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We consider general settings of Bell inequality experiments with many parties, where each party chooses
from a finite number of measurement settings each with a finite number of outcomes. We investigate the
constraints that Bell inequalities place upon the correlations possible in local hidden variable theories using a
geometrical picture of correlations. We show that local hidden variable theories can be characterized in terms of
limited computational expressiveness, which allows us to characterize families of Bell inequalities. The limited
computational expressiveness for many settings (each with many outcomes) generalizes previous results about
the many-party situation each with a choice of two possible measurements (each with two outcomes). Using this
computational picture we present generalizations of the Popescu-Rohrlich nonlocal box for many parties and
nonbinary inputs and outputs at each site. Finally, we comment on the effect of preprocessing on measurement
data in our generalized setting and show that it becomes problematic outside of the binary setting, in that it allows
local hidden variable theories to simulate maximally nonlocal correlations such as those of these generalized
Popescu-Rohrlich nonlocal boxes.
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I. INTRODUCTION

Quantum mechanics is incompatible with a classical view
of the world in many ways. In particular, quantum theory is
incompatible with the assumption of local realism as there
are entangled quantum states and measurements that lead
to violations of a Bell inequality [1]. Consequently, Bell
inequalities provide an extremely clear distinction between
classical, local hidden variable (LHV), and nonclassical (e.g.,
quantum) theories and so have been studied with great fervor
since their discovery.

Another motivation for the study of Bell inequalities has
been from an informational point of view. Quantum informa-
tion has brought new insight into the very nature of quantum
mechanics and Bell inequalities have been used to gain insight
into the information processing power of quantum mechanics.
Bell inequality violations have been used to guarantee the
security of quantum key distribution [2], generate randomness
[3], and give an advantage in communication complexity [4]
and nonlocal games [5]. Recently, connections have been
made between quantum computing and a violation of a Bell
inequality as giving some computational advantage [6–8].

Despite their utility, there are many open questions about
Bell inequalities. Many breakthroughs have been made by
constructing Bell inequalities for many parties each with a
choice of two measurements and two measurement outcomes
[9–11]. However, constructing Bell inequalities (that fully
define LHV correlations) in general is NP-hard (where NP
denotes nondeterministic polynomial time) in the number
of measurement choices and measurement outcomes at each
site [12].

Generalizations of the Bell inequality experiment away
from the two-measurement setting two-measurement outcome
scenarios have been studied and have led to the discovery
of interesting phenomena [13–18]. For example, quantum
violations can be greater [18] and more robust against
experimental imperfections [19] in these general scenarios.

The Clauser-Horne (CH) inequality [20] also showed that
the full probability distribution (including marginal probabil-
ities) can be constrained in LHV theories and violated by
quantum mechanics. However, quantum theory does not obtain
the maximal violation of the CH inequality that is possible in
theories that do not allow superluminal signaling (nonsignaling
for short), as demonstrated by Popescu-Rohrlich (PR) boxes
[21]. As a result, much work has gone into characterizing
the space of nonsignaling probability distributions [22]. An
approach based around convex polytopes has been partic-
ularly fruitful but the space of all nonsignaling probability
distributions remains complicated and often counterintuitive,
as demonstrated by the Guess Your Neighbor’s Input nonlocal
game [23].

The convex polytope of nonsignaling probability distribu-
tions in the CH inequality setting is well studied and is an
excellent platform for describing quantum correlations via
an information theoretic, or physical principle [24–27]. For
more general settings, it is difficult to describe the space
of nonsignaling probabilities. To avoid this difficulty yet
still obtain some intuition about the space of nonsignaling
probabilities, we consider the space of correlators (i.e., the
space of probability distributions over joint outcomes).

For two-setting, two-outcome Bell inequalities, the cor-
relations studied in Bell experiments can be described in
terms of stochastic Boolean maps, (e.g., probabilistic mix-
tures of Boolean functions from the two bits describing
the measurement settings to the parity of the measurement
outcomes, which is a single bit). This approach has proven
well suited to the study of many-body generalizations of the
Clauser-Horne-Shimony-Holt (CHSH) inequality and has led
to a number of unifications and new insights [6–8].

In this paper, we generalize this approach by replacing
stochastic Boolean maps with stochastic maps from the set of
measurement settings to a single digit representing the parity of
the output digits. Our generalization reveals new phenomena
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which do not occur in the simpler two-setting two-outcome
case.

Hand in hand with this “computational” description of
correlations we shall use a geometric approach. The list of con-
ditional probabilities describing the stochastic map can also be
treated as a vector in a real vector space [12,28,29]. In this pic-
ture, the valid sets of correlations which occur in a theory form
a convex region in this space, which, in the case of LHV theo-
ries, is a polytope. A polytope can be defined as the intersection
of the half spaces that satisfy a set of linear inequalities, which,
for the LHV polytope, are simply the facet Bell inequalities.

Very recently, two of us showed that for two-setting
two-outcome Bell inequalities, computational expressiveness
provides an elegant method for studying measurement-based
quantum computing [7,8]. We shall show how such approaches
can be generalized and that the switch from Boolean to more
general maps allows more complex behavior than in the
binary case.

In Sec. II, we outline the general framework, fix notation,
and introduce the modular arithmetic which will be employed
throughout the paper. In Sec. III we construct Bell inequalities
in this framework. In Sec. IV we study how methods from
Refs. [7,8] can be generalized and then summarize in Sec. V.

II. FRAMEWORK FOR GENERAL CHSH TESTS

The general scenario we consider is the n-partite Bell
experiment shown in Fig. 1, where n > 1. For simplicity, we
assume all space-like separated parties choose from c possible
measurement settings, each with d possible outcomes, so we
label an experiment by the variables (n,c,d).

As in the standard CHSH experiment, we assume that
each party’s measurement setting is chosen randomly from
a uniform distribution and is uncorrelated with the state of the
system (see [30–33] for some consequences of dropping this
assumption).

We label the c possible measurements and d possible
measurement outcomes by the digits sj ∈ {0, . . . ,c − 1} ∈ Zc

...

measurement settings

...
space-like separated measurements

measurement outcomes

s1 s2 s3 sn

m1 m2 m3 mn

sj ∈ {0, 1, ..., (c − 1)} mj ∈ {0, 1, ..., (d − 1)}

FIG. 1. In a single run of a general Bell experiment, n parties
each make a measurement from c possible choices, where each
measurement has d possible outcomes. Labelling the j th parties’
measurement choice and outcome by sj and mj , respectively, we can
describe each run of the experiment with n-digit strings m and s.

and mj ∈ Zd , respectively. Therefore, the n settings and
measurements for each repetition of the experiment are labeled
by n-digit strings m ∈ Zn

d and s ∈ Zn
c corresponding to all n

measurement outcomes and all n settings, respectively, where
x denotes the n-digit string such that the j th digit is xj .

To simplify the analysis we shall assume initially that both
c and d are prime. We discuss features of the analysis in the
nonprime case in Appendix B. We will employ arithmetic
in both modulo c and modulo d. As we are considering
correlators obtained by adding measurement outcomes, the
majority of the arithmetic will be modulo d. Therefore, we use
the following convention: In all expressions, arithmetic will
be modulo d, except in exceptional cases where the arithmetic
is modulo c, which will be denoted with large square brackets
and subscript c (i.e., [· · · ]c).

After the data m and s have been collected from many rep-
etitions of the experiments, conditional probabilities p(m|s)
for each value of m and s can be calculated. In the initial
CHSH paper, and in many-body generalizations, rather than
studying this full probability distribution, one merely considers
the statistics of the parity of the output m. Here, we shall take
a similar course and study correlators

p(k|s) = p

⎛
⎝ n∑

j=1

mj = k|s
⎞
⎠ , (1)

where p(
∑n

j=1 mj = k|s) = ∑
m|∑n

j=1 mj =k p(m|s). When tak-
ing a sum over mj we are performing addition modulo d but
when taking sums of probabilities or describing anything that
is not related to measurement settings or outcomes we are per-
forming standard, natural arithmetic over the reals. This natural
generalization of the CHSH-type correlators in Eq. (1) also
encompasses the well-known Collins-Gisin-Linden-Masser-
Popescu (CGLMP) inequality for two parties [18]. These
correlators have a well-defined role when considering the
expectation values of joint measurements [34]. Moreover,
singling out this one parameter simplifies the problem by
reducing the dimensionality of the problem, whilst still
capturing interesting properties of the full distribution p(m|s).

In Sec. II A we introduce the mathematical framework for
describing these correlators, which employs a correspondence
between conditional probabilities and stochastic maps. In
Sec. II B we apply this framework and derive the full family
of correlators that are possible in LHV theories. Then, in
Sec. II C we consider correlators in more general nonsignaling
theories and derive generalizations of the Popescu-Rohrlich
nonlocal box [21].

