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Propagator for the general time-dependent harmonic oscillator with application to an ion trap
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We present the simplest possible formula for the propagator of the general time-dependent quadratic
Hamiltonian, including linear terms. The method is based on the use of a linear time-dependent invariant and
requires only the solution of a linear homogeneous second-order ordinary differential equation corresponding to
the classical quadratic Hamiltonian. We give an example for the case of the Paul trap.

DOI: 10.1103/PhysRevA.84.062104 PACS number(s): 03.65.Ca, 03.65.Ge, 37.10.Ty

I. INTRODUCTION

The harmonic oscillator is a fundamental model both in
classical and in quantum mechanics. It is one of the few
models that can be solved analytically and leads to many
important insights. The solution of the quantum harmonic
oscillator goes back to Schrödinger [1] where constant mass
and frequency were used. Many papers addressed the issue
of time-dependent mass and frequency [2,3]. The general
time-dependent Hamiltonian is a key model in quantum optics,
for it shows the general attributes of squeezing. Quadratic
time-dependent Hamiltonians have many applications in many
branches of physics (see, e.g., Ref. [4]). In particular, time-
dependent frequency is encountered in ion traps; this is due to
the fact that the electric potential can have no local minima;
thus, in order to trap an ion one must push-pull the ion, resulting
in time-dependent frequency (see, e.g., Refs. [5,6]). Using such
traps, a number of coherent and squeezed states have been
prepared in the vibrational motion of ions [7,8].

Many articles on this topic follow the quantum invariants
method used by Lewis and Riesenfeld [9] to solve the time-
dependent mass and frequency Hamiltonian. This invariant is
quite complicated as it is nonlinear. Although a linear invariant
was used for the time-dependent harmonic oscillator [4],
Glauber’s method [10], which uses complex initial conditions,
simplifies the result significantly. Another approach has used
canonical transformation (see, e.g., Leach [11], Yuen [12], and
Brown [13]). Other works have analyzed the time-dependent
harmonic oscillator by deriving a set of coupled differential
equations for the evolution operator. In particular, Dodonov
and Manko [2] have developed extensively the analysis of
time-dependent harmonic oscillators.

In this article, a simple approach is presented to the
general quantum quadratic Hamiltonian. It is a generalization
of Glauber’s method [10] and is based on the method of
quantum invariants [2,9]. A simple and elegant linear invariant
is constructed using Abel’s identity [14] which allows us
to solve the general quadratic time-dependent Hamiltonian.
The method allows us to express the general wave functions
in terms of Hermite polynomials and thus using Mehler’s
formula [15] to obtain the propagator of the general time-
dependent Hamiltonian in a simple closed form. The method
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includes the case of linear terms in the Hamiltonian with no
further complexity. In the present article we solve the general
quadratic Hamiltonian and use it to solve a particular case
relevant to ion traps. In Glauber’s analysis for the Paul trap,
a complete set of solutions is given; however, the general
propagator is absent. This leads us to choose the example
in the paper where an initial state which is not one of the
complete set of solutions is propagated.

II. GENERALIZATION OF GLAUBER’S INVARIANT AND
THE GENERAL PROPAGATOR

We consider the Hamiltonian

Ĥ = a(t)X̂2+ b(t)(X̂P̂ + P̂ X̂) + c(t)P̂ 2 + d(t)X̂ + e(t)P̂ ,

(1)

with a,b,d,e being arbitrary real functions of time and c

being a real positive function of time. A special case of
this Hamiltonian (b = e = d = 0, c = const.) was addressed
by Glauber [10]. In his treatment, a simple and elegant
linear invariant which satisfies ladder commutation relations
was introduced. We follow a similar path with the general
Hamiltonian.

First, we examine the case with no linear terms (d =
e = 0). The classical equation for the complex function u(t)
corresponding to the Heisenberg equation for X̂, given the
Hamiltonian (1) with no linear terms, is

ü = ċ

c
u̇ +

(
4b2 + 2ḃ − 2

ċ

c
b − 4ca

)
u. (2)

We look for the particular solution of this ordinary differential
equation (ODE) satisfying

u(0) = 1, u̇(0) = iν, ν > 0. (3)

Once this classical solution u(t) of the second-order linear
homogeneous differential equation is found, it is possible to
write both the wave functions and the propagator in a closed
form. Equation (2) is of the form

ü(t) = α(t)u̇(t) + γ (t)u(t). (4)

With the initial conditions (3), this ODE has, using Abel’s
identity [14], the following classical invariant:

W [u,u∗](t) = [u(t)u̇∗(t) − u̇(t)u∗(t)]e− ∫ t

0 α(t)dx = −2iν.

