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Radiative polarization of electrons in a strong laser wave
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We reanalyze the problem of radiative polarization of electrons brought into collision with a circularly polarized
strong plane wave. We present an independent analytical verification of formulas for the cross section given by
Ivanov et al. [Eur. Phys. J. C 36, 127 (2004)]. By choosing the exact electron’s helicity as the spin quantum
number we show that the self-polarization effect exists only for the moderately relativistic electrons with energy
γ = E/mc2 � 10 and only for a non-head-on collision geometry. In these conditions polarization degree may
achieve values up to 65%, but the effective polarization time is found to be larger than 1 s even for a high-power
optical or infrared laser with intensity parameter ξ = |E|mc2/Ech̄ω ∼ 0.1 (Ec = m2c3/eh̄). This makes such a
polarization practically unrealizable. We also compare these results with the ones of some papers where the high
degree of polarization was predicted for ultrarelativistic case. We argue that this apparent contradiction arises
due to the different choice of the spin quantum numbers. In particular, the quantum numbers that provide the
high degree of polarization represent neither helicity nor transverse polarization, which makes the use of them
inconvenient in practice.
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I. INTRODUCTION

The process of emission of a photon by an electron
moving in the field of a plane wave of arbitrary strength
was considered in quantum electrodynamics (QED) at the
beginning of the 1960s [1–3]. Polarization effects in this
process were studied in the limiting case of a weak wave
(ordinary linear Compton scattering) (e.g., in Refs. [4–7]) and
in the general nonlinear regime (i.e., at the tree level in a Furry
picture) (e.g., in Refs. [8–11]). The complete description of
the polarization effects in the nonlinear case was given more
recently in Ref. [12]. Polarization states of the initial and final
particles are of importance for a number of processes studied
at current accelerators (such as the Large Hadron Collider
(LHC) [13,14]) and planned for study at future colliders (such
as the Compact Linear Collider (CLIC) and the International
Linear Collider (ILC) [15–17]).

The possibility to use linear and nonlinear Compton
scattering for production of polarized electron (positron)
beams was discussed in Refs. [18–24] and some others. The
general conclusion on this topic was made in Ref. [24] where
the absence of the longitudinal radiative polarization during
a head-on collision of the ultrarelativistic electrons and the
optical photons was demonstrated. In fact, such a conclusion
was made as early as 1968 by the Ternov group in Ref. [8] soon
after discovery of the self-polarization effect in synchrotron
radiation. Nevertheless, later it was pointed out by the same
group that there exist some spin operators allowing one to find
the directions that are preferable for the electron (positron)
spin, so the radiative polarization may take place [20–22].
Therefore, the problem cannot be considered to be solved.

In the present paper we analytically calculate the cross
section of this process for arbitrary polarized initial and
final electrons, with a circularly polarized laser wave and
unpolarized final photon. The laser wave is assumed to be
circularly polarized (rather than linearly polarized) because
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it provides the highest influence on the electron’s spin (see,
e.g., Sec. 87 in [4]). The results of our calculations completely
coincide with those obtained via computer code in Ref. [12],
but the final expression for the squared amplitude is presented
in the form that allows one to study the case of a moderately
relativistic electron and a non-head-on collision.

It is important to note that the zero result of Refs. [8,24]
was obtained when neglecting terms of the order of γ −1 � 1
and θe � 1 in the cross section (θe is the electron’s scattering
angle) (see the corresponding footnote in [24]). In the present
paper we systematically take into account all the small terms
in the amplitude and estimate their influence on the degree
of polarization. The last becomes possible because we use
the exact electron’s helicity as the spin quantum number
instead of the Lorentz-invariant quantity ζ ′

3 (used, e.g., in [24]),
which coincides with the final electron’s doubled mean helicity
with an accuracy O(γ −2) (see in more detail Ref. [12]). In
particular, we will show that the total probabilities of the
process with spin flips W↑↓ and W↓↑ are equal to each other
exactly with that accuracy. Therefore, the polarization degree
is negligibly small already at γ ∼ 102. However, if the particles
collide non-head-on and the electron’s energy is not too high,
the degree of polarization may turn out to be noticeably higher.
We study in detail the case of a non-head-on collision of
the moderately relativistic electrons with the laser photons
and show that degree of the longitudinal polarization may
reach the values of P � 65 % for electrons with γ � 10 and
the small angles of collision: α � π/2 (α = π for head-on
geometry).

Besides that, we study the influence of the laser wave
strength on the polarization degree and find no significant
deviations from the linear Compton scattering case for param-
eters of the laser similar to those of the well-known experiment
conducted at the Stanford Linear Accelerator Center (SLAC)
[25]. On the other hand, it turns out that only the high-power
lasers provide a reasonable polarization time (which is ∼1 s
for an optical laser with |E|/Ec � 10−6), since the probability
of the process with a spin flip is extremely low in the linear
regime for small angles of collision. This circumstance makes
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the experimental realization of such a polarization technique
practically impossible.

Finally, we explain why the results of Ref. [24] and
Refs. [20–22] do not agree. In brief, different spin quantum
numbers were used in these papers. In particular, if one
chooses the electron’s helicity as the spin quantum number
the radiative polarization would be absent in the relativistic
case (in accordance with Ref. [24]).

The paper is organized as follows. After general definitions
are given in Sec. II we proceed to the calculation of the
squared amplitude summed over polarizations of the final
photon in Sec. III. The general expression for the squared
amplitude, its comparison with results of Ref. [12], and
the final electron’s polarization are presented in Sec. IV.
Analysis of the process with a spin flip both in the linear
and nonlinear regimes is performed in Sec. V. Our summary
is presented in Sec. VI. Appendix A contains some details of
the squared matrix element calculations. Appendix B contains
an expression for the squared matrix element written in the
limiting case of a weak wave (linear Compton scattering) and
its comparison with results of Refs. [5,6]. A system of units
h̄ = c = 1 is used throughout the text. The scalar product
of four-vectors is defined with the use of the metric gμν =
diag(1, − 1, − 1, − 1), so that kr ≡ kμrμ = ωt − (kr).

II. KINEMATICS

A. General definitions and conservation laws

We consider the process of emission of a photon with
momentum k′ by an electron with kinetic momentum p moving
in the field of a plane wave possessing arbitrary strength

γ (nk) + e−(q) → e−(q ′) + γ (k′), (1)

with

qν = pν − kν e2A2

2(pk)
, qν ′ = pν ′ − kν e2A2

2(p′k)
(2)

being the averaged quasimomenta of electrons moving in
the laser wave with four-potential Aμ ≡ Aμ(kr), and n is an
integer (a number of harmonic).