A. Correlators as stochastic maps

Before we begin our study of correlators, we need to
introduce some notation and mathematical construction. The
correlators p(k|s) are maps from n-digit strings s ∈ Zn

c to
probability distributions over a single digit k ∈ Zd . Any
stochastic map is a convex combination of deterministic
processes, which in this case are functions f : Zn

c → Zd .
Such functions take an “input” s ∈ Zn

c to a single “output”
k ∈ Zd . Since Zd and Zn

c are fields for c and d prime, these
functions can be represented as elements of a vector space.
There are many bases one could choose to represent the
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function. Perhaps the simplest and cleanest basis is the set
of Kronecker delta functions δ

y
s , where y ∈ Zn

c , which equals
1 when y = s and 0 otherwise. Any function can be represented
as

f (s) =
∑
y∈Zn

c

f (y)δs
y. (2)

The dcn

possible coefficients correspond to dcn

functions. It
will sometimes be convenient for the basis set to include the
constant function. We shall then replace the delta function δ0

s ,
where 0c is the all-zero string, with the constant function to
write

f (s) =
⎛
⎝ ∑

y∈(Zn
c −0c)

εyδ
s
y

⎞
⎠ + α, (3)

where εy = [f (y) − α] and α ∈ Zd .
The natural expression for the computational power of cor-

relators in a general theory is how close they can approximate
an arbitrary function. Therefore, we want to be able to rewrite
(3) as a polynomial. This can be done because the Kronecker
delta δs

y can be written as a polynomial (modulo c),

δs
y =

n∏
j=1

δ
sj

yj
=

n∏
j=1

[1 − (sj − yj )(c−1)]c,

=
n∏

j=1

[
1 −

(c−1)∑
l=0

(−1)l
(

c − 1
l

)
(yj )l(sj )c−(l+1)

]
c

. (4)

The first line follows from Fermat’s little theorem because
ab−1 ≡ 1 mod b if a is nonzero and b is prime. To reach the
second line we used the binomial theorem, which follows from
the distributivity of modular arithmetic. This shows us that any
function f (s) can be expressed as a polynomial with mixed
modular arithmetic systems. Furthermore, when d � c we can
write the function solely in terms of modulo d arithmetic since
Eq. (4) holds for any prime � c.

In this paper, the following class of functions, which we
term the “n-partite linear functions,” will be crucial in the
study of LHV theories:

Definition 1. A function f (s) : Zn
c → Zd is an n-partite

linear function if it can be expressed as

f (s) =
n∑

j=1

gj (sj ), (5)

where addition is modulo d and the gj (sj ) are functions
Zc → Zd of a single variable. If f (s) is not an n-partite linear
function, we refer to it as a non-n-partite linear function.

These functions will play a role analogous to that of the
linear Boolean functions in Refs. [7,8]. The n-partite linear
functions can also be written as

f (s) = α +
n∑

j=1

(c−1)∑
a=1

βj,aδ
sj

a , (6)

with α, βj,a ∈ Zd . There are dn(c−1)+1 n-partite linear func-
tions. For c being prime, the key feature of a non-n-partite
linear function is the presence of cross-multiplicative terms in
Eq. (4) between different digits sj of s.

For nonprime c, we cannot write delta functions in the
neat polynomial of Eq. (4) but in a more elaborate fashion
(see Appendix B), but we can still work in terms of the
delta functions for nonprime c. Therefore, the definition of
an n-partite linear function in Eq. (6) applies for nonprime c.
Thus for prime and nonprime c, the delta functions δ

sj

a only
singularly define a value of f (s) when there is only one nonzero
element in s. For other values of s there is addition modulo
d between the terms δ

sj

a . Equivalently then, for f (s) to be a
non-n-partite linear function, there must be at least one delta
function δs

y in Eq. (3) with y being a digit string with more than
one nonzero element. A function f (s) can be written in terms
of an n-partite linear part plus a non-n-partite linear part (with
addition modulo d), and if the n-partite linear part is zero, then
f (s) = 0 for all s with only one nonzero element.

Finally, we note that the above treatment also applies in
a more general setting where, instead of setting digit strings
s ∈ Zn

c we now have digit strings s ∈ Zc1 × Zc2 × · · · × Zcn
=⊕n

j=1 Zcj
. That is, the number of possible settings, now

labeled cj at each j th site, could now be different from other
sites and also nonprime. The string s is now a direct sum
(or Cartesian product) of the registers Zcj

for each site. All
delta functions as defined can be carried over to this general
setting. Thus single-site maps and n-partite linear functions are
exactly the same as (6) but, for the j th site, c is replaced with
cj . We now discuss a geometrical picture of the correlators
p(k|s).

The correlators p(k|s) are stochastic maps and so must
satisfy the positivity inequalities, [i.e., the set of cn(d − 1)
linear inequalities p(k|s) � 0, for all k, s]. Furthermore, as
some outcome always occurs for any choice of measurement
settings s, the correlators must also satisfy the normalization
equations,

∑
k∈Zd

p(k|s) = 1 for all s. We then only have (d −
1) independent correlators for each value of s, so we omit
the correlator p(0|s) and treat the remaining correlators as
elements of a vector in a cn(d − 1)-dimensional real space
with elements being p(k|s) for k �= 0.

The space of correlators satisfying the linear inequalities
of the positivity conditions p(k|s) � 0 and normalization
conditions in this reduced space,

∑
k �=0 p(k|s) � 1, is then

a convex polytope labeled P . It is a convex polytope as it
is the intersection of the half spaces defined by these linear
inequalities. In any specific theory, the region of allowed
correlators, T , will be a convex subregion of P . Equivalently,
P can be defined as the convex hull of all deterministic
correlators p(k|s) ∈ {0,1}, for all k and s; these deterministic
correlators are the extreme points of P .

If T has a finite number of extreme points (which is true
for LHV theories but not for quantum theory), then T will be
a convex polytope and so can be described as the intersection
of the half spaces defined by a set of “facet-defining” linear
inequalities. Facet-defining inequalities are defined in terms
of affinely independent points, where a set S of K vectors �pi ,
S = { �p0, �p1, . . . , �p(K−1)} is affinely independent if, for every
�pk ∈ S, the (K − 1) vectors in the set { �pi − �pk| �pi �= �pk} are
linearly independent [35].

Definition 2. A linear inequality is facet-defining for a
convex polytope in RD when at least D affinely independent
extreme points saturate the inequality (i.e., satisfy the equality
of the linear inequality).
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Having constructed a framework for stochastic maps (and
equivalently, conditional probabilities) we can immediately
apply this to the correlators studied in this paper. Recall that
we will focus our attention on correlators p(k|s) representing
the probability distribution on k = ∑n

j=1 mj , the sum modulo
d of the outputs. The correlators have the form of a conditional
probability and thus a stochastic map and therefore are
characterized by vectors in the space Pn,c,d . The space Pn,c,d

represents the set of all correlators possible in principle but, for
certain theories, not all correlators will be permitted. The focus
of our study is then the regions of correlators which are acces-
sible in LHV theories and in quantum theories. The region of
LHV correlators is itself a polytope, and the facet-defining
inequalities represent the facet-defining Bell inequalities
[10–12,36]. This is the geometrical picture of Bell inequalities
that we will consider in the next subsection. We now study and
characterize the region of correlators in LHV theories.

B. Local hidden variable theories

LHV theories are theories in which the measurement
outcomes at each site can depend on the input setting of the
measurement. The only other parameter the outcome depends
on is an objective “hidden variable” λ ∈ � which we assume
is shared by all parties, and where � is the (often continuous)
set which defines the possible values for this variable. We
do not assume that λ is deterministic, but allow it to satisfy
a probability distribution p(λ)dλ over the space � such that∫
�

p(λ)dλ = 1. Without loss of generality [36], we assume
that, apart from the probability distribution over λ, the internal
workings of each measurement device is deterministic. This,
via a standard argument, results in conditional probabilities
for the set of outputs m of the following form:

p(m|s) =
∫

�

dλp(λ)
n∏

j=1

p(mj |sj ,λ). (7)

Since λ is the only nondeterministic element to consider, we
can study the LHV correlations as the convex combination
of the set of possible deterministic maps. We now prove
that the map from measurement settings to correlators in any
LHV theory is a probabilistic combination of n-partite linear
functions.

Theorem 1. In an n-party generalized Bell experiment, with
c settings and d outputs for each measurement, the region L
of correlators accessible in a LHV theory is the convex hull of
the set of n-partite linear functions.

Proof. The space L of correlators is a convex polytope;
we only need to find the extreme points of the polytope,
or deterministic correlators, and take their convex hull [36].
This means we just need to find the deterministic functions
possible with LHV correlators. These deterministic functions
correspond to adding the measurement outcomes of space-like
separated sites, which, for an LHV theory, is deterministic if
and only if the maps from the measurement setting sj to the
measurement outcome mj at each site is deterministic [i.e.,
of the form gj (sj ) in Definition 1 for all j ]. Adding such
functions modulo d gives a n-partite linear function. �

This theorem generalizes the theorem that is valid for the
(n,2,2) case presented by two of us in Ref. [8]. It shows
that L is compactly characterized by considering it in terms

FIG. 2. Schematic for correlators in LHV theories versus more
general theories (including quantum mechanical correlators). The
shapes represent the convex polytopes of general correlators and
LHV correlators (i.e., the space L). The points on each shape are the
deterministic maps corresponding to the particular functions listed.
We have shown the region of quantum correlators lying between the
convex polytope of n-partite linear functions and the bigger convex
polytope of all possible (including non-n-partite linear) maps. The
facet Bell inequalities define the regionL of LHV correlators whereas
the nontrivial Bell inequalities (as mentioned in Sec. III) just bound
the region. It is preferable but very hard [12] to find facet Bell
inequalities rather than just nontrivial ones.

of the computational expressiveness of LHV correlators (see
Fig. 2 for a schematic of the consequences of Theorem 1).
In other words, if one considers the Bell experiment as a
computation, LHV theories allow the computation of n-partite
linear functions and nothing more. From this perspective, LHV
theories have limited computational power, and thus a theory
that allows correlators outside this region can be perceived as
having a computational advantage in a Bell experiment.

As mentioned above, there is a dual description of a convex
polytope in terms of linear inequalities. The convex polytope
of LHV correlators L is the intersection of the half spaces
described by the set of facet-defining Bell inequalities (or
facet Bell inequalities for short). In Fig. 2 we illustrate the
different types of Bell inequalities which one can construct
and the terminology to classify them. Bell inequalities that
are equivalent to normalization or positivity conditions (i.e.,
the boundaries of P) are referred to as trivial Bell inequalities.
There remain Bell inequalities that are neither necessarily facet
defining or trivial, which we call nontrivial Bell inequalities;
they are nontrivial because they indicate a separation between
the polytopes P and L by bounding the latter.