(5)
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Following Glauber [10] we thus define the invariant operator

Ĉ(t) = i[4h̄νc(0)]−
1
2 {u ˙̂X − u̇X̂}c(0)

c(t)

= i
(2bu − u̇)X̂ + 2cuP̂

2
√

h̄νc(0)

c(0)

c(t)
, (6)

where the Heisenberg equation for ˙̂X was used. It satisfies

ih̄
d

dt
Ĉ = ih̄∂t Ĉ + [Ĉ,Ĥ ] = 0 (7)

and the usual commutation relation

[Ĉ(t),Ĉ†(t)] = 1. (8)

In the limit of a time-independent Hamiltonian, Eq. (6) reduces
(with the choice ν = ω) to the standard lowering operator. One
should notice that the parameter a(t) does not appear explicitly
in Eq. (6) but appears in the calculation of u(t) according to
Eq. (2). A complete set is then given by

|n,ν,t〉 = 1√
n!

[Ĉ†(t)]n|0,ν,t〉, (9)

where

Ĉ(t)|0,ν,t〉 = 0. (10)

Writing the ladder operators in the x representation and solving
for the wave functions in the usual manner we get

ψn,ν(x,t) = 〈x|n,ν,t〉 = 1√
n!

[
ν

2πh̄c(0)u(t)2

] 1
4

×
[

u∗(t)

2u(t)

] n
2

exp

(
2b(t)u(t) − u̇(t)

4ih̄c(t)u(t)
x2

)

×Hn

(√
ν

2h̄c(0)|u(t)|2 x

)
. (11)

These wave functions form a (ν-dependent) complete set
satisfying the time-dependent Schrödinger equation

(ih̄∂t − Ĥ )ψn,ν(x,t) = 0. (12)

The time evolution operator is given by

Û (t2,t1) = 	|n,ν,t2〉〈n,ν,t1|, (13)

and therefore the propagator in the x representation is

G(x2,t2; x1,t1) ≡ 〈x2|Û (t2,t1)|x1〉
=

∑
n

ψn,ν(x2,t2)ψ∗
n,ν(x1,t1). (14)

Using Eq. (11) and Mehler’s formula (see, e.g., Ref. [15]), we
obtain for the quadratic Hamiltonian

G0(x2,t2; x1,t1) = A(t1,t2) exp

⎛
⎝ 2∑

i,j=1

xiαij (t2,t1)xj

⎞
⎠ , (15)

with

A =
(

ν

4iπh̄c(0)Im(u(t2)u∗(t1))

)1/2

, (16)

α22(t2,t1) = α∗
11(t1,t2) = −νu(t1)

4ih̄c(0)u(t2)Im (u(t2)u∗(t1))

+ b(t2)

2ih̄c(t2)
− u̇(t2)

4ih̄c(t2)u(t2)

α21 = α12 = ν

4ih̄c(0)Im (u(t2)u∗(t1))
. (17)

Although ν appears in Eqs. (16) and (17) it should be
noted that G is independent of the choice of ν [although
the ψn,ν of Eq. (11) are not]. In particular, ν may be chosen
to simplify u (see, e.g., Glauber’s choice [10] ν = ω for the
time-independent harmonic oscillator).

In order to include the linear terms as well, we define the
linear quantum invariant (time dependence is left implicit)

Ĉl(t) = i

2

√
c(0)

h̄ν

(
u ˙̂X − u̇X̂

c(t)
+ δ(t)

)

= i

2

√
c(0)

h̄ν

(
2bu − u̇

c
X̂ + 2uP̂ + δ

)
, (18)

where

δ(t) = ue

c
− ζ (t),

(19)

ζ (t) =
∫ t

0

u

c

[
ė + e

(
2b − ċ

c

)
− 2cd

]
dt ′,

and where u is defined again in (2). X̂ and P̂ satisfy the
Heisenberg equations with the linear terms. It is easy to verify
that Ĉl is invariant and that the standard ladder commutation
relation (8) holds. Writing the ladder operators in the x

representation and solving for the wave functions we get

ψn,ν(x,t) = 〈x|n,ν,t〉 = 1√
n!