According to the reaction (1), the emission of a photon
with frequency ω′ = k′

0 occurs after absorbing n photons with
frequency ω = k0 from the wave. The potential of the wave
possessing 100 % circular right-handed polarization can be
represented as follows:

A = mξ

e
[e1 cos (kr) + e2 sin (kr)], (3)

where e1,e2 are the spacelike unit four-vectors with the
following properties: eiej = −δij ,(eik) = (eik

′) = 0; i = 1,2.
These vectors can be constructed by using the momenta of the
particles, which enter the reaction (1) (see, e.g., Ref. [4])

e
μ

1 = Nμ

√−N2
, e

μ

2 = P μ

√−P 2
,

P μ = qμ + qμ′ − (nkμ + kμ′)
(qν + qν ′)(nkν + kν

′)
(nk + k′)2

,

Nμ = εμνηρPν(qη − qη
′)(nkρ + kρ

′)
= 4nεμνηρpνkη

′kρ = 4nεμνηρpν
′kη

′kρ. (4)

The last two identities are fulfilled due to the conservation laws.
According to these definitions, the vector e1 is orthogonal to all
the momenta: (e1p) = (e1p

′) = 0, and the following equalities
are fulfilled for the vector e2:

(pe2) = (p′e2) = −
√

2n(p′k)(pk)

(k′k)
− m2

�,

(5)√
−P 2 = −2(pe2),

√
−N2 = −4n(k′k)(pe2).

Here, m2
� = m2(1 + ξ 2) ≡ q2 is the squared effective electron

mass in the laser field. Therefore, the vectors e1,e2 (or rather
their space components ei) describe the photon polarization
perpendicular to the scattering plane and in that plane,
respectively. Note that all calculations need only be performed
for the right-hand polarization of the laser wave (ξ2 = +1).
The process amplitude for the left-hand polarization (ξ2 = −1)
can be obtained by changing the signs of the pseudoscalar
terms Ms,Ms ′ (see Sec. III).

The expression (3) also contains a classical dimensionless
parameter of the laser wave strength (do not confuse with
Stokes parameters)

ξ = e
√−A2

m
= e|E|

mω
= |E|

Ec

m

ω
≡ |E|

Ec

mc2

h̄ω
, (6)

where |E| is the root-mean-square electric field strength of the
wave in the laboratory frame of reference, Ec = m2c3/eh̄ 

1.3 × 1016 V/cm is the critical field of QED (the cor-
responding intensity is Ic = E2

c c/4π ≈ 0.5 × 1030 Wcm−2).
The limiting case ξ � 1 corresponds to the weak field of the
wave. In order to make an accurate transition to the linear
Compton scattering case it is also necessary to change a
normalization in (3) to the one photon in the unit volume.
For this purpose one needs to put ξ 2 = 4πe2/m2ω and then
define the cross section of the process. The alternative variant
consists in the transition in the general nonlinear case to the
effective cross section staying finite in the limiting case ξ → 0
(see below).

The energy-momentum conservation law for the reaction
(1) may be written as

nk + p + k
m2ξ 2

2(pk)
= p′ + k′ + k

m2ξ 2

2(p′k)
. (7)

Multiplying this equality by the vectors p,p′,k,k′, we obtain
the following useful identities:

(pk) = (p′k) + (k′k),

(p′p) − m2 = (k′k)

[
n − m2ξ 2(k′k)

2(pk)(p′k)

]
,

(8)

(pk′) = (p′k)

[
n − m2ξ 2(k′k)

2(pk)(p′k)

]
,

(p′k′) = (pk)

[
n − m2ξ 2(k′k)

2(pk)(p′k)

]
.

Taking into account the first equality, one can rewrite the
conservation law (7) as

p + k

[
n − m2ξ 2(k′k)

2(pk)(p′k)

]
= p′ + k′. (9)
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The vectors of the electron polarization s,s ′ are spacelike,
(sp) = (s ′p′) = 0, and in laboratory frame of reference they
are

s =
{

(ζp)

m
,ζ + p

(ζp)

m(E + m)

}
=

{ |p|
m

ζ‖,
p
|p|γ ζ‖ + ζ⊥

}
,

s ′ =
{

(ζ ′p′)
m

,ζ ′ + p′ (ζ ′p′)
m(E′ + m)

}

=
{ |p′|

m
ζ ′
‖,

p′

|p′|γ
′ζ ′

‖ + ζ ′
⊥

}
. (10)

Here, E = γm, p, E′ = γ ′m, p′ are the energies and momenta
of the initial and final electrons, ζ‖ = 2λe,ζ

′
‖ = 2λ′

e are the
doubled mean helicities of the electrons. Multiplying equality
(9) by the four-vectors of spins, we arrive at the “spin
conservation laws”

(sk)

[
n − m2ξ 2(k′k)

2(pk)(p′k)

]
= (sp′) + (sk′),

(11)

(s ′k)

[
n − m2ξ 2(k′k)

2(pk)(p′k)

]
= (s ′k′) − (s ′p)

that will be used below.

B. Probability of the process and cross section

The probability of the reaction (1) per second is defined as
a probability of decay of the plane-wave electron with quasi-
energy q0 into two plane-wave particles (electron and photon)
in the element of a phase volume d3q ′d3k′/(2π )6

dW =
∞∑

n=1

dWn, dWn = (2π )4δ(4)(nk + q − q ′ − k′)

× |Mn|2 1

2q02q ′
02ω′

d3q ′

(2π )3

d3k′

(2π )3
. (12)

It is useful to introduce the notion of the effective cross section
by dividing the probability by the flux density of colliding
particles j (see in more detail Ref. [12])

dσ =
∞∑

n=1

dσn, dσn = dWn

j
, j = m2ξ 2

4πq0e2
(pk). (13)

After elimination of the delta function in (12) in the center-
of-mass system (nk + q = 0), the formula for effective cross
section gains the simple form

dσn = r2
e

x
|Mn|2dydϕ, |Mn|2 = 1

4πe2m2ξ 2
|Mn|2,

(14)

y = (kk′)
(pk)

, x = 2(pk)

m2
≡ 2(pk)

m2c2
.

Here, ϕ is the common azimuthal angle of the scattering
plane, and re = e2/m is the classical electron radius. For
the following convenience, we have separated the factor
4πe2m2ξ 2 from the square of the matrix element. This
representation, in particular, makes the comparison between
the formulas derived and the ones for the linear scattering
more convenient, since the squared matrix element |Mn|2
stays finite in the limiting case ξ → 0.

When considering the process with a spin flip (2λe =
±1,2λ′

e = ∓1) in the general nonlinear regime, it is necessary
to use the formula for total (but not differential) probability
per second

W =
∞∑

n=1

Wn, Wn = 1

T0

ξ 2

8π

m

q0

x

r2
e

σn, (15)

where T0 = 1/e2m ≡ h̄2/e2mc 
 1.765 × 10−19 s. As the
cross section σn in (14) is invariant under the action of the
Lorentz boosts along the collider axis, one can calculate it in an
arbitrary frame of reference and then substitute into Eq. (15).

Study of collisions between photons and electrons (or
positrons) usually implies head-on geometry and, accord-
ingly, the use of formulas similar to Eq. (14) (see, e.g.,
Refs. [4,7,12,26]). The radiative polarization effect in this
case is negligibly small (see Refs. [8,24] and Sec. V below).
Therefore, our main focus will be on the non-head-on geometry
and the moderately relativistic energies of electrons. In Sec. V
we will use the laboratory frame of reference in which the
electron performs a non-head-on collision with a laser photon
at the angle α. The final photon frequency in this frame is

ω′ = n(pk)

q0 + nω − (n′,q + nk)
, (16)

where n′ = k′/ω′ is denoted. The probability of the process
per second in this frame is obtained from (12) as

dWn = 1

T0

ξ 2

4π

m

q0nx

(
ω′

m

)2

|Mn|2d�, (17)

where the integration is performed over the final photon angles
[see Eq. (38)]. Note that the azimuthal angle ϕ in (17) does not
coincide with the one in (14), since in the frame of reference
being used the particles collide non-head-on. This implies an
additional azimuthal dependence in (17), which is absent for
the head-on geometry and the circularly polarized laser wave.