If a correlator is outside L then it must violate one of the
facet Bell inequalities. For example, it is well known that some
quantum correlators violate a Bell inequality [1]. Also, if we
observe a violation of a nontrivial inequality then we know
that it is outside of L. To recapitulate, for either nontrivial
or facet Bell inequalities, we associate a violation with a
computational advantage and in Sec. III we consider Bell
inequalities from this computational perspective.

Before investigating Bell inequalities, it is worth consider-
ing the relation between p(k|s) and p(m|s). Since the latter is
more general than the former, we are excluding interesting
phenomena by only considering correlators. Examples of
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interesting phenomena in the full p(m|s) setting include
the I3322 inequality [17] which has interesting implications
with regards to quantum correlations; another example is
the Guess Your Neighbor’s Input [23] nonlocal game which
results in some facet Bell inequalities that are not violated
by any quantum correlators. In spite of these examples,
we argue in the next subsection that the correlators p(k|s)
capture many important phenomena of full nonsignaling
probability distributions. In particular, we show that particular
deterministic correlators can be uniquely associated with a
single nonsignaling distribution—that being a many-body
generalization of the PR nonlocal box [21].

C. Nonsignaling theories

In this section, we consider general nonsignaling theories.
These are theories in which there are no constraints on
correlations other than the no-signaling conditions. First, note
that, given any deterministic correlator p(k = f (s)|s) where
k = ∑

j mj , there exists a nonsignaling distribution such that

p(mj |sj ) = 1
d

and the nonsignaling distribution results in the
correlator. This is an immediate consequence of Theorem 2,
proven below, but can be understood intuitively since every
possible value of mj is consistent with one or more output
strings m where

∑
j mj = f (s). One can then take a suitable

mixture of these strings such that every output digit is
maximally uncertain. Since a maximally uncertain output
carries no information about s, the no-signaling condition is
automatically satisfied.

We denote the space of probability distributions p(m|s) that
satisfy the no-signaling conditions by NSn,c,d (the indices
will normally be omitted for clarity). This space is a convex
polytope as it is the intersection of the half spaces defined
by the linear inequalities being the normalization, positivity
and nonsignaling inequalities (see [22] for details). Finding
the vertices of this polytope is the dual problem of finding
the facet-defining linear inequalities corresponding to some
vertices (e.g., finding the facet Bell inequalities) which is an
NP-hard problem. We now discuss some of the vertices of
NS without resorting to this vertex enumeration problem in
the following discussion.

A famous example of a nonsignaling distribution which
cannot be simulated by LHV or quantum correlators for two
spatially separated systems is the PR nonlocal box. The PR box
is defined as a black box that results in measurement outcomes
according to the probability distribution,

p(m1,m2|s1,s2) =
{

1
2 if m1 + m2 = s1s2

0 otherwise.
(8)

The PR box is described by the correlator p(k = s1s2|s) = 1.
In other words, the PR box is associated with a correlator in
P2,2,2. This correlator is a vertex of P2,2,2 corresponding to the
deterministic property that the parity of outputs m1 and m2 is
equal to the product of the inputs s1 and s2. Furthermore, the
PR box is the only distribution in NS2,2,2 which is compatible
with the correlator p(k = s1s2|s) = 1. In other words the
vertex correlator p(k = s1s2|s) = 1 in P uniquely defines a
full probability distribution in NS .

In this section, we will show that this property is shared by
many vertices in P . These vertices are only compatible with a

single probability distribution in NS . In particular, for n = 2,
every correlator in P corresponding to a non-n-partite linear
function is only compatible with one probability distribution
in NS .

We emphasize that the full set of vertices of NS for
arbitrary c, d, and n has never been characterized, and its
numerical computation is an NP-hard problem (the vertex
enumeration problem) [22]. For example, in the (3,2,2) setting,
the space NS has been shown to have a complicated structure
[37]. Therefore, we are able to capture a large amount of
structure without resorting to optimization.

Before we define this structure we need to introduce a new
class of functions f (s) : Zn

c → Zd that we will only use in
this subsection to find a subset of the vertices of NS . We call
these functions “bipartite linear” because they correspond to
functions for which, if the observers gather into two groups
at two space-like separated sites, the measurement outcome
results from an n-partite linear function for n = 2.

Definition 3. A bipartition {A,B} of the set of n parties is
a division of the set {1,2, . . . ,n} into two disjoint, nonempty
sets A and B such that A ∪ B = {1,2, . . . ,n}.

Definition 4. A function f (s) : Zn
c → Zd is bipartite linear

if, for any bipartition {A,B}, f (s) can be written as

f (s) = f A(sA) + f B(sB), (9)

where sX is the |X|-digit string with entries sX
j = sXj

and
f X(sX) is a function on sX.

We now show that there exists a unique nonsignaling
distribution corresponding to a vertex p(k = f (s)|s) of P if
and only if f (s) is not bipartite linear.

Theorem 2. For every function f (s), the correspond-
ing vertex p(k = f (s)|s) = 1 of P is compatible with the
nonsignaling probability distribution

p(m|s) =
{

d1−n if
∑n

j=1 mj = f (s)

0 otherwise.
(10)

Furthermore, this is the only nonsignaling distribution compat-
ible with p(k = f (s)|s) = 1 if and only if f (s) is not bipartite
linear.

Proof. One can verify by inspection that this distribution
is nonsignaling (since all marginals are maximally uncertain)
and satisfies p(k = f (s)|s) = 1. It remains to be shown that
the distribution in Eq. (10) is unique if and only if f (s) is not
bipartite linear. To prove the if statement, note that, for any
bipartite linear function f (s), the nonsignaling distribution

p(m|s) =

⎧⎪⎨
⎪⎩

d2−|A|−|B| = d2−n if
∑

j∈A mj = f 1(sA)

and
∑

j∈B mj = f 2(sB)

0 otherwise

(11)

is compatible with p(k = f (s)|s) = 1. We prove the only if
statement in Lemma 3. �

Note that local operations, which, for the Bell experiment
setting, corresponds to adding functions g′

j (sj ) to the measure-
ment outcomes at each site, do not change whether or not a
function is bipartite linear. Since every function can be written
in terms of an n-partite linear part and a non-n-partite linear
part, local operations can create the n-partite linear part and
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so, without loss of generality, this part can be set to be zero.
Therefore, it is sufficient to consider functions f (s) such that
f (t) = 0 for all n-digit strings t ∈ Zn

c that have at most one
nonzero digit.

We can separate the parties using any bipartition A and
B and treat the sets of parties, A and B, as single parties.
To do this, we take the sum modulo d of all outcomes on
each side of the partition and set the number of settings on
each side of the partition to be the product of the number
of settings of the parties on that side of the partition (e.g.,
cA = ∏

i∈A ci). For a function that is not bipartite linear, for all
bipartitions into A and B, the function f : ZcA

× ZcB
→ Zd

is non-n-partite linear for n = 2. Therefore, it is sufficient to
show that Theorem 2 applies for n = 2 and so must apply
for all bipartitions of n parties as long as a function f (s) in
Eq. (10) is not bipartite linear. If the probability distribution in
Eq. (10) applies for n = 2 then it must apply for all possible
bipartitions of n parties, thus generating the distribution (10)
for all n.

Lemma 3. For every function f (s1,s2) : Zc1 × Zc2 → Zd

that is non-n partite linear for n = 2, the only nonsignaling
distribution compatible with the corresponding vertex p(k =
f (s1,s2)|s) = 1 in P is

p(m1,m2|s1,s2) =
{
d−1 if m1 + m2 = f (s1,s2)
0 otherwise.

(12)

Proof. The condition p(k = f (s1,s2)|s1,s2) = 1 for all s =
{s1,s2} implies that, for every value of m1 in p(m1,m2|s1,s2),
there exists a unique value of m2 = f (s) − m1. In computer
science terminology we would call this a “unique game.” This
immediately implies the equality for the following conditional
distributions:

p(m1 = x,m2 = f (s) − x|s) = p(m1 = x|s)

= p(m2 = f (s) − x|s), (13)

for all x ∈ Zd . The no-signaling condition further implies that
p(m1 = x|s) = p(m1 = x|s1) and

p(m1 = x|s1) = p(m2 = f (s) − x|s2), (14)

which must be satisfied for all s and all x. We will show
that repeated application of Eq. (14) for varying s allows us to
prove that all nonmarginal probabilities are equal provided that
f (s) has a non-n-partite linear element. As discussed above,
we can set f (0,s2) = f (s1,0) = 0 for all s = {s1,s2}. For such
functions, repeatedly applying (14) gives

p(m2 = −x|s2) = p(m1 = x|0)

= p(m2 = −x|0) = p(m1 = x|s1)

= p(m2 = f (s1,s2) − x|s2) (15)

for all x. Repeated iteration implies

p(m2 = −x|s2) = p(m2 = αf (s1,s2) − x|s2) (16)

for all α ∈ Zd . The function f (s) is non-n-partite linear so
it must have at least one value of {s1,s2} where f (s1,s2) is
nonzero. Since d is prime, αf (s1,s2) takes on all values in
Zd , therefore the marginals are p(m2|s2) = d−1 for all m2,s2.
Applying equation (14) implies that p(m1,m2|s1,s2) = d−1 for
all m such that m1 + m2 = f (s). �

As we now show, for vertices p(k = f (s)|s) = 1 of P such
that f (s) is bipartite linear, the existence of multiple nonsignal-
ing distributions implies that the vertex of P corresponds to a
facet of NS.

Proposition 4. Every nonsignaling distribution correspond-
ing to a vertex of P lies on a facet of NS .

Proof. Any nonsignaling distribution p(m|s) can be written
as a convex combination p(m|s) = ∑

E p(E)pE(m|s) of the
vertices E of NS, where

∑
E p(E) = 1. Therefore, the

associated correlator is

p(k|s) =
∑
E

p(E)δ
∑n

j=1 mj

k pE(m|s)

=
∑
E

p(E)pE(k|s), (17)

where pE(k|s) = δ

∑n
j=1 mj

k pE(m|s) is the correlator resulting
from each extreme point of NS .

