. (8)

With our special choice of J (ω), S(T ,t) can be written in terms
of known special functions. For a given initial qubit state with
〈σ 〉 = (x,y,z), condition (7) defines an area in the (T ,t) plane,
shown in Fig. 1, within which the total state is necessarily
separable. Note that for a pure initial state, the right-hand side
of (7) is zero and the separable area vanishes.

It turns out that as t → ∞, S(T ,t) grows above all bounds
for all temperatures, and becomes independent of temperature
in the high-temperature limit, S(T ,t) → S(t) ≈ ln t + const.
As a consequence, for any initial state and temperature,
expression (4) of the total state at some point in time ceases
to represent a proper mixture and thus, separability can no
longer be concluded. Let us stress that the positivity of P̂ (t) is
a sufficient but not a necessary condition for separability.

A. Separability in the Lindblad regime

Condition (7) is visualized in Fig. 1, where we relate
our criterion for separability to the decoherence time τdec

introduced earlier. We resort to the weak-coupling regime
(κ = 10−3) and choose a qubit initial state in the equatorial
plane (z = 0) of the Bloch sphere with purity r = 0.98 (recall
that r denotes the length of the Bloch vector, i.e., r = |r|).

While at low temperatures τdec lies outside of our separabil-
ity area, it is inside this area for temperatures of about kBT �
2 h̄ωc. In the high-temperature regime, when the dynamics is
governed by a Lindblad equation, decoherence of the qubit
is thus complete, while the total state is still separable. This is
especially striking because the initial state is so close to being
the pure state (|0〉 + |1〉)/√2.

The question arises as to how many initial states, depending
on temperature, meet the very same fate. In Fig. 2, we display
the relative volume of the set of states that are still separable at
τdec, i.e., after decoherence. Remarkably, in the regime where
the master equation (1) is of the Lindblad form (γ = const), for
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FIG. 2. Fraction of qubit initial states that decohere while the total
state is still separable: remarkably, in the regime of validity of the
Lindblad equation (kBT � h̄ωc), virtually all initial states decohere
before any entanglement to the bath is built up.

practically all states, decoherence has happened long before
any entanglement between the system and environment can
build up.

In fact, this is not too surprising: in the weak-coupling limit
(“Born approximation”), a master equation of the Lindblad
type is usually derived assuming that the joint state of the
system plus environment to the lowest order in the interaction
remains a product state [2,39], i.e., one substitutes ρtot(t) ≈
ρsys(t) ⊗ ρtherm in the perturbative evolution equation. The
severity of this approximation is apparently manifested
in the fact that entanglement builds up very slowly compared
to the time scale given by decoherence.

V. SYSTEM-ENVIRONMENT ENTANGLEMENT AND
DECOHERENCE

All pure qubit initial states different from |0〉 and |1〉
will lead to system-environment entanglement immediately.
However, as we have shown in the previous section, even
a slight reduction of purity (e.g., r = 0.98) may lead to a
prolonged period of separability, long enough for the qubit to
lose its coherence. Being separable at least up to the time when
det[P̂ ] becomes negative, ρtot turns into an entangled state
at the latest when its partial transpose ρPT

tot yields a negative
expectation value EPT = 〈�|ρPT

tot |�〉 in some state |�〉 of the
composite system [40]. Hence, to detect entanglement, we aim
to find a state |ψ(t ; ξ ∗)〉 ∼ 〈ξ |�(t)〉 in the Hilbert space of the
qubit such that

EPT ∼
∫

d2ξ

π

1

n
e−|ξ |2/n〈ψ(ξ )|P̂ T (ξ,ξ ∗)|ψ(ξ ∗)〉 < 0. (9)

Denoting the pure state on the Bloch sphere that has the
smallest overlap with the transpose of the initial state of
the qubit as (u,v) := (−√

(1 − z/r)/2,e−iφ
√

(1 + z/r)/2), it
turns out that

|ψ(t ; ξ ∗)〉 =
(

e−(ξ |a+b)/2+i�t/2 u

−e(ξ |a+b)/2−i�t/2 v

)
(10)
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fulfills this task. This choice of state is further elaborated upon
in Sec. VI. By solving the integral (9), one finds the following
expression for the expectation value:

EPT(t) = 1

2(n + 1)

[
e−A(t)+ S(t)

2

(
1 − z2

r

)

− eB(t)− S(t)
2

(x2 + y2)

r

]
, (11)

where S arises from S = A + B by inverting the coefficients
(nλ + 1)/nλ → nλ/(nλ + 1). This quantity becomes negative,
i.e., the total state is entangled, if the following condition is
fulfilled:

E(T ,t) := S(T ,t) − S(T ,t) > ln

[
r − z2

x2 + y2

]
. (12)

Note that (r − z2)/(x2 + y2) � 1 and hence the quantity on
the right-hand side of (12) is always non-negative.

As before with inequality (7) for separability, for any
initial state, this new inequality (12) defines an area in the
temperature-time plane in which entanglement of the total state
is assured. As before, this is a sufficient but not a necessary
condition for entanglement.

In terms of the spectral density, the relevant function reads

E(T ,t) = 8
∫ t

0
ds

∫ s

0
dτ

∫ ∞

0
dωJ (ω) sinh[h̄ω/kT ]

× cos[ω(s − τ )]. (13)

In the limit of high temperatures and large times, E(T ,t) be-
comes independent of time, E(T ,t) → E(T ) ≈ 8κh̄ωc/kBT .
As a consequence, for every initial state, there is a temper-
ature above which our criterion is no longer able to detect
entanglement. As we will show in Figs. 3(a) and 3(b) for
low temperatures and relatively short times, the criteria for
separability and entanglement cover almost the entire (T ,t)
plane and only a little “unknown territory” (the white areas)
remains.

A. Separability and entanglement in the strong-coupling regime

In Fig. 3, we relate the decoherence time τdec(T ) to our
criteria for separability and entanglement. To ensure that
entanglement builds up fast, we here resort to the strong-
coupling regime (κ = 1). It becomes apparent that for an initial
qubit state that is pretty pure (r = 0.9), in the considered
low-temperature range, decoherence is complete only after
entanglement has built up [Fig. 3(a)]. By contrast, for an
initial qubit mixed state with purity r = 0.1 (depending on
temperature), decoherence can occur before or after the two
subsystems were able to entangle [Fig. 3(b)].

These results show that in general there is no direct
connection between decoherence and the formation of system-
reservoir entanglement: surely, if the qubit is prepared in a pure
state, decoherence is always accompanied by entanglement of
the total state, independently of temperature. If the initial state
is already a completely incoherent mixture, the two subsystems
will never get entangled. In all other cases, there are two
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FIG. 3. System-environment correlations vs decoherence time—

strong interaction regime: (a) For initial states of high purity (here
r = 0.9), decoherence mainly takes place after the total state has
become entangled. (b) For mixed initial conditions, decoherence can
occur in both domains; here shown for an initial state with purity
r = 0.1.

disjoint domains of temperature, implying that decoherence
before and after the qubit was able to entangle with its
environment, respectively.

We now want to further elucidate the nature of decoherence
depending on the initial state of the qubit. In the cut through
the Bloch sphere shown in Fig. 4, all states inside the area
enclosed by a curve of given temperature decohere while the
total state is still separable. In a similar vein, in Fig. 5, all states
outside the area determined by a curve of given temperature
decohere after entanglement has built up.

1
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1  0.5 0  0.5 1

T=2
T=1

T=0.5

FIG. 4. Separable decoherence: cut through the Bloch sphere at
φ = 0. All states inside the area enclosed by a curve of given temper-
ature decohere while the total state is still separable. Temperatures in
units of h̄ωc/kB .
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FIG. 5. Entangling decoherence: cut through the Bloch sphere at
φ = 0. All states outside the area determined by a curve of given
temperature decohere after entanglement has built up. Temperatures
in units of h̄ωc/kB .

