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Zeno effect and ergodicity in finite-time quantum measurements
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We demonstrate that an attempt to measure a nonlocal in time quantity, such as the time average (A); of
a dynamical variable A, by separating Feynman paths into ever narrower exclusive classes traps the system in
eigensubspaces of the corresponding operator A. Conversely, in a long measurement of (A); to a finite accuracy,
the system explores its Hilbert space and is driven to a universal steady state in which the von Neumann ensemble
average of A coincides with (A),. Both effects are conveniently analyzed in terms of singularities and critical
points of the corresponding amplitude distribution and the Zeno-like behavior is shown to be a consequence of

the conservation of probability.
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I. INTRODUCTION

Quantum Zeno effect (see, for instance, Refs. [1-3] and
references therein) is often associated with the perturbation
frequent projective von Neumann measurements [4] produce
on the observed system. Suppose, for example, that one wishes
to determine the duration 7 a quantum system spends in
a particular subspace Q2 of its Hilbert space. Checking ever
more frequently whether the system is indeed inside 2 one
eventually destroys the transitions between 2 and the rest
of the Hilbert space. Thus, because of the Zeno effect, a
continuously observed system [5] prepared inside 2 would
spend there all available time, while for a system initially
outside 2, g would be exactly zero [6]. Alternatively, one
can perform a finite time measurement of 7 in which a meter
monitors the system over a finite period of time, and one
single observation is made at the end of the run. One example
of such a meter is a Larmor clock [7] consisting of a spin
which rotates only when the system resides in 2. From the
clock’s final orientation one is able to determine the value of
7, but can learn nothing about the precise moments the system
enters and leaves 2. A conceptually similar measurement of
the duration 7, a qubit spends in its state |g) proposed in
Ref. [8] employs a large number of bosons [e.g., a weakly
interacting Bose-Einstein condensate (BEC)] trapped in one
of the wells of a symmetric double-well potential. With the
atomic current between the wells increased whenever the qubit
occupies the state of interest, the number of bosons found in
the other well contains, like a reading of a Larmor clock,
information about 7(g). Depending on the accuracy, such a
measurement was shown to yield two seemingly incompatible
results: (a) the qubit spends all of the time in just one of the
two states, (b) the qubit shares its time between the two states
in equal proportion. To put it differently, the strong interaction
with a BEC meter freezes the qubit in the state |g). For an
interaction that is strong yet finite, and given enough time 7,
the qubit visits the rest of its Hilbert space and spends there
approximately 7/2.

The purpose of this paper is to present a general theory
of this effect, applicable to an arbitrary system in a finite-
dimensional Hilbert space, time average of an arbitrary
physical quantity describing such a system, and an arbitrary
(within reason) way to measure such a time average. In the
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following, with the minimal mathematical rigour required for
such a presentation, we analyze the Zeno effect arising in
the high accuracy limit of a general finite-time measurement.
We also study the effects of a measurement of the long-time
average of a quantum variable and search for any evidence of
ergodic behavior. Various approaches to quantum ergodicity
can be found in Refs. [9-12], with the importance of the
measurement(s) performed on the system emphasised in
Ref. [11]. A variant of the Zeno effect arising solely from
the strong interaction between a system and its environment
has been studied in Ref. [3].

II. TIME AVERAGES AND THE CONVOLUTION
FORMULA

Consider a quantum system in an N-dimensional Hilbert
space with a Hamiltonian H. Choosing an orthogonal basis
lan), m=1,2,...,N in which H is not diagonal, we can
write a transition amplitude between initial and final states |i)
and | f) over a time T as a sum over Feynman paths

N
U ) = (flexp(—i AT i) = limgoe Y (Flang)

=Y U/ [path], (1)

where € = T /(K — 1) and each path is defined by a sequence
{my,...,mg} numbering the states |a,,) through which the
system passes until reaching the final state | f). Consider a
quantity A represented by an operator A diagonal in the chosen
representation,

AAZZAnpn’ ﬁnﬁmzﬁnamm Zﬁnzlv (2)
n n

where P, are mutually orthogonal projectors on (one-
dimensional or multidimensional) subspaces spanned by
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vectors |a,,) corresponding to the same eigenvalue A,. We
wish to measure the value of a Feynman functional