As the nonsignaling distribution results in a correlator that
is a vertex of P , p(E) = 0 for all vertices of NS that do not
result in the same correlator. Denote by E the set of vertices of
NS that correspond to the correlator and let F be the region
of convex combinations of the elements of E . Any element in
F must correspond to the correlator by Eq. (17).

F is not a facet of NS if and only if there exists a convex
combination of the vertices not in E that intersectsF . However,
if there exists such a convex combination, then this would give
a convex combination of correlators in P that is equal to a
vertex of P , which is a contradiction. �

The uniqueness of the probability distributions in
Theorem 2 implies that each vertex p(k = f (s)|s) = 1 of P
such that f (s) is not bipartite linear corresponds to a unique
vertex of NS (i.e., the “facet” in Proposition 4 collapses to a
single point).

Proposition 5. Every probability distribution of the form
(10) is a vertex of NS if and only if f (s) is not a bipartite
linear function.

Proof. As there is a unique nonsignaling distribution
corresponding to the correlator p(f (s)|s) = 1, there is at most
one E such that p(E) �= 0 in Eq. (17). �

The structure of the high-dimensional space of all pos-
sible nonsignaling distributions can be partly revealed by
considering the space of correlators, which are of relatively
low dimension. Note that the difficulty in ascertaining the
remaining structure of NS comes from the difficulty of
finding the set of vertices that generate vertices of P that
correspond to bipartite linear functions and determining
whether this gives a complete list of vertices. Furthermore,
much of the structure of LHV theories in NS is reduced to
a small number of vertices of P . In this way, the space of
correlators efficiently encapsulates vital information about all
nonsignaling probability distributions.

There is a connection between the notion of “true n-party
nonlocality” [22,38] and the vertices of NS defined by
Theorem 2. The bipartite linear functions corresponding to
vertices in P only reveal “nonlocality” (i.e., correlations not
resulting from LHV theories) between a subset of all parties,
but no nonlocality across at least one bipartition. However,
functions that are not bipartite linear result in correlations that
are nonlocal across all partitions.
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D. Summary

In this section we have constructed a framework for Bell
correlators and showed that these correlators capture important
properties of the space of nonsignaling probability distribu-
tions. These correlators also capture the properties of LHV
theories in a natural information theoretic description (i.e.,
that of computational expressiveness). This work generalizes
previous work of Refs. [7,8] and shows from where the
structure in these previously studied settings emerges.

Given this framework, we want to look at the correlators
that are achievable with quantum theory. It is well known that
there exists quantum mechanical correlators that cannot be
described by correlators resulting from an LHV theory, and
this is demonstrated by the violation of a Bell inequality [1].
Therefore, we now devote our attention to the Bell inequalities.

III. BELL INEQUALITIES

Bell inequalities allow us to characterize the polytope of
LHV correlators. The normalization and positivity inequalities
defined in Sec. II B define part of L, the LHV polytope.
However, these inequalities are also satisfied by all possible
correlators p(k|s) and define the polytope P of all correlators.
These inequalities then trivially bound L as we cannot show
a separation between P and L. We want to demonstrate such
a separation and nontrivially bound P , which we can do by
constructing Bell inequalities of the form∑

s,k

ωk,sp(k|s) � γL, (18)

for all p(k|s) ∈ L, where ωk,s and γL are real numbers. We call
γP the maximum value of the sum on the left-hand-side over
correlators in P . For the Bell inequality to be nontrivial, we
require γL < γP .

If a correlator exists outside the LHV polytope, then
it violates at least one facet Bell inequality. Finding facet
Bell inequalities involves an optimization of the parameters
ωk,s in Eq. (18) and, in general, is an NP-hard problem
[12]. The problem is a facet enumeration problem and there
are algorithmic packages that can perform this optimization
such as POLYMAKE [39]. These optimization algorithms are
often used to characterize the nonsignaling [22] and LHV
polytopes [17] in full probability distribution settings. We used
POLYMAKE to find the facet Bell inequalities for a number of
small (n,c,d) settings. The number of facet Bell inequalities for
each setting is listed in Table I, which shows that the number
of inequalities grows rapidly in the size of the problem.

TABLE I. Number of facet Bell inequalities for each setting
(n,c,d) and number of vertices for LHV polytope.

n c d No. vertices No. facet Bell inequalities

2 2 2 8 16
2 2 3 27 66
2 2 5 125 1020
3 2 2 16 256
3 2 3 81 125 412
2 3 2 32 90

For the case of (n,2,2), the LHV polytope is a hyper-
octahedron [10,11]. In general, though, there is no obvious
geometrical structure or connection between the numbers of
vertices and the numbers of facet inequalities. It is quite
apparent that finding the facet Bell inequalities is no easy task.

In this section we will use the computational insight gained
in Sec. II to construct Bell inequalities. We first find a simple
way to generate nontrivial Bell inequalities that necessarily
bound the LHV polytope. As we shall discuss further in
Sec. IV, these nontrivial inequalities also have a nice crossover
with the structures in so-called nonlocal games. We then
describe some of the facet Bell inequalities and show that
they, too, have a computational nature.

Finally, in the last part of this section, we discuss the
quantum violation of facet Bell inequalities. We show that
there is a violation for all facet Bell inequalities for n = 2 in
Table I. We comment on the quantum states that maximally
violate these Bell inequalities and find that in few instances is
it a maximally entangled state. This supports the view that
entanglement and a violation of a Bell inequality are not
synonymous concepts.

A. Nontrivial Bell inequalities

One might ask what is the point of looking for Bell
inequalities that are not facet defining? First, bounding the
set of LHV correlators still creates a nontrivial subregion
of a correlator space. Second, we can still demonstrate
nonclassical behavior without the computational difficulty
that the facet-defining condition creates. Finally, despite not
being facet defining, nontrivial Bell inequalities can have
a role in particular applications such as in nonlocal games
or measurement-based quantum computing (MBQC) [8],
as nontrivial Bell inequalities might capture computational
power. We will elaborate on this final point in Sec. IV.

In this subsection, we will discuss nontrivial Bell inequal-
ities as being inequalities in the space P ′ of all possible
correlators p(k|s), including those for k = 0. In this space,
the normalization conditions become

∑
k p(k|s) = 1 for all s,

which defines a bounded hyperplane in Rdcn

. The space of
correlators P ′ is a convex polytope defined by the positivity
conditions within this hyperplane. We regard the region of
LHV correlators, L, as a subregion in both P and P ′ as one
can always go between the two spaces by disregarding p(0|s)
and applying the normalization inequalities. In the rest of the
paper, including the discussion on facet Bell inequalities, we
always discuss correlators in the space P .

Given the motivation for finding nontrivial Bell inequalities
we now present a simple way of generating nontrivial Bell
inequalities. We begin by considering the CHSH inequality [9]
as an example. The CHSH inequality can be written as

∑
s1,s2

1∑
k=0

δk
s1s2

p(k|s1,s2) � 3, (19)

which is (18) with γL = 3 and ωk,s = δk
s1s2

. The CHSH
inequality is also a facet Bell inequality for this setting.

By convexity, it is only necessary to consider the vertices of
the LHV polytope to obtain the bound γL = 3. In this case, the
vertices correspond to the linear Boolean functions of s1 and
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s2 [7]. For these vertices the correlators are then p(k|s1,s2) =
δk
g(s1,s2), where g(s1,s2) are the linear Boolean functions on

{s1,s2}. The sum in Eq. (19) is then
∑

s1,s2
δ

g(s1,s2)
s1s2 � 3 because

the function g(s1,s2) overlaps with the function s1s2 for at
most three values of s. An example of a linear function
achieving this overlap is g(s1,s2) = 0. On the other hand, if
a correlator p(k = f (s)|s1,s2) achieves the map f (s) = s1s2

deterministically, then it achieves a value of γP = 4 for
the sum in Eq. (19). This inequality highlights the inability
for LHV correlators to evaluate nonlinear Boolean functions
deterministically.

For all settings (n,c,d), we can generalize the above
concepts from the Boolean algebra for (2,2,2) to our more
general framework of maps f : Zn

c → Zd . We construct
nontrivial Bell inequalities in the following way:

∑
s

d−1∑
k=0

δk
f (s)p(k|s) � sup

g(s)

∑
s

δ
f (s)
g(s) , (20)

where the supremum is over the set of n-partite linear functions
and f (s) is a non-n-partite function of s. Therefore, there
are N = dcn − dn(c−1)+1 nontrivial Bell inequalities of the
form (20).

We can prove the inequality in Eq. (20) using the same
arguments as with the CHSH inequality. By convexity we
only need to consider the vertices of L which correspond to
the n-partite linear functions g(s). The sum in Eq. (20) is then∑

s

∑d−1
k=0 δk

f (s)δ
k
g(s). We then take the supremum over all n-

partite functions g(s) to obtain the right-hand-side of Eq. (20).
Whilst these inequalities might seem contrived, they in-

clude some interesting Bell inequalities. For example, the
Svetlichny inequality [38] for three parties takes the form of
Eq. (20); namely,∑

s1,s2,s3

δk
s1(s2+s3)+s2s3

p(k|s1,s2,s3) � 6, (21)

which is (20) for f (s) = s1(s2 + s3) + s2s3. The Svetlichny
inequality is not a facet Bell inequality for the LHV polytope
L in the (3,2,2) setting [10], but it still captures very interesting
phenomena. In particular, the Svetlichny inequality captures
correlations that are consistent with LHV theories if one
averages over the measurement settings and outcomes for any
one of the parties.

The nontrivial Bell inequalities (20) can be seen to truly
capture the inability of LHV theories to evaluate non-n-partite
linear functions via correlators. A way of emphasizing this is
to consider these inequalities as a “nonlocal game” [5]. That
is, given an input s to n parties that do not communicate, what
is the maximum probability of the parties producing outcomes
m such that

∑n
j=1 mj = f (s) for some function f (s) using

different strategies (or resources such as shared randomness
or entanglement). A referee chooses the input and then obtains
all outputs m before computing

∑n
j=1 mj .