If the probability of the process with a spin flip differs from
zero, the time of the radiative polarization (relaxation time) is
defined as follows:

Tpol = 1

W↑↓ + W↓↑
, W↑↓(↓↑) ≡ W (2λe = ±1,2λ′

e = ∓1),

(18)

W ≡
∞∑

n=1

Wn.

According to the usual statistical interpretation, the portions
of the final electrons in a beam, n↑(↓), being in the polarization
states with 2λ′

e = ±1 and the process asymmetry P (degree of
polarization) are found as

n↑(↓) = W↓↑(↑↓)

W↑↓ + W↓↑
, P = n↑ − n↓ = W↓↑ − W↑↓

W↑↓ + W↓↑
. (19)

The complete polarization of the electron beam with a degree
P comes when the time interval �t of its flight through a laser
flash is �t � Tpol.

Finally, note that all these definitions refer to the emission
rate calculated for only one electron that implies neglecting
the collective effects in the electron beam (incoherent regime
of emission; see, e.g., Eq. (74) in [26]). Actually, even in the
well-studied problem of the self-polarization process due to
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the synchrotron radiation the rigorous theory of the collective
spin effects is absent. We will return to these problems in
Sec. VI.

III. SQUARE OF THE PROCESS MATRIX ELEMENT

At the tree level in the Furry picture the squared matrix
element of a photon emission by a plane-wave electron moving
in the quasiclassical field of the laser wave with potential (3)
has the following form (notations of [4] are used):

|Mn|2 = 4πe2Tr{ρ ′
(e)Q

μρ(e)Q̄
νρ(γ )′

νμ}. (20)

Here, ρ(e),ρ
′
(e),ρ

(γ )′
νμ are the density matrices of the initial and

final electrons and the final photon, respectively. Besides, in
(20) the following notations are used:

Q =
3∑

j=1

gjGj , g1 = Jn, g2 = i

2
(Jn+1 − Jn−1),

g3 = 1

2
(Jn+1 + Jn−1), G1 = γ + k(γ k)

m2ξ 2

2(p′k)(pk)
,

(21)

G2 = γ (γ k)(γ e1)
mξ (k′k)

2(p′k)(pk)
+ mξ

(pk)
[k(γ e1) − e1(γ k)],

G3 = γ (γ k)(γ e2)
mξ (k′k)

2(p′k)(pk)
+ mξ

(pk)
[k(γ e2) − e2(γ k)],

where γ ≡ γ μ are the Dirac matrices, Q̄ = γ 0Q†γ 0, and
Jn ≡ Jn(zn) is the Bessel function depending on the invariant
argument

zn = mξ (k′k)

(p′k)(pk)

√
2n(p′k)(pk)

(k′k)
− m2

�. (22)

We will not study the polarization of the final photon, so one
may put ρ(γ )′

νμ = −gνμ/2 or, equivalently, ρ(γ )′
νμ = (e1νe1μ +

e2νe2μ)/2 [with vectors e1,e2 defined in (4)] and then double
the squared amplitude.

The squared scattering amplitude (20) (as well as |Mn|2)
may be represented as follows:

|Mn|2 = M0 + Ms + Ms ′ + Mss ′ . (23)

The calculation of the spin-independent terms M0 is performed
by using the standard technique (see, e.g., Refs. [1,3,4])
taking into account Eqs. (5) and (8). It leads to the following
expression:

M0 = 2πe2m2

{
− 4J 2

n + ξ 2
(
J 2

n+1 + J 2
n−1 − 2J 2

n

)
×

[
(p′k)

(pk)
+ (pk)

(p′k)

] }
. (24)

One can see that multiplying this result by the factor 2 we
obtain the ordinary formula for the process with unpolarized
particles (see Refs. [3,4]).

The one-spin-dependent terms in the square of the matrix
element are found as (some details of calculations are provided
in Appendix A)

Ms = 2πe2m3 ξ 2(k′k)

n(pk)(p′k)

(
J 2

n−1 − J 2
n+1

) {
(sk′) + (sk)

[
n − m2ξ 2(k′k)

2(pk)2
− m2

�(k′k)

(pk)(p′k)

]}
,

(25)

Ms ′ = 2πe2m3 ξ 2(k′k)

n(pk)(p′k)

(
J 2

n−1 − J 2
n+1

) {
(s ′k′) + (s ′k)

[
n − m2ξ 2(k′k)

2(p′k)2
− m2

�(k′k)

(pk)(p′k)

]}
.

It is the difference of these terms that determine the presence (or absence) of the self-polarization effect (see Sec. V).
Calculation of the term Mss ′ depending on both spins yields

Mss ′ = 2πe2m2ξ 2

(pk)(p′k)

(
J 2

n−1 + J 2
n+1

){ − (k′k)2

(pk)(p′k)

[
2n(p′k)(pk)

(k′k)
− m2

�

]
(s ′k)(sk) + 2(pk)(s ′k)(sp′)

− 2(pk)(p′k)(s ′s) + 2(p′k)(s ′p)(sk)

}
+ 8πe2J 2

n

(
m2

�(s ′s) + (p′k)

(k′k)

n(pk)(p′k) − m2
�(k′k)

2n(pk)(p′k) − m2
�(k′k)

[(s ′k′)(sp′) + (s ′p)(sk′)]

− (p′k)

2(k′k)

[
m2ξ 2(k′k)

(pk)(p′k)
+ n

2n(pk)(p′k) − m2ξ 2(k′k)

2n(pk)(p′k) − m2
�(k′k)

]
(s ′k′)(sk)

+
{

m2ξ 2(k′k)

(pk)(p′k)
+ (p′k)

2(k′k)

[
m2ξ 2(k′k)

(pk)(p′k)
+ n

2n(pk)(p′k) − m2ξ 2(k′k)

2n(pk)(p′k) − m2
�(k′k)

]}
(s ′k)(sk′) − nm2(k′k)

2n(p′k)(pk) − m2
�(k′k)

(s ′k)(sp′)
)

.

(26)

It is clear that this expression [as well as (25)] may be represented in another form by using the conservation
laws (11).
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IV. DESCRIPTION OF THE FINAL
ELECTRON’S POLARIZATION

The expression for the squared amplitude provided allows
one to describe the polarization states of the electron in
invariant form. For instance, the final formula for effective
cross section of Ref. [12] contains the expansions of the spin
four-vectors with the use of the following set of orthogonal
unit four-vectors:

s =
3∑

j=1

ζjnj , s ′ =
3∑

j=1

ζ ′
j n

′
j , ζj = −(snj ),

ζ ′
j = −(s ′n′

j ), n1 = e1,

n2 = −e2 − k
1

(pk)

√
2n(p′k)(pk)

(k′k)
− m2

�,

(27)

n3 = 1

m

[
p − k

m2

(pk)

]
, n′

1 = e1,

n′
2 = −e2 − k

1

(p′k)

√
2n(p′k)(pk)

(k′k)
− m2

�,

n′
3 = 1

m

[
p′ − k

m2

(p′k)

]
.