K-1

Flpath] = limg e »  B(j€)An,€
j=1

T
= /O B(A(t)dt, 3)

where S(t) is a known function [13] and A(z) denotes the
(highly irregular) function traced by the value of A along a
given Feynman path. Equation (3) may, for example, represent
the time average of a quantity A if one chooses () = 1/T =
const and, in particular, the fraction of the time 7o/T, the
system has spent in €2 if A is also chosen to be the projector
onto a subspace €2 spanned by |a,,), A=Py= Zn cq lan){ay]
[8]. The probability amplitude for the value of F to be y is
given by the restricted path sum

®/(y,T) =) 8(Flpath] — U’/ [path],  (4)

paths

where 6(z) is the Dirac delta. Without loss of generality we
choose the measuring device to be a Neumann pointer with
position y which interacts with the system over a time T, the
full Hamiltonian being H(t) = H — i3, B(1)A.

At t = T the pointer states of the meter |y) are entangled
with the system’s states obtained by propagation along
Feynman paths satisfying the condition F[path] =y [14]. In
particular, for the system and the meter prepared at # = 0 in an
product state |i)|G), the probability amplitude to find att = T
the system in the state | f) and, simultaneously, the pointer
reading y, W/ <(y), is given by

T
W, T) = (y(flexp [ - i/o ﬂ(t)dt}li>lG>

_ / G(y — y)® iy, T)dy, )

where G(y) = (y|G).

Thus, the meter “probes” the amplitude distribution
®/<(y',T), obtained by rearranging the path amplitudes of
an unobserved system, with an “apparatus function” G(y)
determined by the meter’s initial state. With G(y) narrowly
peaked around the origin, Feynman paths with different
values of F[path] contribute to different final meter states,
and |W/<(y)|® yields the probability to reach the final
state and obtain the value y for the quantity in Eq. (3).
The measured result contains, however, an intrinsic quantum
uncertainty as the values of y" within the peak’s width around y
remain indistinguishable. With many different Feynman paths
contributing to the transition (1) one might expect the values
of F to have a broad distribution, which a more accurate
measurement would resolve in ever greater detail.

III. A ZENO EFFECT: HIGH ACCURACY AND
FIXED DURATION

First we consider what would happen if one tries to
accurately determine the value of the functional (3) in a
measurement of a fixed duration 7. The accuracy of the
measurement can be improved by making the initial pointer
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state narrower in the coordinate space, for example, by
replacing G(y) with

Go(y) = a'2G(ay),  limg_ool G =8(y), (6)

where the factor o!/? ensures the correct normalization of the
new state [ |Go(y)[*dy = [ |G(y)|*dy = 1.

With the help of Egs. (5§) and (6) we can now prove a general
result: an accurate finite time measurement « — 00, T < 00,
would indicate that at all times A(¢) maintains a constant value
equal to one of the eigenvalues A,, with the value of the
functional (3) equal exactly to A, fOT B(t)dt. The proof follows
from observing first that S i y) cannot be a smooth function
for all final states | f). Indeed, increasing o while maintain-
ing unit normalization will cause the integral [ Go(y)dy =
a2 [ G(y)dy to vanish. With it would also vanish W/ < (y),
limg 00 W/ (y) = /I (y)a™'/? [ G(y — y')dy' = 0, thus
contradicting the conservation of probability for the pointer.
Therefore ®/(y) must have a singular part, which we
evaluate by rewriting Eq. (4) as a Fourier integral

&/ (y) = @m)7! / exp(iLy)
T
X (f|exp{—i/ [H+Aﬂ(t)/i]dt} liYdh. (7)
0

Further, writing exp{—i fOT[I-? + AB(1)ANdr} = limg_, o
[1;_ exp{—i[H + 2B(je)Ale}, € = T/K, we note that [15]
lim; o exp{—i[H + 2B(j€)Ale} = X, exp{—iAB(je)Ane}
exp(—i P, HP,¢e)P, + o). Defining Zeno Hamiltonian as
(cf. Ref. [3])

ﬁZ:Zﬁnﬂﬁnv (8)

we obtain
T A A
<f|exp |:—i/ [H +A,3(t)A]dt] |i>
0

T
=Zexp{—imn / ﬂ(t)dt} (Flexp(—i A TP i)
n 0
+ (f1aGIi), ©)

where the last term vanishes as A — oo, lim;_
(fla))iy = o). Inserting Eq. (9) into Eq. (7) yields