If the referee’s choice of input is uniformly random, then the
inequality in Eq. (20) captures the mean success probability of
an LHV strategy performing the function f (s); one just needs
to divide both sides by cn to obtain a proper probability. If one
imagines that the choice of input s is not chosen at random but
instead with some probability p(s) � 0 such that

∑
s p(s) = 1

then we can modify (20) to be

∑
s

p(s)
d−1∑
k=0

δk
f (s)p(k|s) � sup

g(s)

∑
s

p(s)δf (s)
g(s) , (22)

to get the mean success probability of performing the function
f (s) with LHV correlators given a distribution p(s) on inputs.
We now present the following proposition that shows that
an infinite class of nontrivial Bell inequalities can be easily
generated.

Proposition 6. Any Bell inequality of the form (22) is
nontrivial whenever p(s) �= 0 for all s.

Proof. For any n-partite linear function,∑
s

p(s)δf (s)
g(s) <

∑
s

p(s) = 1, (23)

because there must be a value of s such that δ
f (s)
g(s) = 0.

Therefore, the right-hand-side of Eq. (22) is strictly less
than 1 for all correlators in L. However, for the correlator
p(k = f (s)|s) = 1 in P , the left-hand side of Eq. (22) is
exactly 1. �

The beauty of these nontrivial Bell inequalities is that they
are easily generated as one can easily describe the n-partite
linear functions for any setting (n,c,d), yet they still bound
the region of LHV correlators. They also explicitly capture
the computational aspect of a Bell inequality experiment: the
value of the left-hand side of Eq. (22) gives the mean success
probability of performing a particular function.

We now consider the facet Bell inequalities that completely
characterize the LHV polytope for small values of (n,c,d).
Whilst these latter inequalities do not have the immediacy of
the nontrivial Bell inequalities and are difficult to calculate,
they are still the optimal tool for demonstrating nonclassical
correlations.

B. Facet Bell inequalities

The facet Bell inequalities satisfy the facet-defining con-
dition for LHV correlators and so, if a correlator is outside
the region of LHV correlators, it must necessarily violate
one of the facet Bell inequalities. In Table I we listed the
number of facet Bell inequalities for a few settings that could
be computed using the software POLYMAKE. Included in the
number of facet Bell inequalities are the cn normalization and
(d − 1)cn positivity inequalities that define the polytope P .
Despite these dcn inequalities, there are still a significant
number of inequalities remaining. Also note we are again
discussing correlators in the space P of all correlators except
p(0|s) and L is the subregion of LHV correlators in this space.

We can reduce the number of facet Bell inequalities by
considering relabelings of the measurement choices, out-
comes, and parties, which we refer to as symmetries. If a
Bell inequality can be changed into another inequality by such
an operation, we refer to them as equivalent, or as members of
the same symmetry class. Explicitly, the symmetries are

(1) permutations of parties: {si,sj , . . . ,sn} →
{si ′ ,sj ′ , . . . ,sn′ } where k′ = σ (k) is an element of the
permutation group of order n;

(2) relabeling of measurement settings: sj → sj + αj for
some αj ∈ Zc;
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TABLE II. Number of symmetry classes for each setting (n,c,d).
We have excluded the symmetry class of all positivity and normal-
ization inequalities from this number.

n c d No. of symmetry classes

2 2 2 1
2 2 3 1
2 2 5 4
3 2 2 4
3 2 3 62
2 3 2 1

(3) relabeling of measurement outcomes: mj → mj +
β(sj ,j ) where β(sj ,j ) ∈ Zd .

The n-partite linear functions are closed under all of these
operations. Using the facet-defining condition, the vertices of
L that saturate a facet Bell inequality must be equivalent to
another set of vertices in L by these operations that saturate
another facet Bell inequality. Hence we can group together the
facet Bell inequalities into these symmetry classes.

There are n! permutations of n parties and cn ways of rela-
beling measurement settings. Since for each input sj we add
a value β(sj ), for each input s, β(s) = ∑n

j=1 β(sj ) is added to∑n
j=1 mj . There will be at most dcn values of β(s).
We constructed a search algorithm to find all the symmetry

classes of facet Bell inequalities for each setting (n,c,d). In
Table II we list the number of symmetry classes for each of
the settings in Table I, which is dramatically fewer than the
total number of facet Bell inequalities. One of the symmetry
classes for each setting is the class of normalization and
positivity conditions, leaving all the facet Bell inequalities
that can be violated by LHV correlators outside of L. We
have therefore omitted the class of these positivity and
normalization inequalities from Table II in order to leave the
inequalities that can be violated.

We now look at a few particular families of facet Bell
inequalities for the bipartite and tripartite setting based on
the CGLMP inequality. We briefly discuss the (2,3,2) setting
and show how the CHSH inequality is essentially the only
relevant facet inequality for this setting.

1. Bipartite two-setting facet Bell inequalities

A symmetry class of note for n = c = 2 is the class of
facet Bell inequalities that are equivalent to the CGLMP
inequality [18]. We can rewrite this inequality after symmetry
transformations and mapping it into our normalized probabil-
ity space P to obtain

CCGLMP = d × p

⎛
⎝ 2∑

j=1

mj = 1|0,0

⎞
⎠

−
∑

s

(−1)s1+s2p

⎛
⎝ 2∑

j=1

mj = 1|s
⎞
⎠ +

∑
s

(−1)s1+s2

×
d−1∑
k=2

(d−k−1)p

⎛
⎝ 2∑

j=1

mj =k|s
⎞
⎠ � d. (24)

This inequality is also equivalent to the CHSH inequality for
d = 2 which we now write in the space P for clarity:

Cd=2 =
∑

s

(−1)s1s2p

⎛
⎝ 2∑

j=1

mj = 1|s
⎞
⎠ � 2. (25)

For all possible correlators in P , the maximal value of the left-
hand side of the CGLMP inequality is 2d − 1, thus violating
it. In fact, for all d, this maximal violation of the CGLMP is
obtained by a vertex of P corresponding to the map f (s) =
s1s2 + 1 [i.e., the correlator p(k|s) = δk

s1s2+1]. Masanes has
shown that the only nontrivial facet Bell inequalities are those
that are equivalent to the CGLMP for the (2,2,3) setting [40];
this is confirmed by Table II.

For the (2,2,2) setting there are 24 − 23 = 8 non-n-partite
linear functions and also 8 inequalities in the symmetry class
of the CHSH inequality. This is no coincidence as every
Bell inequality in the symmetry class is maximally violated
by a vertex of P corresponding to a non-n-partite linear
function. This also occurs for the (2,2,3) setting; there are
34 − 33 = 54 non-n-partite linear functions and 54 inequalities
in the symmetry class of the CGLMP inequality. It can also be
checked that every inequality in this symmetry class is violated
by a different non-n-partite linear function.

The correspondence between non-n-partite linear functions
and facet Bell inequality echoes the nontrivial Bell inequalities
described by the inequalities of the form (20). There is a
computational aspect to each inequality as a violation indicates
that a correlator is in some sense closer to the non-n-partite
linear functions. However, the correspondence breaks down for
the (2,2,5) setting where there are 54 − 53 = 500 non-n-partite
linear functions but 1000 nontrivial facet Bell inequalities in
total. In this instance, each vertex of P maximally violates two
facet Bell inequalities (each belonging to different symmetry
classes). Therefore, there are 1000 facet Bell inequalities (see
Appendix A for more details).

2. Tripartite facet Bell inequalities

We have given an indication that facet Bell inequalities
for n = c = 2 have a computational interpretation. Every
facet Bell inequality we have found is maximally violated
uniquely by a vertex of P . In this sense the violation of
a facet Bell inequalities can quantify how computationally
powerful a theory is. For situations with n > 2, this becomes
more complicated even for n = 3 and c = d = 2. The Mermin
inequality [41], for example, is in the symmetry class of the
inequality

∑
s

δs1
s2

(−1)s1s3p

⎛
⎝ 3∑

j=1

mj = 1|s
⎞
⎠ � 2. (26)

Two vertices of P that are not vertices of L maximally
violate this inequality. The two maps that correspond to these
vertices are f (s) = s1s2s3 + 1 and f (s) = s1s3 + 1. Therefore,
there is no longer a one-to-one correspondence between facet
inequalities and the vertices of P that violate the inequality.

The CHSH inequality expressed in terms of the expectation
value of measurements (see next subsection) for two parties
can be used to build facet Bell inequalities for more parties [10]
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such as the above inequality (26). Analogously, we define
CGLMP for three parties using the two-party inequality. We
have three parties but now we only consider nonzero terms in
a Bell inequality when the third party’s measurement setting
s3 = 0. For LHV correlators p(k|s1,s2,0), the n-partite linear
functions that can be achieved are f (s) = [α1s1 + α2s2 + α3]3

with α1,α2,α3 ∈ Zd : the n-partite linear functions on two
variables s1 and s2. Since the CGLMP inequality is facet
defining for the region of LHV correlators for two parties,
or variables s1 and s2, it is facet defining for this space of the
n = 3 correlators for s3 = 0. Then we can write the tripartite
CGLMP inequality as

C ′
CGLMP = d × p

⎛
⎝ 3∑

j=1

mj = 1|0,0,0

⎞
⎠

−
∑

s

(−1)s1+s2p

⎛
⎝ 3∑

j=1

mj = 1|s1,s2,0

⎞
⎠

+
∑

s

(−1)s1+s2

d−1∑
k=2

(d−k−1)

×p

⎛
⎝ 3∑

j=1

mj =k|s1,s2,0

⎞
⎠�d. (27)

For the case of (3,2,3), this tripartite CGLMP inequality
is facet defining and forms a symmetry class with 324
inequalities. This is also true for d = 2 where C ′

CGLMP results
from the CHSH inequality and forms one of four nontrivial
symmetry classes. Also in this case there is another way of
substituting the CHSH inequality to obtain the class containing
the inequality (26). This class also generalizes to the d = 3
setting so that the following inequality is against the space
where s1 = s2, in a fashion similar to C ′

CGLMP:

C ′′
CGLMP = d × p

⎛
⎝ 3∑

j=1

mj = 1|0,0,0

⎞
⎠

−
∑

s

δs1
s2

(−1)s1+s3p

⎛
⎝ 3∑

j=1

mj = 1|s
⎞
⎠

+
∑

s

δs1
s2

(−1)s1+s3

d−1∑
k=2

(d − k − 1)

×p

⎛
⎝ 3∑

j=1

mj = k|s
⎞
⎠ � d. (28)

This inequality also forms a symmetry class with 324 inequal-
ities. There are 60 other symmetry classes for (3,2,3) (ex-
cluding the class of positivity and normalization inequalities).
Inequalities from each of these classes can be found in the
supplementary material [42].