The meaning of this expansion becomes clear from the fact
that invariants ζ1,ζ

′
1 characterize the electron’s polarization

perpendicular to the scattering plane, and the others character-
ize polarization in that plane. In particular, the invariants

ζ3 = m

(pk)
(sk) = −(ζ ,nk),

(28)
ζ ′

3 = m

(p′k)
(s ′k) = −(ζ ′,ñk)

represent the projections of the electron’s spin on the direc-
tion of propagation of the initial photon. Here, nk = k/ω

and ñk = k̃/ω are the unit vectors of quantization in the
corresponding rest frames. For the usually studied geometry
of a head-on collision of a photon with an ultrarelativistic
electron, one has ζ3 = 2λe and ζ ′

3 ≈ 2λ′
e, since the scattering

angle of the final electron is small in the laboratory frame
of reference (see in more detail Ref. [12]). In other words,
the Lorentz-invariant spin quantum number ζ ′

3 coincides
with the final electron’s doubled mean helicity with an
accuracy O(γ −2).

The choice of the spin invariants (28) means that the
spin quantization axis does not depend upon the momenta
of the final particles. Such a description (which is similar
to that of Ref. [8]) is equivalent to the one used in the
theory of synchrotron radiation where the quantization vec-
tors, nH and ñH , coincide in the quasiclassical limit (i.e.,
when neglecting the electron’s scattering). However, it is
the deviation of invariant ζ ′

3 from the exact doubled mean
helicity of the final electron (arising due to the nonzero
scattering angle) that leads to a nonzero self-polarization of the
moderately relativistic electron beam. In other words, the non-
Lorentz-invariant final electron’s helicity 2λ′

e = (ζ ′,p′)/|p′|
does depend upon the integration variables in Eq. (12), which
lead to the nonzero radiative polarization, as we know from
Refs. [20–22]. We will return to these questions in the
next section.

For comparison of the results obtained in the previ-
ous section with the ones of Ref. [12], it is necessary
to express the scalar products of the form (sk),(s ′k′)
in Eqs. (25) and (26) in terms of the invariants ζj ,ζ

′
j .

This yields

(ss ′) = −ζ1ζ
′
1 − ζ2ζ

′
2 + ζ2ζ

′
3

(k′k)

m(pk)

√
2n(p′k)(pk)

(k′k)
− m2

� − ζ3ζ
′
2

(k′k)

m(p′k)

√
2n(p′k)(pk)

(k′k)
− m2

�

+ ζ3ζ
′
3

{
1 − (pk)

(p′k)
− (p′k)

(pk)
+ (k′k)

m2

[
n − m2ξ 2(k′k)

2(pk)(p′k)

]}
,

(s ′k′) = −ζ ′
2

(k′k)

(p′k)

√
2n(p′k)(pk)

(k′k)
− m2

� + ζ ′
3

1

m

{
(pk)

[
n − m2ξ 2(k′k)

2(pk)(p′k)

]
− m2 (k′k)

(p′k)

}
,

(sk′) = −ζ2
(k′k)

(pk)

√
2n(p′k)(pk)

(k′k)
− m2

� + ζ3
1

m

{
(p′k)

[
n − m2ξ 2(k′k)

2(pk)(p′k)

]
− m2 (k′k)

(pk)

}
, (29)

(sp′) = ζ2
(k′k)

(pk)

√
2n(p′k)(pk)

(k′k)
− m2

� + ζ3
(k′k)

m

[
m2

(pk)
+ n − m2ξ 2(k′k)

2(pk)(p′k)

]
,

(s ′p) = −ζ ′
2

(k′k)

(p′k)

√
2n(p′k)(pk)

(k′k)
− m2

� + ζ ′
3

(k′k)

m

[
− m2

(p′k)
+ n − m2ξ 2(k′k)

2(pk)(p′k)

]
.

Substituting these expressions into (25) and (26), one can
obtain for the squared matrix element |Mn|2 the corresponding
formulas of Ref. [12] with an accuracy up to the factor 2 [due
to the differences in notations: see Eqs. (46) and (49)–(51)

in the work cited]. Formulas for the effective cross section
(our (14) and (32) of Ref. [12]) also differ by the factor 2 due
to summation over polarization states of the final photon we
performed.
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Though the expansion (27) may be used for description
of the final electron’s polarization, it seems to be relevant
to derive the more general invariant representation for the
matrix element squared. Such a representation turns out to
be more convenient for analysis of the moderately relativistic
case and a non-head-on collision geometry (where the radiative
polarization takes place only). For this purpose, we write

down the squared amplitude in the following form (when
transforming four-vector F , the conservation laws (8), (9),
(11) were used):

|Mn|2 = F0 + (Fs ′),
F0 = M0 + Ms , Fμ = f1p

μ + f2k
μ + f3s

μ, (30)

and the invariant factors are found as

F0 = −2J 2
n

ξ 2
+ (

J 2
n−1 + J 2

n+1 − 2J 2
n

) [
(pk)

2(p′k)
+ (p′k)

2(pk)

]
+ m(k′k)

2n(pk)(p′k)

(
J 2

n−1 − J 2
n+1

)
×

{
(sk′) + (sk)

[
n − m2ξ 2(k′k)

2(pk)2
− m2

�(k′k)

(pk)(p′k)

]}
,

f1 = m(k′k)

2n(pk)(p′k)

(
J 2

n−1 − J 2
n+1

) + (sk)

(pk)

[
J 2

n−1 + J 2
n+1 − 2J 2

n − 2J 2
n

ξ 2

n(pk)(p′k)

2n(pk)(p′k) − m2
�(k′k)

]
, (31)

f2 = m(k′k)

2n(pk)(p′k)

(
J 2

n−1 − J 2
n+1

){
2n − m2

�(k′k)

(pk)(p′k)
− m2ξ 2(k′k)

2(p′k)

[
1

(pk)
+ 1

(p′k)

] }
+ J 2

n−1 + J 2
n+1 − 2J 2

n

(p′k)

×
{

(sp′) − (sk)
(k′k)[2n(pk)(p′k) − m2

�(k′k)]

2(p′k)(pk)2

}
+ 2J 2

n

ξ 2

[
(sk)

m2ξ 2(k′k)2

2(pk)2(p′k)2
− (sp′)

n(pk)

2n(pk)(p′k) − m2
�(k′k)

]
,

f3 = 2J 2
n

ξ 2
− (

J 2
n−1 + J 2

n+1 − 2J 2
n

)
.

Note that from this formula one can easily derive the corre-
sponding expression for the process of e+e−-pair creation by a
photon propagating in the laser field (nonlinear Breit-Wheeler
process) by using the crossing symmetry (see, e.g., Ref. [27]).
In the limiting case of the weak laser wave, this formula
coincides with the one known in the literature for an ordinary
Compton scattering (see Appendix B).