' I(y) = Y (flexp(—i HyT) B, li)

n

T .
) (y - A,,/O ,B(t)dt) + @/ (), (10)

where @fm(;éth(y) is the smooth Fourier transform of the last
term in Eq. (9). With the contributions from the smooth term
vanishing in the limit « — oo [16] the monitored system is
seen to undergo unitary evolution with a reduced Hamiltonian
P, H P, in the subspaces corresponding to each of the distinct
eigenvalues A,,n = 1,2, .. .. As in the case of the Zeno effect
caused by frequent observations [1-3], an accurate finite-
time measurement suppresses transitions between different
subspaces.
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Taking trace over the system’s variables we find the
probability distribution for the functional (3)

limg oo Wi (p.T) = Y W/ (3, T)
f

T
~ Zb‘(y—An/O ﬂ(t)dt> AL
(1

In particular, a strongly observed system starting in a a
state corresponding to a nondegenerate eigenvalue |i) = |ay),
Py = |ay){ay| would follow a constant Feynman path
A(t) = Ay, thus having the time average of A exactly equal
to Ay, and spending all available time in its initial state,
ty = T. This failure to find real evidence of the irregular
virtual motion suggested in Eq. (1) by separating Feynman
paths into ever narrower exclusive classes according to the
value of a functional (3) constitutes the finite-time Zeno effect
and is the first result of this paper.

IV. AN ERGODIC PROPERTY: FINITE ACCURACY AND
LARGE DURATION

Next we show that the evidence of the virtual motion is
recovered if one performs a long measurement of an arbitrarily
high but fixed accuracy, @ < oo and T — oo. For simplicity
we consider the time average of A, thus choosing B(r) =
1/T = const. Changing the variables in Eq. (7),z = A/ T, and
using spectral representation for the operator H + zA yields

N
q>f<—i(y) — (27.[)—1 T Z/ (f1(2)) explilzy — £ ()T}
n=1

X (Yn(2)li)dz, 12)

where (H + zA)|¥,(2)) = E,(z)|¥a(2)). The long time behav-
ior of ®/<7(y) is now determined by the critical points z£(y)
of the exponent in Eq. (12),

8zgn(z)z:zf, =Y. (13)

Evaluating the integrals in Eq. (12) by the stationary phase
method yields N rapidly oscillating contributions containing
factors exp[i S, (y)T] with the phases given by the Legendre
transforms of &,(z), S,(y) = z)y — &,(z}). The critical points
ys of S,(y) are determined by the condition zJ(y}) = 0 so
that from Eq. (13) we have y) = 0,£,(2)|;=0. Calculating
the derivatives with the help of the perturbation theory and
evaluating the integrals in Eq. (5) by the stationary phase
method, we find

limz oo W/ (y)
=Y Goly — (Bul Alg)(f160) exp(—i E, T)(huli),
(14)

where H |¢.) = E,|¢,). Extension to mixed states is straight-
forward. For an initial state p;, all E, nondegenerate and all
(¢n]Al¢,) distinct, the probability distribution of the meter’s
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FIG. 1. (Color online) (a) Amplitude distribution ®/ =7 (y.T)

smooth
for |i) = |1), |f) =|+), H=wé,, A=6,, and wT = 100; (b)
/< (y,T) for T = 50 (solid line), wT = 25 (dashed line), and

oT = 10 (dot-dashed line). Also shown is G,(1 — y) (x75) fora =
100 (thick solid line).

1.05

readings is given by
limy solimy oo W' (y,T) ZZ 8(y—(¢ul Alpn)) (@uPi|n),

15)

where the order in which the limits are taken is essential.
We note that a strongly observed system prepared with
a known energy Ey, {(¢,|0:il¢,) = Srn explores its Hilbert
space in such a way that the long-time time average of
a dynamical variable A is sharply defined, with the value
equal to the ensemble average in the projection von Neumann
measurement of the operator A, (dclAlgr). In particular, as
T — oo, the fraction of time a system prepared in a pure
state |¢y) spends in a subspace €2 spanned by the subset of
eigenvectors {|a,,),m € 2} tends to the measure of the subset
“o = co [{am|dr)|>. This ergodic-like [17] property of
bound quantum motion, to our knowledge not yet discussed
in literature, is the second result of this paper. Further, as seen
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FIG. 2. (Color online) Probability distribution of the time average
of the y-component of the spin A = &y, for a two-level system
with the Hamiltonian A = w6, vs. the averaging time 7. The
system is prepared in the eigenstate |1), H|1) = w|1), and the
accuracy of the measurement is Ay/yy = 0.05. The ergodic peak
and two Zeno peaks are indicated by white and black arrows,
respectively. (Note the logarithmic scale used for the 7-axis.).