3. Bipartite three-setting two-outcome facet inequalities

Finally, as can be seen from Table II for the (2,3,2) setting,
there is only one symmetry class of nontrivial facet Bell

inequalities. The Bell inequality generating this symmetry
class is a generalization of the CHSH inequality:

Cc=3 =
∑

s

(−1)s1s2

2∏
j=1

(
δ

sj

0 +δ
sj

1

)
p

⎛
⎝ 2∑

j=1

mj =1|s
⎞
⎠ � 2. (29)

This is exactly the same as the CHSH inequality if, instead
of c = 3, we had c = 2. In fact, for either c or d equal to 4
and n = 2, inequalities constructed from the CHSH inequality
capture a lot of the structure of the LHV polytope.

In this subsection we have given an indication of the
richness of the structure of the LHV polytope for some simple
settings. There is also a computational element to some of
these Bell inequalities, such as the CGLMP inequality which
is maximally violated by a vertex ofP , in that greater violations
enable correlators to come closer to evaluating a non-n-partite
linear function deterministically. Quantum correlators are
known to provide violations of Bell inequalities, so in the
next section we discuss quantum correlators.

C. Quantum correlators

Quantum correlations can violate all manner of Bell in-
equalities if the correlations are generated from measurements
on an entangled state. However, the connection between a
violation of a facet Bell inequality and entanglement is not
completely clear. Recently, the two concepts have become
very distinct and nowhere is this best demonstrated by the
CGLMP inequality where the greatest violation of the CGLMP
inequality is not achieved with a bipartite maximally entangled
state. The region Q ⊂ P of quantum correlators is convex, but
it is not a polytope since there are an infinite number extreme
points [12]. It is not clear in general how to define all of the
extreme points of Q. We now discuss this region in the context
of our CGLMP-like Bell tests.

Without loss of generality, we can assume that the measure-
ments at each site are projective measurements by Naimark’s
theorem [43] so that, for a quantum state ρ ∈ (H)⊗n, the
correlators are

pQ(k|s) =
∑
m

δ

∑n
j=1 mj

k Tr

⎛
⎝ρ

n⊗
j=1

|mj 〉sj
〈mj |sj

⎞
⎠ . (30)

As ρ can be expressed as a convex combination of pure states,
we can, for the purposes of finding the maximum quantum
violation, assume that ρ is a pure state.

A more compact way of expressing Bell inequalities is in
terms of the expectation values of joint measurements Msj

[15,34], which, for the above projective measurements, are

E(s) = Tr

⎛
⎝ρ

n⊗
j=1

Msj

⎞
⎠

=
∑
m

e
i2π
d

(
∑n

j=1 mj )Tr

⎛
⎝ρ

n⊗
j=1

|mj 〉sj
〈mj |sj

⎞
⎠

=
d−1∑
k=0

e
i2πk

d pQ(k|s). (31)
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The correlators pQ(k|s) in Eq. (31) can be replaced with LHV
correlators to obtain the expectation value of measurements
for LHV theories.

Our construction of correlators therefore has a natural role
in the construction of expectation valuesE(s). If we have a Bell
inequality in terms of correlators such as (18), it is possible
to relate it to a Bell inequality in terms of these expectation
values by taking the discrete Fourier transform Eq. [34]. The
discrete Fourier transform of Eq. (18) gives

∑
s

d−1∑
μ=0

ημ,s[E(s)]μ � γL, (32)

with γL as defined in Eq. (18) if the complex prefactors ημ,s
are

ημ,s = 1

d

d−2∑
k=1

ωk,se
−i2π

μk

d . (33)

This construction is another motivation for considering corre-
lators as opposed to the full distribution p(m|s).

To obtain the maximal violation of a Bell inequality by
quantum correlators, we optimize (32) over pure states ρ and
unitary operators Msj

(which correspond to projective mea-
surements). For the case of (n,2,2), all facet Bell inequalities
are maximally violated by the GHZ state |GHZ〉 = 1√

2
(|0〉⊗n +

|1〉⊗n) [10]. In general, finding the maximal violation is a
difficult problem; however, there are methods of providing
numerical lower and upper bounds on this quantum violation
(see, e.g., [15,44]). We will now discuss and utilize these
methods to find the maximal quantum violations of facet Bell
inequalities for two parties.

First we discuss methods of finding a lower bound on a two-
party maximal quantum violation used in Refs. [15,45]. The
quantum state is first fixed as the d2-dimensional maximally
entangled state |�〉 = 1√

d

∑d−1
j=0 |jj 〉 and we optimize over

the unitaries Msj
. More specifically, we write the projectors

as |mj 〉sj
〈mj |sj

= Msj
|k〉〈k|M†

sj
, where {|k〉| ∈ Zd} is the

standard basis of HD . The Msj
can be written as Msj

= FDsj

where F is the d × d Hadamard, or quantum Fourier transform
matrix and Dsj

= diag(eiφ1(sj ),eiφ2(sj ), . . . ,eiφd (sj )), which is a
diagonal matrix with φj (sj ) as real phases. Therefore, we
optimize over these phases φj (sj ) to numerically maximize
the quantum violation for the maximally entangled state.

Once we find the optimal phases φj (sj ) for each sj ,
we optimize over the pure states, ρ, by finding the largest
eigenvalue of the operators corresponding to Eq. (32). The
largest eigenvalue then corresponds to the eigenvector |ψ〉.
Using this method it has been shown that the maximal violation
of the CGLMP inequality is achieved with a state that is not
maximally entangled [45].

One method of providing an upper bound to the violation of
a Bell inequality is the use of semidefinite programming [44].
A Gram matrix is constructed from the expectation value of
products (or sequences) of projectors and this matrix is positive
semidefinite. The Bell inequality is then a linear objective
function on this matrix subject to linear constraints on elements
of the Gram matrix. Navascues et al. constructed a hierarchy
of semidefinite programs that converge to the set of quantum

TABLE III. We list the bipartite maximal quantum violations for
particular facet Bell inequalities for c and d . The inequalities I1,
I2, and I3 can be found in Appendix A. Those violations that are
achieved with the bipartite maximally entangled state of d2 dimension
are labeled with †.

n c d Symmetry class LHV bound Quantum bound

2 2 2 Cd=2 2 2.4142†

2 2 3 CCGLMP 3 3.9149
2 2 5 I1 5 6.3145
2 2 5 I2 5 7.6290
2 2 5 I3 5 7.0314
2 2 5 CCGLMP 5 7.0314
2 3 2 Cc=3 2 2.4142†

correlations and also constructed a method for testing for
convergence [44].

We used YALMIP and SEDUMI [46] to implement these
semidefinite algorithms to find the upper bound to quantum
violations whilst finding lower bounds using previously
described methods. In Table III, we list the maximal quantum
violations of the facet Bell inequalities in symmetry classes
described previously; a single value is listed because the
upper and lower bounds coincide or differ by at most 10−9,
which is consistent with numerical error. Interestingly, of the
settings studied, only Bell inequalities for qubits are maximally
violated by a maximally entangled bipartite state.

D. Summary

Dual to a vertex description of a convex polytope is the facet
description, where facets are defined by linear inequalities. We
have given an insight into some of the complicated structure
behind these facet Bell inequalities. Despite the complicated
structure, there is a computational insight into the facet Bell
inequalities for particular settings. The CGLMP inequalities
are computational in nature and can be used to construct
facet Bell inequalities for multipartite scenarios. We then
showed that these and other bipartite facet Bell inequalities are
violated by quantum correlators, which indicates that quantum
mechanics offers a computational advantage relative to any
LHV theory.

The nontrivial Bell inequalities that we have constructed in
this section have an explicit computational meaning. We will
explore these inequalities in the context of nonlocal games
and measurement-based quantum computing. More generally,
we consider how much of the structures developed in this
paper can be applied to these information processing scenarios.
Whilst a lot of ideas have been generalized from the (n,2,2)
setting, we show that LHV correlators are more powerful when
c, d > 2.

IV. BELL TESTS, NONLOCAL GAMES, AND
QUANTUM COMPUTING

Connections have been made between Bell tests and
measurement-based quantum computing (MBQC) [6,8]. This
connection has been explicitly explored in the setting where
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each party has a choice of two measurements, each with
two outcomes. Furthermore, the role of postselection in Bell
tests simulating MBQC has been explored in this setting [7]
leading to novel quantum phenomena. In this section we will
give an overview of all of these connections and then discuss
their implementation in general (n,c,d) settings. So much of
the computational insight in constructing LHV correlators in
the (n,2,2) setting carries over into the (n,c,d) setting, but the
structure of LHV correlators is also richer. This richness also
means certain results do not generalize.