According to the usual rules [4], the four-vector describing
the electron spin state resulting from the scattering process
itself is obtained from the representation (30) as follows:

s(f )
μ = Fμ

F0
. (32)

Accordingly, the three-vector of the electron polarization
resulting from the scattering process itself has the form

ζ (f ) = 1

F0
(f1p̃ + f2k̃ + f3s̃). (33)

Here, tilde denotes that the vector is taken in the rest frame
of the final electron. Transforming all the vectors in Eq. (33)
into laboratory frame of reference, we obtain the following
expressions for the longitudinal polarization and transverse
polarization of the final electron (we recall that prime stands
for a particle in the final state):

ζ
(f )
‖ ≡

(
ζ (f ) p′

|p′|
)

= f1

F0

[
γ ′ (pp′)

|p′| − γ |p′|
]

+ f2

F0

[
γ ′ (kp′)

|p′| − ω

m
|p′|

]

+ f3

F0

{
ζ‖

[
γ γ ′ (p′p)

|p′||p| − |p′|
m

|p|
m

]
+ γ ′ (ζ⊥p′)

|p′|
}

,

ζ
(f )
⊥ ≡ − p′

|p′| ×
(

p′

|p′| × ζ (f )

)

= − 1

F0

p′

|p′| ×
{

p′

|p′| ×
[
f1p + f2k

+ f3

(
p
|p|γ ζ‖ + ζ⊥

) ]}
. (34)

Here, the space components of the initial-electron polarization
four-vector s were expanded according to Eq. (10), and all the
three-vectors (except ζ ) are defined in the laboratory frame of
reference.

V. ANALYSIS OF THE PROCESS WITH A SPIN FLIP

As the first step, let us demonstrate that the radiative
polarization effect is absent when the spin quantization axis
is chosen along the initial photon momentum according to
invariants (28). In this case one may put ζ1,2 = ζ ′

1,2 = 0, and
the terms linear in the spin quantum numbers in the squared
amplitude (30) have the following form:

|Mn|2 ∝ Ms + Ms ′ = aζ3 + bζ ′
3,

a = b = (k′k)

2n(pk)(p′k)

(
J 2

n−1 − J 2
n+1

)
(35)

× [(pk) + (p′k)]

[
n − m2

�(k′k)

(pk)(p′k)

]
.

Since the coefficients of the spin invariants coincide, the
probabilities W↓↑ and W↑↓ of the process with a spin flip
(ζ ′

3 = −ζ3) are equal to each other, and so P = 0. This
conclusion is in agreement with Refs. [8,24].
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However, the Lorentz-invariant spin quantum number ζ ′
3

coincides with the non-Lorentz-invariant double helicity only
in the ultrarelativistic case (see in more detail Ref. [12]).
Hence, the more accurate consideration is required for a
moderately relativistic electron and geometry of the non-
head-on collision. In fact, the zero result (35) is correct only
when neglecting the electron’s scattering, as it is easy to see
directly from Eq. (25) (see the corresponding footnote in
Ref. [24]). In this case the electron almost conserves its energy
and momentum, so in the linear regime the spin-dependent
functions, Ms and Ms ′ , are equal to each other with an
accuracy O(θ2

e ) (θe is the electron’s scattering angle).1

For a head-on collision of the electron with γ ∼ 5 and the
photon with ω ∼ 1 eV, the difference between them seems
to be negligibly small (for the almost back-scattered final
photon and the spins being quantized along the initial photon’s
momentum in the laboratory frame of reference)

Ms − Ms ′ ∼ θ2
e �

(
2ω

m

)2

∼ 10−11. (36)

However, in order to estimate the polarization degree on the
amplitude level one should divide this quantity by a sum

M0 + Mss ′(↑↓) � 10−10, (37)

which turns out to be small as well (for the same parame-
ters). Accordingly, the ratio (|Mn|2↓↑ − |Mn|2↑↓)/(|Mn|2↓↑ +
|Mn|2↑↓) may achieve the values ≈ 0.1 in the moderately
relativistic regime.

Let us illustrate this in more detail. For these purposes
we will integrate the scattering amplitude squared (30) in the
laboratory frame of reference in which the electron’s spin
quantum number represents helicity. In this frame the angle
between the initial particle’s momenta is α (α = π corresponds
to the head-on collision), and the z axis coincides with direction
of the initial-photon momentum. The kinetic three-momenta
are

k = ω{0,0,1}, p = m
√

γ 2 − 1{0, sin α, cos α},
(38)

k′ = ω′{sin θ sin φ, sin θ cos φ, cos θ}.
In principle, it is possible to derive the exact analytical

expression for the total probability with a spin flip [integrating,
for instance, Eq. (17)], but the required calculations are
rather cumbersome and the final result will not have the
explicitly invariant form. This is due to the fact that we use
non-Lorentz-invariant helicities as the spin quantum numbers
(in contrast to Refs. [8,24]). That is why we will integrate
the squared amplitude in Eq. (17) numerically using the
package MATHEMATICA. Since the calculated values of the

1As it follows from Eq. (25), these functions would be equal
to each other if the spin scalar products [e.g., (sk) and (s ′k)]
would be equal too. For the spins being quantized along the
initial photon’s momentum in the laboratory frame (ζ = ζk/ω,ζ ′ =
ζ ′k/ω,ζ = ζ ′ = 1,k/ω = −p/|p|), these products in the same frame
are: (sk) = −ω|p|/m + (k,p)E/(|p|m),(s ′k) = −ω|p′| cos θe/m +
(k,p′)E′ cos θe/(|p′|m) + (k,p/|p| − p′ cos θe/|p′|). Thus, these ex-
pressions are equal to each other only when neglecting the electron’s
scattering: θe → 0,|p′| ≈ |p|.

FIG. 1. Two different ways to describe polarization of the final
electron (positron) beam having some momentum spread.

probabilities with spin flips turn out to be rather small (see also
Ref. [28]), we use several methods of numerical integration
whose predictions for polarization degree differ from each
other within the accuracy 5%. Note that the compact analytical
formulas for total probability were obtained in Refs. [20–22].
However, these formulas refer to the very special choice of the
spin operators (see below).

Describing the average longitudinal polarization of the final
electron beam, it is necessary to distinguish two different ways.
According to the first, the spin quantization axis is chosen
along the final electron’s momentum in the laboratory frame
(description A; see Fig. 1). So the final electron’s spin quantum
number is a mean helicity, and the spin three-vectors in (10)
have the form

ζ = p
|p|2λe, ζ ′ = p′

|p′|2λ′
e. (39)

The spin flip occurs when λ′
e = −λe. Note that in this case the

final electron’s spin quantization axis does depend upon the
integration variables in Eq. (17).

However, in practice any beam has some angular diver-
gence, so the alternative variant to choose the spin quantum
number may turn out to be more convenient. Namely, the
final electron’s spin may be quantized along the direction of
the average momentum of the beam in the laboratory frame
(description B; see Fig. 1). In this case the final electron’s spin
quantum number ζ ′ is also a non-Lorentz-invariant quantity
and the spin three-vectors become

ζ = p
|p|ζ, ζ ′ = p

|p|ζ
′, ζ = 2λe, ζ ′ �= 2λ′

e. (40)

The spin flip occurs when ζ ′ = −ζ . As the relativistic
electron’s scattering angle in this frame is small, both of these
descriptions lead to the similar results, as we will show.