from Eq. (14), a system starting in a mixed state p;, undergoes
relaxation to the same steady-state diagonal in the energy
representation py = Y |Pn) (Pnl|Pi|Pn){(¢nl, regardless of the
choice of A. Thus the finite-time average of a quantity
A, (A)p = [yW!(y,T)dy, tends, as T — oo, to the von
Neumann ensemble average Tr{A,éf}. As in the case of
a frequently observed system [12] the equivalence between
the time and ensemble averages is established in the state
produced at the end of measurement p , rather that in the initial
state p;.

V. AN EXAMPLE: SPIN-1/2 IN A MAGNETIC FIELD

We illustrate the above with a simple example, where one
wishes to measure the time average of the y-component of a
spin 1/2, A= 6y, for a two-level system with Hamiltonian
H = wé, prepared in its eigenstate |1), A|1,2) = +w|1,2).
Choosing in Eq. (3) § = const we then convert to dimension-
less variables, T — T,y — y/y0, o= BT, — 1/T.

As in Ref. [8], G(y) in Eq. (5) is chosen to be a Gaussian,

Go(y) = 2/m)"*(@)"/? exp(—a?y?). (16)
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Figure 1(a) shows CID;;;}m(y), 6.l +)==| %), for oT =
100, with the stationary region clearly seen around y; =
¥} = (1]6y]1) = 0. Two Zeno peaks at y/yo = *1 predicted
by Eq. (11) and a single ‘“ergodic” (for want of a better
word) peak predicted by Eq. (15) are shown in Fig. 2.
The transition between the regimes described by Eqs. (11)
and (15) occurs as the Zeno peaks, however narrow G,

may be, are eventually canceled by the contributions from

Cb'sfm;’)th(y), whose oscillations become more rapid as the time
T increases. This is illustrated in Fig. 1(b), for the spin-1/2
system described above, with W+<!(y = 1) given by Eq. (5).
For wT = 10 the contribution from Q:’m(golth(y) (dot-dashed
line) is negligible, and the Zeno peak is formed by the §
singularity of ®+<! [cf. Eq. (10)] at y = 1. For T = 50
the contribution of the singular term is largely canceled by
the first negative oscillation of CD;;;OIth(y) (solid line) that fits

under the Gaussian G, (1 — y) (thick solid line), thus making
Wt<l(y = 1) negligible.

VI. CONCLUSION AND DISCUSSION

In summary, we have considered a general finite-time
measurement based on separating Feynman paths into ex-
clusive classes according to the value of a functional such
as time average of a dynamical variable A, (A);. We have
shown the following. (i) A highly accurate measurement of
a fixed duration traps the measured system in the eigenstates
(eigensubspaces) of the corresponding operator A. (ii) For any
quantity A, a prolonged measurement of an arbitrary but fixed
accuracy destroys coherences in the energy representation,
thus leaving the system in a steady state with (A); equal
to the von Neumann projection average of A. In the special
case of a system prepared in a pure stationary state, (A)y is
sharply defined, and the proportion of time spent in a given
subspace 2 is exactly equal to the von Neumann probability
to find the system there. Both effects are readily explained in
terms of singularities and critical points of the corresponding
amplitude distribution. Finally, these results have applications
beyond the von Neumann meter model we used for our deriva-
tion. Central to our analysis is the convolution formula (5)
in which an amplitude distribution describing an uncoupled
system is projected onto an “apparatus function,” whose shape
determines the accuracy of the measurement. Equation (5)
arises in a much wider context of measurement situations, for
example, for a BEC meter (cf. Eq. (10) of Ref. [8]), when
the electrons or cold atoms experience spin-orbit coupling
(cf. Eq. (5) of Ref. [18]) and in the case of “self-measurement,”
such as wave-packet tunneling where no external meter is
employed (see Ref. [19] and references therein).
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