We have already discussed nonlocal games in the context
of the nontrivial Bell inequalities in Sec. III. There is an
overlap between nonlocal games and MBQC if we consider
the elements in both information processing scenarios. First
in MBQC there are a number of sites that share a particular
resource (e.g., the cluster state [47] for quantum computing),
and single-site measurements are made on this resource. All
measurement data are processed by a classical computer and
in order to achieve a universal quantum computer in current
models, adaptive measurements are required; adaptivity means
choices of measurements are informed by previous mea-
surement outcomes. In the model developed by Raussendorf
and Briegel, the classical computer only needs to be able
to perform linear Boolean functions to achieve a universal
quantum computer [47].

We now recall the model of nonlocal games as discussed
earlier [5]. There are a number of parties who share some
resource state but do not communicate with each other.
These parties receive an input from a referee and send an
output back. The referee processes the outputs to see if the
parties successfully performed some task. MBQC can be
recast as a nonlocal game where the parties choose their
measurement based upon the input they receive and send the
referee the measurement outcome. The referee in MBQC is
a classical computer who processes the measurement data in
order to achieve some task. Therefore, the referee performs
linear Boolean function computation on the measurement data
described by bits [8].

MBQC has been generalized to include more than a choice
of two measurements and two measurement outcomes at each
site [48], thus measurement data are no longer encoded in bits.
The classical computer processing measurement data in these
models just uses addition modulo d where d is the number
of measurement outcomes at each site [48]. Addition modulo
d on data is still an extremely limited form of computation,
even compared to the n-partite linear functions discussed in
this paper.

For simplicity we say that the data sent and received from
the measurements sites are encoded as digits in Zd . The
specific model of MBQC as a nonlocal game that we consider
consists of three stages:

(1) A digit string x ∈ Z|x|
d of length |x| is processed by a

classical computer, which then sends a single digit to each site
after processing;

(2) At each site, this digit is used to select a measurement
and the outcome is sent to the classical computer;

(3) The classical computer processes this measurement data
to output a single digit.

The processing power of the classical computer is limited
to addition modulo d.

The input at each site sj = h(x) is now a result of some
preprocessing leading to a function h(x) on the digit string
x where |x| � n. This function is limited to addition modulo
d on x [i.e., h(x) = ∑|x|

j=1 αj xj where αj ∈ Zd ]. Then the
processing on measurement outcomes mj leads to the output
function

∑n
j=1 mj without loss of generality.

The nontrivial Bell inequalities described in this paper
capture the mean success probability of LHV correlators
evaluating a non-n-partite linear function f (s) for the input s.
We now investigate how the construction of Bell inequalities
is modified by this new element of preprocessing on a digit
string x. The preprocessing allows us to express the correlators
as being conditioned upon x [i.e., p(k|x) := p(k|s(x))].

The correlators p(k|x) are now elements of a vector �p in
R(d−1)d |x|

. We now describe the structure of the region of all
possible correlators.

For the digit string x if we set n = |x| and sj = xj for
all j , then the possible correlators p(k|x) live in the space
P for this setting. If we increase n and consider other
forms of linear preprocessing, we allow more freedom to
evaluate more complicated functions. As shown in Ref. [8]
for the preprocessing described above, quantum correlators for
d = 2 = c benefit from this freedom. That is, for d = 2 = c

settings, all deterministic correlators p(k|x) corresponding
to functions f (x) : Z|x|

d → Zd can be achieved for some
sufficiently large n.

Remarkably, LHV correlators p(k|x) for d = 2 are unaf-
fected by increasing n using the preprocessing described above
[7]. The deterministic correlators, or vertices of P for p(k|x)
that LHV correlators achieve are always the linear Boolean
functions. In this way, the computational power of LHV
correlators is not boosted by increasing n and preprocessing
for d = 2. We now show that, for general d > 2, this no longer
holds and computational power can be boosted. We actually
show something stronger: if any form of the preprocessing
described above with sj = h(x) and |x| = n is allowed, then
the computational power of LHV correlators will be boosted.

Proposition 7. For arbitrary addition modulo d preprocess-
ing on x leading to measurement settings sj = h(x), the space
of LHV correlators p(k|x) is not confined to the convex hull
of n-partite linear functions on x for d > 2.

Proof. As before, we consider the deterministic maps p(k|s)
and then take their convex hull. However, we now consider the
effect of preprocessing on x and make the assumption that
d > 2. When each party receives the input sj generated by the
preprocessing, the input is sj = h(x) where h(x) = ∑|x|

j=1 αjxj

with αj ∈ Zd . We now map into the space of all correlators
p(k|x) under the influence of all possible preprocessing of the
form h(x).

For LHV correlators, we need to consider all single-site
maps Zd → Zd which can be written as a polynomial over
Zd :

mj =
(d−1)∑
y=1

(d−1)∑
z=0

εy,zs
d−(z+1)
j + γ, (34)

where εy,z = βy(−1)z+1( d − 1
Z )yz and γ, βy ∈ Zd . If we add

in the preprocessing stage where sj = ∑|x|
j=1 αjxj , then
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single-site maps become polynomials in elements of xj , [i.e.,
s
d−(z+1)
j = (

∑|x|
j=1 αjxj )d−(z+1)]. Therefore, for appropriately

chosen βy and αj , there are now cross terms between
elements of xj (e.g., x1x2, etc.) if d > 2. Because of this,
the deterministic single-site maps with preprocessing cannot
be described as n-partite linear functions on x. �

If we just have sj = xj and have n = |x| parties then
the LHV polytope is just the convex hull of n-partite
linear functions on x. Preprocessing therefore can boost the
computational power of LHV correlators to go beyond this
computational description. However, not all polynomials of
elements xj over Zd can be achieved by taking powers of the
linear functions

∑|x|
j=1 αjxj . For example, the function f (x) =∏|x|

j=1 xd−1
j cannot be achieved by this method. More generally,

any function that contains a term that is a non-n-partite linear
function of degree greater than d − 1 cannot be achieved in any
LHV theory for any value of n. So whilst the LHV correlators
are boosted by this preprocessing, the resulting LHV polytope
does not encompass the convex hull of all functions f (x).

Knowing that the boosted LHV polytope cannot achieve
a function such as f (x) = ∏|x|

j=1 xd−1
j , we can construct a

nontrivial Bell inequality for this function for all n � |x|.
Instead of finding the upper bound for LHV correlators by
taking the supremum over all n-partite linear functions, we
now have to take the supremum over all possible linear
preprocessing for all n maps of the form (34). This added
complication highlights the uniqueness and simplicity of the
case for d = 2, where one only needs to take the supremum
over all linear Boolean functions of x even with preprocessing.

In the case where the number of possible inputs at each site
is different from the number of possible outputs, there are other
complications. We illustrate this with an example in the (3,2,3)
setting but with a bit-string x ∈ Z2

2. We have three parties with
preprocessing on x leading to inputs: s1 = x1, s2 = x2, and
s3 = [x1 + x2]2. With this preprocessing one can achieve the
non-n-partite linear function f (x) = x1x2 with the n-partite
linear function f (s) = 2s1 + 2s2 + s3 and this preprocessing
as 2x1 + 2x2 + [x1 + x2]2 = δ

x1x2
1 . Therefore, even with c = 2

and d > 2, the LHV polytope is also no longer confined to
n-partite linear functions on x.

The effect of processing on LHV correlators in the general
framework of Bell tests is pointedly different from the
two-measurement two-outcome case. We hope to illustrate
that there is a richness in structure in how information
processing affects classical correlations and an appreciation
of the connections between computation and correlators to
give a handle on the effect of processing. In Ref. [7], the effect
of processing can be seen to have a role in creating so-called
loopholes in Bell tests and it is worthwhile exploring loopholes
in the framework of the data processing described here.

We also hope these results really emphasize why the (n,2,2)
setting is so special and such a powerful platform for distin-
guishing between classical and nonclassical correlators. Even
with linear Boolean preprocessing, the classical computation
possible with LHV correlators is well characterized. This is
still a computationally interesting setting as two inputs and
two outputs at each site already enables quantum computing
and the richness of structure that comes with that. Despite the
fact that MBQC can be generalized to the setting with more

inputs and outputs at each site, the same LHV structure does
not retain the same character in this setting.

V. SUMMARY AND OPEN QUESTIONS

In this paper, we have explored the relatively under-studied
multisetting, multi-outcome Bell inequality test in the context
of the computational perspective of Bell tests, which has al-
lowed us to derive new families of nontrivial Bell inequalities.
We have presented our work in terms of correlators and not
the full measurement statistics of an experiment for clarity
and convenience. However, we have shown that a significant
amount of the structure of the space of nonsignaling probability
distributions are captured by this setting.

We have shown that LHV theories can generally be
considered in terms of limited computational expressiveness
(i.e., LHV theories can only evaluate n-partite linear functions
as defined). A violation of a Bell inequality defined by these
functions implies a computational advantage relative to any
LHV theory. Given this interpretation, we can construct an
infinite class of nontrivial Bell inequalities. Furthermore, we
have explicitly constructed facet Bell inequalities that define
the region of LHV correlators using the construction of LHV
correlators in this paper.

Central to this paper is the incorporation of a computational
perspective using modulo arithmetic into the more established
picture of the convex polytopes of LHV theories. This per-
spective provides a broad arena to explore and, while we have
given some insight, many open questions still remain. First,
what is the general correspondence between non-n-partite
linear functions and facet Bell inequalities? There seems to
be a one-to-one or a one-to-two correspondence in certain
settings but this is not always the case. There are many happy
coincidences that need further clarification.

A huge open question is what exactly defines the quantum
region in our space of correlators? For the (n,2,2) correlator
Bell test, we know that measurements on GHZ states form
the extreme points of the quantum region [10,11]. However,
little is known for other settings. At the moment finding
the eigenvectors for maximal violations of a Bell inequality
has not resulted in a general expression for the states that
maximally violate the CGLMP inequality, if such a closed-
form expression even exists. In addition, more study is
needed to determine the effect of preprocessing on quantum
correlators.