First of all, one can easily verify that in the ultrarelativistic
limit we recover the result P → 0 according to both of the
descriptions. Figure 2 shows the dependencies of the degree of
polarization [defined in (19)] for a head-on collision (α = π )
upon the energy of the initial electron in the case of a weak
laser wave: |E|/Ec ∼ 10−10 (linear Compton scattering). As
it is clear from the fits, they fall as P ∝ γ −2 (description
A) and as P ∝ γ −1 (description B). Therefore, the degree
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FIG. 2. (Color online) Polarization of the final electron beam as a function of the initial electron’s energy (weak laser wave, head-on
collision, n = 1,α = π,ω = 1 eV). Left panel: description A. Right panel: description B. Dots: results of numerical calculations; curves: fits
by the corresponding polynomials.

of polarization is small even for the moderately relativistic
electrons.

The situation changes for the better if the initial particles
collide at the angle α � π . Figure 3 shows the dependencies
similar to those of Fig. 2, but for a non-head-on collision.
While the degree of polarization stays small for γ � 1, it
noticeably increases in the region of γ ∼ 5 reaching P � 0.5
already at α = 30 ◦. Figure 4 shows the dependencies of P

upon the angle of collision for the different values of the initial
electron’s energy. As it follows from the plots, the degree
of polarization as high as P ≈ 0.6 (60%) may be obtained
by colliding the moderately relativistic electrons with γ � 10
and the photons of an optical or infrared laser at the angles
α � π/2. Note that for an electron with γ � 10 and a photon
with ω ∼ 1 eV the invariant x [defined in Eq. (14)] stays rather
small even for a head-on collision: x ∼ 10−5 − 10−4. It is
this quantity that measures the electron’s energy losses during
the scattering process (see, e.g., Ref. [24]). Accordingly, for
chosen calculation parameters the energy losses of the electron
are less than a percent of its energy.

The further decrease of the collision angle or the electron’s
energy does not lead to a significant increase of the polarization
degree. The maximum value of P ≈ 0.65 (65%) is observed
for α ≈ 20◦ and 2 < γ < 5 (in the description A). In addition,
the probability of the process for very small collision angles
(α → 0) is noticeably lower, which results in the extremely
high polarization times (see below). Note also that the

FIG. 3. The same as in Fig. 2, but for a non-head-on collision (n =
1,α = π/6,ω = 1 eV). Solid curve: description A. Dashed curve:
description B.

polarization degree becomes even lower for nonrelativistic
electrons.

In the nonlinear regime with ξ � 1 [25] or even ξ � 1
(Vulcan laser facility [29], project ELI [30]; see also a table in
Ref. [31]), the electron absorbs n photons from the wave and
emits only one final photon. Numerical estimations of the influ-
ence of the process nonlinearity on the degree of polarization
for parameters similar to those of the experiment at SLAC [25]
(|E|/Ec ∼ 10−6, ξ ∼ 0.5 for a photon with ω ∼ 1 eV) show
no noticeable deviations from the linear scattering case. The
difference of P from the values calculated in the linear regime
is observed for the laser field strength |E|/Ec � 10−5 and
higher, but a significant increase of the polarization degree
does not take place (see similar estimations for a high-power
laser and ultrarelativistic electrons in Ref. [28]). Moreover, in
the superstrong laser fields the electron beam’s energy losses
significantly increase, which makes such a polarization (even
if it would take place in such a field) inconvenient from a
practical point of view.

On the contrary, the probability of the process itself is
significantly higher in the case of a high-power laser that results
in the significant decrease of the polarization time Tpol [defined
in Eq. (18)]. Table I shows the characteristic relaxation times
in the linear and nonlinear regimes for the collision angle
α = 20 ◦. One may show that Tpol as a function of α decreases
when increasing the collision angle (since the probability of
emission rises, see below), and it is almost one order lower
already for the angle α = 30 ◦. Nevertheless, it is clear that
the times necessary for polarization of a beam with degree
P are many orders higher than the durations of the modern
laser pulses (picoseconds), which makes the polarization of
an electron (positron) beam with the use of this technique
practically impossible.

The polarization time as a function of the laser field strength
and the photon frequency has the following form:

Tpol ∝ T0

(
Ec

|E|
)2

m

ω
. (41)

Note also that for almost copropagating electrons and
photons (α → 0), the value of Tpol falls as the initial electron’s
energy decreases (in contrast to the dependence provided in
Table I). Such a behavior of Tpol easily follows from the general
considerations (see, e.g., Sec. 101 in Ref. [4]). Indeed, in
the case being considered two wave invariants H 2 − E2 and
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(deg) (deg)

FIG. 4. Polarization of the final electron beam as a function of the collision angle (weak laser wave, n = 1,ω = 1 eV). Left panel: γ = 5.
Right panel: γ = 10. Solid curve: description A. Dashed curve: description B.

(E · H) are equal to zero, and the probability of the process
can be expressed through the dynamic invariant

χ2 = − e2

m6
(Fμνp

ν)2 =
( |E′|

Ec

)2

(42)

only. Here, Fμν = ∂μAν − ∂νAμ is the strength tensor of
the laser field, and prime stands for the rest frame of the
initial electron. This means that |E′| must take place in the
denominator of (41) rather than |E|. For a head-on collision
we have |E′| ≈ 2γ |E|, so the polarization time has the damping
factor γ 2 � 1 in the denominator. However, for small values
of the collision angle the opposite dependence takes place:
|E′| ≈ |E|√(1 − β)/(1 + β). Thus, for almost copropagating
electrons and photons the polarization time increases drasti-
cally as the electron’s energy rises. This explains the extremely
low probability of the process and, accordingly, extremely high
polarization time for small collision angles.

An additional remark concerning the strong laser fields
with |E|/Ec > 10−5 is in order. First of all, for a process
in such a strong field we must take into account additional
diagrams, for example, the ones with emission of more than
one photon (see, e.g., Ref. [32]). When propagating through
the laser field emitted photons may create an e−e+ plasma
that becomes crucial already at field intensities as low as I ∼
1024 W cm−2 (that corresponds to |E|/Ec ∼ 10−3) [33]. Note
that we actually mean the root-mean-square values of the field
strength rather than the peak ones. Secondly, any real focused
laser beam possesses longitudinal components of its electric
and magnetic fields (even in the paraxial approximation, see,
e.g., Refs. [34,35]). In contrast to the plane wave (3) being
considered in this paper, such a field has a nonzero invariant
H 2 − E2 that results in the possibility of e+e−-pair creation
from vacuum. The threshold of this process has been shown
to depend strongly upon the laser parameters and has a value

TABLE I. Approximate polarization time for the linear scattering
(left column: ξ = 5 × 10−5) and for the nonlinear scattering (right
column: ξ = 0.5; summed over 7 harmonics) according to both of
the descriptions (A, B). Parameters: α = 20◦,ω = 1 eV.

γ Tpol, s (|E|/Ec = 10−10) Tpol, s (|E|/Ec = 10−6)

5 7 × 108 (A), 8 × 108 (B) 6 (A), 7 (B)
10 5 × 108 (A), 6 × 108 (B) 4 (A), 4 (B)

of I � 1026 W cm−2 (|E|/Ec ∼ 10−2) [36]. Thus, for field
strengths higher than |E| ∼ 10−5Ec the model of the given
(quasiclassical) laser field becomes invalid.

Finally, let us discuss the possible alternative descriptions of
the final electron’s polarization. Along with two descriptions
for longitudinal polarization [Eqs. (39) and (40)], one can
also measure the transverse polarization of the final electrons
projecting the spins on the unit vectors p × k/(|p|ω) and p′ ×
k/(|p′|ω) for initial and final electron, respectively. One may
easily prove that the degree of such a polarization is exactly
zero for arbitrary values of the electron’s energy and collision
angle (it follows already from the squared amplitude).