As the coupling to the environment distinguishes the south
and north pole of the Bloch sphere as robust states, for a given
purity r , there is no global value of temperature T defining
the cut between “separable” and “entangling” decoherence.
Rather, states close to the poles tend to decohere while the total
state is still separable. States near the equator, by contrast, tend
to decohere involving entanglement.

B. Oscillations between separability and entanglement

As already mentioned at the beginning of this paper, the
dynamics of system-environment correlations can be quite
rich. In the low-temperature regime, in particular, we are
able to detect conditions where the total state alternates
between being entangled and separable. In Fig. 6, we show the
correlation dynamics for an initial qubit state with purity r =
0.95. It becomes apparent that for temperatures around T =
0.3 h̄ωc/kB , the nature of the correlations changes oscillatorily
between classical and quantum as a function of time. Although
the special form of these oscillations depends on the form of
the spectral density J (ω), we found numerically that a similar
behavior exists for different choices of J .
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FIG. 6. Oscillatory behavior in correlation dynamics: at low
temperatures, one can find conditions where separable and entangled
domains alternate; here shown in the weak-interaction regime (κ =
10−3) for a qubit initial state with purity r = 0.95 (z = φ = 0).
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FIG. 7. Single-mode environment—comparison to numerics:
temperature dependence of the exact instant τcrit(T ) at which the
total state changes from PPT to NPT, and vice versa (points). The
result obtained by our criterion (12) is displayed by the shaded areas.
Clearly, there is perfect agreement. Qubit initial state with purity
r = 0.75, z coordinate z = 0.2, and azimuth angle φ = 0.

VI. QUALITY OF ENTANGLEMENT DETECTION FOR A
SINGLE-MODE ENVIRONMENT

Figure 6 demonstrates that at low temperatures at least,
our separability (7) and entanglement (12) criteria are quite
good: the “unknown territory” of correlations is very small. To
also estimate its accuracy for higher temperatures, we study the
entanglement dynamics of the total state in the case of a single-
mode environment, where the full dynamics can be accessed
numerically. We are interested in the exact instant τcrit(T ) at
which the definiteness of the partial transpose, ρPT

tot , ceases to
be positive (PPT) and negative eigenvalues emerge (NPT). On
the other hand, Eq. (12) allows one to analytically derive the
instant τent(T ), from which time onward we are able to detect
entanglement with our test state determined from Eq. (10).

In Fig. 7, we compare the temperature dependence of these
characteristic times for an initial state with purity r = 0.75. It
turns out that there is excellent agreement between the exact
numerical and analytical result, even at high temperatures. We
are confident that also in the case of larger environments, our
entanglement criterion (12) is able to very efficiently detect a
negative partial transpose. Clearly, it is an interesting and open
question as to whether the white areas in our (T ,t) diagrams
correspond to entangled, bound entangled, or separable total
states.

VII. CONCLUSIONS

We have investigated the dynamics and nature of system-
environment correlations of a decohering qubit with an
arbitrary (mixed) initial state coupled to a bath of quantum
harmonic oscillators. When the reduced dynamics can be
described by a Markov master equation of the Lindblad type,
we found that for almost all qubit initial states inside the
Bloch sphere, decoherence is complete long before the buildup
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of any system-reservoir entanglement: the total state is still
separable.

By contrast, in the strong-coupling regime, the correlation
dynamics was found to be more complex: depending on the
initial state and temperature of the surrounding heat bath,
decoherence can occur before or after the qubit is able to
entangle with its environment. At very low temperatures, we
were even able to detect conditions where the total state
alternates between separable and entangled domains as a
function of time.

Finally, we have compared our criterion for system-
reservoir entanglement with exact numerical results for the
occurrence of a negative partial transpose in the case of a
single-mode environment and have found excellent agreement.
We therefore believe that we have found a reliable criterion

for system-bath entanglement. Clearly, it is desirable to further
investigate the nature of system-environment correlations in
the white regions in order to cover the whole range of
temperatures and times. Moreover, we are confident that our
approach may be applied to more general open quantum
system dynamics.
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