In Ref. [7], signaling correlators were simulated with
postselection on measurement data. We have shown that the
generalization of this postselection leads to a boost in the power
of LHV correlators; something that is akin to a loophole in a
Bell test. However, in the more general setting, does simulating
signaling correlators also boost LHV correlators? Are there
more nuanced ways of processing data that do not expand the
region of LHV correlators, as occurs in Proposition 7?

If a violation of a Bell inequality is a resource for
information processing [2–4,6,8], then all aspects of Bell tests
need to be explored to determine how we can best exploit
this resource. We have tried to hint at how the richness of
structure of abstract local hidden variable theories can be
captured by a simple computational picture. We hope that
this work gives more insight into the cooperative relationship
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between quantum information and the foundations of quantum
mechanics.

ACKNOWLEDGMENTS

We would like to thank Hussain Anwar, Nicolas Brunner,
Miguel Navascués, and Stephen Bartlett for interesting discus-
sions. MJH is financially supported by the EPSRC (UK) and
DEB acknowledges support from the Leverhulme Trust.

APPENDIX A: FACET BELL INEQUALITIES

In this section we list the facet Bell inequalities which
belong to symmetry classes that are not explicitly described
in the paper. We express the correlators p(k|s) as the elements
of a (d − 1)cn vector in real space R(d−1)cn

. To simplify, we
describe the inequalities in terms of a vector �b that has an
inner product with correlator column vectors �p to form the
Bell inequality (i.e., �b · �p � γL). The coefficients correspond
to elements going from left to right as p(1|0,0, . . . ,0),
p(2|0,0, . . . ,0), up to p(d − 1|c − 1,c − 1, . . . ,c − 1). We
will use this notation in the next two sections of the Appendix.
For the (2,2,5) setting, there are four symmetry classes of
facet Bell inequalities (excluding the class of positivity and
normalization inequalities). One of these is the CGLMP
inequality and the other three are given by the vectors of
coefficients

�b1 = 1
2 (6,2,3,4,4, −2,2,1,4, − 2,2,1, −4,2, −2, −1),

�b2 = (3,1,−1,−3,2,−1,−4,−2,2,−1,−4,−2,−2,1,4,2),
�b3 = (2,−1,1, − 2,3,1, −1,2,3,1, − 1,2, − 3, −1,1, − 2).

(A1)

Denoting by Ij the inequality corresponding to �bj , I1 and
the CGLMP inequality are maximally violated by the vertex
corresponding to f (s) = s1s2 + 1 and I2 and I3 are maximally
violated by the vertex corresponding to f (s) = 2s1s2 + 1.

The LHV bounds for all of the inequalities are listed in
Table III with their quantum violation.

As we have seen there is a corresponding function for each
of these inequalities that leads to a maximal violation. Each
of these functions is a vertex in the general space of Bell
correlators mentioned in the paper.

APPENDIX B: GENERALIZATION TO NONPRIME
NUMBER OF SETTINGS

In this paper, we focused on the case where c and d

are prime. However, this assumption is not needed to prove
all the results. We now give a quick overview of how we
describe LHV correlators in terms of polynomials on inputs
for nonprime c. For a nonprime number of settings, the
number of inputs at each site c can be just expressed as
the Cartesian product of the prime factors of c; that is,
Zc → Zc1 × Zc2 × · · · × Zcq

, where {c1,c2, . . . ,cq} is the set
of prime factors of c and q is the number of prime factors
in c. As a result, each input sj can be represented as a
string of elements sj = {t1

j ,t2
j , . . . ,t

q

j } where t kj ∈ Zck
.

For LHV theories we consider the single-site maps mj and
then take their sum modulo d. For nonprime dimension then,
each deterministic single-site map can be written as

mj = αj (λ) +
∑

v∈Zc,
v �=0

βv
j (λ)δs

v, (B1)

where αj (λ) ∈ Zd and βv
j (λ) ∈ Zd are dependent on the local

hidden variable λ and 0 = {0,0, . . . ,0}. We can use the redefi-
nition of the delta function over Zc → Zc1 × Zc2 × · · · × Zcq

used for each prime dimension Zck
. This results in the map

mj = αj (λ) +
∑

v∈Zc,
v �=0

βv
j (λ)

q∏
k=1

[
1 − (

t kj − vk
j

)(ck−1)]
ck
. (B2)

One then takes the sum modulo d of all of these single-site
maps to obtain (a superficially complicated) map which is

TABLE IV. Facet Bell inequality expressions that each belong to a particular symmetry class for (2,4,2). Each row corresponds to a
particular inequality belonging to a different symmetry class. Each column of �b is an element of this vector that forms an inner product with �p.
From top-to-bottom, The LHV upper bound for the first five classes is 8. This bound for the next six classes down is 4 and for the final three
classes at the bottom, it is 2.

�b
B1 2 2 1 1 2 −1 −1 −2 1 −1 −2 2 1 −2 2 1
B2 2 2 1 1 2 −1 −1 −2 1 −2 2 1 1 −1 −2 2
B3 2 2 1 1 2 −1 −2 −1 1 −2 1 2 1 −1 2 −2
B4 2 2 1 1 1 −1 2 −2 1 −2 1 2 2 −1 −2 −1
B5 2 2 1 1 1 −2 2 1 1 −1 −2 2 2 −1 −1 −2
B6 2 1 1 0 1 −1 −1 1 1 −1 −1 −1 0 1 −1 0
B7 2 1 1 0 1 −1 −1 1 0 1 −1 0 1 −1 −1 −1
B8 2 1 1 0 0 1 −1 0 1 −1 −1 1 1 −1 −1 −1
B9 2 1 0 1 1 −1 1 −1 0 1 0 −1 1 −1 −1 −1
B10 2 1 0 1 0 1 0 −1 1 −1 1 −1 1 −1 −1 −1
B11 2 0 1 1 0 0 1 −1 1 1 −1 −1 1 −1 −1 −1
C1

c=4 1 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
C2

c=4 1 1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
C3

c=4 1 0 1 0 0 0 0 0 1 0 −1 0 0 0 0 0
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n-partite linear because it only consists of single-site maps.
There is also no multiplication between values of tkj with other

values of t k
′

j ′ for j �= j ′. Again there are dn(c−1)+1 possible
deterministic maps for LHV theories, and their convex hull
forms the LHV polytope L.

The smallest value of nonprime d is 4, so we studied the
structure of the LHV polytope for the (n,4,2) setting which
has 27 n-partite linear functions corresponding to the vertices
of the LHV polytope. There are 27 968 facet Bell inequalities
for this setting found with POLYMAKE [39] which reduces to 15
symmetry classes (14 excluding the class of normalization and
positivity inequalities). Three of these classes are forms of the
CHSH inequality embedded in the larger number of inputs.
For completeness, we have listed all 14 Bell inequalities in
Table IV. We now explicitly write out one of these
inequalities:

C1
c=4 =

∑
s

(−1)s1s2

2∏
j=1

(
δ

sj

0 + δ
sj

1

)
p

⎛
⎝ 2∑

j=1

mj = 1|s
⎞
⎠ � 2,

(B3)

which is almost exactly the same as C1
c=3. The other two

inequalities, C2
c=3 and C3

c=3, are similar to this inequality except
with altered delta functions for C2

c=3:

2∏
j=1

(
δ

sj

0 + δ
sj

1

) → (
δ

s1
0 + δ

s1
2

)(
δ

s2
0 + δ

s2
1

)
, (B4)

and for C3
c=3:

2∏
j=1

(
δ

sj

0 + δ
sj

1

) → (
δ

s1
0 + δ

s1
2

)(
δ

s2
0 + δ

s2
2

)
. (B5)

Throughout the whole of the paper, we have assumed that
d has been prime. Indeed, this fact has been vital in the proof
of Theorem 2, so this proof fails for nonprime d. However, for
other aspects of the methods in this paper, a nonprime d has
little consequence for our construction of correlators. There are
two approaches to considering nonprime d: The most obvious

approach is just to think of representing outcomes as a string
of digits from prime number registers as with the description
of settings above. Second, instead of having the elements f (s)
of a function as elements of a vector in a vector space over
Zd for prime d, we now have elements of a module over
Zd ; a generalization of a vector space. Since we only ever take
addition of functions represented in a Kronecker delta function
basis to generate all functions, all of our methods generalize
to these modules.

From the aspect of functions, the only difference for
nonprime d is the fact that f (y) in Eq. (2) can now take
values from a nonprime register Zd . The derivation of all
functions and n-partite linear functions generalizes naturally.
For (2,2,4) with the smallest nonprime d = 4, we present the
facet Bell inequalities. There are four symmetry classes for this
setting of which one is the class of positivity and normalization
inequalities. One of these three nontrivial symmetry classes
is formed by the CGLMP inequality. The second is another
generalization of the CHSH inequality and is of the form

∑
s

(−1)s1s2

⎡
⎣p

⎛
⎝ 2∑

j=1

mj = 1|s
⎞
⎠ +p

⎛
⎝ 2∑

j=1

mj = 3|s
⎞
⎠
⎤
⎦�2,

(B6)

which is essentially the CHSH inequality if each party groups
their outcomes mj into modulo-2 terms. In other words, since
1 mod 2 is equal to 3 mod 2, the above inequality is equivalent
to the CHSH inequality if each party just maps from mod 4
arithmetic to mod 2.

The third and final symmetry class is generated by the
following inequality (expressed in the notation described
earlier):

(1,2,1,1,2,1,1,2,1, −1, −2, −1) · �p � 4. (B7)

The deterministic map or function f (s) that achieves the
maximal upper bound 6 of this inequality for all correlators
in P is f (s) = 2s1s2 + 2. It is worth noting that this can
be constructed by adding

∑
s 2(−1)s1s2p(2|s) to the previous

inequality.
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[13] K. F. Pál and T. Vértesi, Phys. Rev. A 77, 042105 (2008);
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