It is also important to note that none of the descriptions
being discussed provides the high values of the polarization
degree in the ultrarelativistic case reported in Refs. [20–22].
This may be explained by the fact that the eigenvalue of
the spin operator used in the papers cited represents neither
helicity nor the transverse polarization. The very similar result
of the high polarization degree in the ultrarelativistic case
was obtained in the preprint [23] by integrating the cross
section in the rest frame of the initial electron. Moreover, one
may show that the formula for polarization time calculated
according to such an approach coincides with expressions
derived in [20–22] (we will not adduce these rather cumber-
some calculations here). However, as it was demonstrated in
Ref. [24] (and it is confirmed by the present calculations) the
choice of the spin quantum numbers of [23] has no practical
interest. Accordingly, the self-polarization effect predicted in
Refs. [20–22] cannot be observed experimentally.

VI. DISCUSSION AND CONCLUSION

In this paper, we have reanalyzed the problem of the
radiative polarization of electrons in a strong laser wave.
We derived an expression for the squared amplitude, which
coincides with the one of Ref. [12] and is presented in a
form that allows one to consider the case of the non-head-on
collision and the moderately relativistic electron. By choosing
the exact electron’s helicity as the spin quantum number
we have studied in detail the process with a spin flip and
conclude that the radiative polarization of electrons (positrons)
is possible in the moderately relativistic regime only: γ � 10.
This conclusion generalizes the one of the Refs. [8,24] where
the Lorentz-invariant spin quantum numbers were used, which
provided the zero polarization.
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However, the effective polarization time of the electron
beam exceeds 1 s even for a high-power optical or infrared laser
with ξ ∼ 0.1 (|E| ∼ 10−6 Ec). We suppose that the maximum
field strength for which the model of the given quasi-classical
laser field stays valid is only one order higher: |E| ∼ 10−5 Ec

(the corresponding relaxation time is two orders lower). This
makes the experimental realization of such a polarization
technique practically impossible.

We also explained that the results of Refs. [24] and [20–22]
do not agree because different spin quantum numbers were
used in these papers. In particular, it seems that the choice
that is made in Refs. [20–22] is inconvenient from a practical
point of view.

It is important to note that our calculations refer to
the emission rate of only one electron that results in the
absence of any collective effects. One may expect some
decrease of the polarization time during the coherent regime of
emission, which is not described by the present model (up to
several orders of magnitude; see the corresponding estimations
for coherent synchrotron radiation in Ref. [37]). Coherent
radiation of an electron beam occurs when the emitted photon
wavelength becomes larger than the effective beam length:
λ′ � lB . This indicates the region where the one-electron
model of this paper becomes invalid. On the other hand, even
a regime of partial coherence (λ′ � lB) would not change
noticeably the main conclusions of this paper. For a typical
bunch length of lB ∼ 1 mm and laser photons with ω ∼ 1 eV
(note that ω′ ∼ ω for a moderately relativistic electron and a
non-head-on collision) condition λ′ � lB is always fulfilled
because for such a bunch length radiation becomes coherent
in the THz part of the spectrum. Nevertheless, even in the
coherent regime of emission the values of polarization time
stay many orders higher than durations of the modern laser
pulses (picoseconds).

In conclusion, we would like to note that the model of the
laser field used in this paper represents the simplest transverse
plane wave. It is intuitively clear that the more realistic
description of a focused laser pulse would provide the higher
influence of the laser wave on the electron’s spin. For example,
an additional influence may be due to the nonzero longitudinal
component of magnetic field of the focused laser pulse (the
so-called TE wave; see an exact solution of Maxwell equations
presented in Refs. [34,35]). However, an exact solution of the
Dirac equation for an electron in such a field is unknown, which

hampers the direct application of the Furry picture concept to
this process. For a weak, tightly focused laser wave one may
expect that the corresponding calculations can be performed
by generalizing the wave-packets approach used for Bessel
photon beams carrying orbital angular momentum [38].
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APPENDIX A: SOME DETAILS OF THE SQUARED
MATRIX ELEMENT CALCULATIONS

When calculating the one-spin-dependent terms Ms,Ms ′ ,
it is necessary to evaluate the products εμνηρsμkνkη

′e1ρ . The
last are calculated with the use of Eq. (4) and the following
formula [39]:

εμνηρεραβγ =

∣∣∣∣∣∣∣
δμ
α δ

μ
β δμ

γ

δν
α δν

β δν
γ

δη
α δ

η

β δη
γ

∣∣∣∣∣∣∣ . (A1)

When calculating the terms Mss ′ depending upon both
spins, it is necessary to evaluate the traces of six Dirac matrices
that may be reduced to the traces of four matrices by using the
standard anticommutativity relation

Tr{γ μγ ηγ ργ σ γ λγ τ }
= gμηTr{γ ργ σ γ λγ τ } − gμρTr{γ ηγ σ γ λγ τ }

+ gμσ Tr{γ ηγ ργ λγ τ } − gμλTr{γ ηγ ργ σ γ τ }
+ gμτ Tr{γ ηγ ργ σ γ λ}, (A2)

or for the scalar products â ≡ (γ a)

Tr{âb̂ĉd̂ êf̂ } = (ab)Tr{ĉd̂ êf̂ } − (ac)Tr{b̂d̂ êf̂ }
+ (ad)Tr{b̂ĉêf̂ } − (ae)Tr{b̂ĉd̂f̂ }
+ (af )Tr{b̂ĉd̂ ê}. (A3)

As a result, the part of the squared amplitude depending
upon both spins reads

Mss ′ = 2πe2m2ξ 2

(pk)(p′k)

(
J 2

n−1 + J 2
n+1

){ −
[

(k′k)2

(pk)(p′k)

(
2n(p′k)(pk)

(k′k)
− m2

�

)
+ (k′k)

(
(pk)

(p′k)
+ (p′k)

(pk)

)

×
(

n − m2ξ 2(k′k)

2(pk)(p′k)

)]
(s ′k)(sk) +

(
(p′k) + (pk)2

(p′k)

)
(s ′k)(sp′) − (k′k)2((s ′e1)(se1) + (s ′e2)(se2)) − (s ′k)(se2)

(k′k)2

(p′k)

×
√

2n(p′k)(pk)

(k′k)
− m2

� − (s ′e2)(sk)
(k′k)2

(pk)

√
2n(p′k)(pk)

(k′k)
− m2

� +
(

(pk) + (p′k)2

(pk)

)
(s ′p)(sk) − ((p′k)2 + (pk)2)(s ′s)

}

+ 8πe2J 2
n

[
(s ′s)

(
m2

� + m2ξ 2(k′k)2

2(p′k)(pk)

)
− (k′k)

(
n − m2ξ 2(k′k)

2(pk)(p′k)

)
((s ′e1)(se1) + (s ′e2)(se2))

+ (s ′p)(sp′) + (s ′p)(se2)√
2n(p′k)(pk)

(k′k) − m2
�

(
m2

� − n(p′k) − n
(p′k)(pk)

(k′k)

)
+ (s ′e2)(sp′)√

2n(p′k)(pk)
(k′k) − m2

�

(
m2

� + n(pk) − n
(p′k)(pk)

(k′k)

)
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+ n(k′k)(s ′e1)(se1) − (s ′p)(sk)n
(pk)

(k′k)
− (s ′e2)(sk)

n(pk)√
2n(p′k)(pk)

(k′k) − m2
�

(
n − m2ξ 2(k′k)

2(pk)(p′k)

)

− (s ′k)(se2)
n(p′k)√

2n(p′k)(pk)
(k′k) − m2

�

(
n − m2ξ 2(k′k)

2(pk)(p′k)

)
− (s ′k)(sp′)n

(p′k)

(k′k)

]
. (A4)

This expression still depends upon the unit vectors e1,e2 through the scalar products of the form (s ′e1)(se1). Calculation of the
last is performed by using the following formula [39]:

εμνηρεαβγ δ = −

∣∣∣∣∣∣∣∣∣∣

δμ
α δ

μ
β δμ

γ δ
μ
δ

δν
α δν

β δν
γ δν

δ

δη
α δ

η

β δη
γ δ

η

δ

δρ
α δ

ρ
β δρ

γ δ
ρ
δ

∣∣∣∣∣∣∣∣∣∣
. (A5)

For the extra products in Eq. (A4) we obtain

(s ′e1)(se1) = −(s ′s) + 1

(k′k)2

(
2n(p′k)(pk)

(k′k)
− m2

�

)−1{
(s ′k′)(sk)

[
(k′k)

(
2n(p′k)(pk)

(k′k)
− m2

�

)

−(p′k)2

(
n − m2ξ 2(k′k)

2(pk)(p′k)

)]
− (s ′k)(sk)(p′k)(pk)

(
n − m2ξ 2(k′k)

2(pk)(p′k)

)2

− (s ′k′)(sk′)(p′k)(pk)

+(s ′k)(sk′)
[

(k′k)

(
2n(p′k)(pk)

(k′k)
− m2

�

)
− (pk)2

(
n − m2ξ 2(k′k)

2(pk)(p′k)

)]}
,

(s ′e2) = − 1

(k′k)
√

2n(p′k)(pk)
(k′k) − m2

�

[
(s ′k′)(p′k) + (s ′k)(pk)

(
n − m2ξ 2(k′k)

2(pk)(p′k)

)]
,

(se2) = − 1

(k′k)
√

2n(p′k)(pk)
(k′k) − m2

�

[
(sk′)(pk) + (sk)(p′k)

(
n − m2ξ 2(k′k)

2(pk)(p′k)

)]
, (A6)

that leads, in particular, to the rather simple expression:

(s ′e1)(se1) + (s ′e2)(se2) = −(s ′s) + (s ′k′)(sk) + (s ′k)(sk′)
(k′k)

. (A7)

By using the six vectors we deal with, s,s ′,p,p′,k,k′, it
is possible to construct only ten pairwise scalar products of
the form (s ′k)(sp′) [including (s ′s) and taking into account
that (sp) = (s ′p′) = 0]. Therefore, the terms Mss ′ will be
expressed through these ten products. Taking into account the
spin conservation laws (11), the number of such products may
be reduced to six. After the removal of the vectors e1,e2 from
Eq. (A4), one arrives at the more compact formula (26).

APPENDIX B: SQUARED AMPLITUDE
FOR THE LINEAR SCATTERING

In the limiting case of the weak laser wave (ξ → 0, n = 1)
the combinations of Bessel functions which enter (31) have
the following form (it follows from the asymptotes of these
functions in the limit of the small argument):

J 2
0 − J 2

2 → 1, J 2
0 + J 2

2 − 2J 2
1 → 1,

(B1)
2J 2

1

ξ 2
→ m2(k′k)

(pk)(p′k)

[
1 − m2(k′k)

2(pk)(p′k)

]
.

The corresponding invariant coefficients are

F0 → (pk)

2(p′k)
+ (p′k)

2(pk)
− m2(k′k)

(pk)(p′k)

(
1 − m2(k′k)

2(pk)(p′k)

)

+ m(k′k)

2(pk)(p′k)

[
(sk′) + (sk)

(
1 − m2(k′k)

(pk)(p′k)

)]
,

f1 → 1

(pk)

[
m(k′k)

2(p′k)
+ (sk)

(
1 − m2(k′k)

2(pk)(p′k)

)]
,

f2 → 1

(p′k)

(
1 − m2(k′k)

2(pk)(p′k)

)(
m(k′k)

(pk)
+ (sp′) − (sk)

(k′k)

(pk)

)
,

f3 → m2(k′k)

(pk)(p′k)

(
1 − m2(k′k)

2(pk)(p′k)

)
− 1. (B2)

Going to the rest frame of the initial electron (p = {m,0},s =
{0,ζ }, p′ = k − k′), we arrive at the following expressions
entering the scattering amplitude squared:

2F0 → ω

ω′ + ω′

ω
− sin2 θ − 1 − cos θ

m
(ζ ,k cos θ + k′),

2(Fs ′) → −1 − cos θ

m

(
ζ ′,k cos θ + k′
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− (1 + cos θ )(k − k′)
ω + ω′

ω − ω′ + 2m

)

− 1 + cos θ

mω′

(
ζ ,k − k′)(ζ ′,k − k′)

× ω(1 + cos θ ) + ω′ cos θ (1 − cos θ )

(1 + cos θ )(ω − ω′ + 2m)

+ (ζ ,k)(ζ ′,k′)
ω(ω − ω′) − 2mω′

ω(ω − ω′ + 2m)
+ (ζ ,k′)(ζ ′,k)

− (ζ ,k)(ζ ′,k)
ω2 − (ω′)2

ω(ω − ω′ + 2m)

)
+ (1 + cos2 θ )(ζ ,ζ ′). (B3)

Here, the spin-independent terms in F0 correspond to the
Klein-Nishina formula, the one-spin-dependent terms coincide
with expressions known in the literature (see, for example,
functions f ,g in Eq. (87.23) of [4] and also corresponding
functions �i of [5,6]). The terms depending on both spins in
(Fs ′) also coincide with corresponding functions �2(ζ ,ζ ′)

of Refs. [5,6] [see Eqs. (2.11) and (4.16), respectively].
Indeed, in the works cited one may find a sum 1 + cos2 θ +
sin2 θ (ω − ω′)/(2m) at the product (ζ ,ζ ′) where the last
part of the sum seems to be superfluous. However, there
also exists a term −(ω − ω′)(ζ ,n×n′)(ζ ′,n×n′)/(2m) (where
n = k/ω,n′ = k′/ω′) in the third line of Eq. (4.16) in Ref. [6].
Evaluating then the necessary scalar products as

(ζ ,n × n′)(ζ ′,n × n′) = εijkεmnlζiζ
′
mnjnnn

′
kn

′
l (B4)

and taking into account the following formula [39]

εijkεmnl =

∣∣∣∣∣∣∣
δim δin δil

δjm δjn δjl

δkm δkn δkl

∣∣∣∣∣∣∣ , (B5)

we obtain, in addition, another term (ζ ,ζ ′) sin2 θ, which
cancels the superfluous one in the first line of Eq. (4.16)
in Ref. [6]. Note that the same result for the square of the
scattering amplitude in the linear regime is also given in
Ref. [40].
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