r(t)u−1/2

(
u∗

2u

) n
2

× exp

(
2bu − u̇

4ih̄cu

(
x + cδ

2bu − u̇

)2
)

×Hn

(√
ν

2h̄c(0)|u|2 (x + β)

)
, (20)

where

r(t) =
[

ν

2πh̄c(0)

] 1
4

exp

(
icδ2

4h̄u(2bu − u̇)
+ s(t)

)
,

β(t) = c(0)

ν
Im(u∗(t)ζ (t)), (21)

s(t) = i

4h̄

∫ t

0

(
e2

c
− cζ 2

u2

)
dt ′.

Using Mehler’s formula again we thus get for the propagator
G(x2,t2; x1,t1)

G = G0(x2,t2; x1,t1)B(t2,t1) exp

(
2∑

i=1

γi(t2,t1)xi

)
, (22)

B = exp

(
ν

2β(t2)β(t1) − β2(t2) u(t1)
u(t2) − β2(t1) u∗(t2)

u∗(t1)

4ic(0)h̄Im (u(t2)u∗(t1))

)

× exp(s(t2) + s∗(t1)), (23a)
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FIG. 1. (Color online) Evolution of the state given by Eqs. (25)–
(27), where |ψ(x,t)|2 is plotted in (x,t) diagram. The “breathing”
effect is shown.

γ2(t2,t1) = γ ∗
1 (t1,t2) = δ(t2)

2ih̄u(t2)
+

ν
[
β(t1) − β(t2) u(t1)

u(t2)

]
2ih̄c(0)Im(u(t2)u∗(t1))

.

(23b)

It can be checked that the general result for the propagator in
the present article reduces to special known cases. For the case
of the simple harmonic oscillator and for the forced harmonic
oscillator [simple harmonic oscillator with time-dependent
force term d(t)] one can verify that the general propagator
of Eq. (22) reduces to the well-known propagators [15,16]
using the same u for both cases:

u(t) = cos(ωt) + i
ν

ω
sin(ωt). (24)

For a particle in a linear potential (a = b = e = 0, c,d =
const.), u(t) = 1 + iνt and we obtain the well-known prop-
agators [16]. We note that our method yields the propagator
also for problems in the continuum (see, e.g., the two last
mentioned cases and the case a < 0, which is relevant for
tunneling [17]).

III. PROPAGATOR FOR THE PAUL TRAP

For the Paul trap, Ĥ is given by

a = ω2

2m
[ax + qx cos(ωt)], b = d = e = 0, c = 1

2m
,

(25)

and the function u is the solution of the Mathieu equation with
the initial conditions (3) (see, e.g., Mathematica). This gives
an analytic formula for the propagator, and the propagation
of, for example, any Gaussian initial state may be carried
out analytically. To see the behavior, we show in Fig. 1 the
propagation of a Gaussian with

m = 1/2, ω = 1, ax = 7, qx = 1, ν = 2. (26)

The chosen initial state is

ψ(x,0) = 1

π1/4
e− x2

2 , (27)

which is not one of the ψn,ν . The evolution of this state is shown
in Fig. 1 where |ψ(x,t)|2 is plotted. A significant “breathing”
effect is obtained in the evolution of the wave function (i.e.,
the wave function becomes broader and narrower as function
of time).

IV. CONCLUSION

In Ref. [13], first-order transition amplitudes have been
obtained by assuming a simple harmonic oscillator at times
t = −∞ and t = +∞ and a harmonic oscillator with time-
dependent parameters between these times. Our method
enables us to get the exact transition amplitudes without the use
of perturbation theory at any time. Such transition amplitudes
can be calculated in our method as

Tn,n′ (t,t ′) =
∫

dx

∫
dx ′n(x)G(x,t ; x ′, t ′)∗

n′(x ′). (28)

Here, n(x) and ∗
n′ (x ′) are the corresponding simple har-

monic oscillator wave functions and G(x, t ; x ′, t ′) is the
propagator given by Eq. (15) (without linear terms) or, more
generally, by Eq. (22). One should notice the simplicity of our
propagators relative to those obtained by other authors. It is
especially useful for cases in which the initial state is not one
of the ψn,ν(x,t).

Let us summarize our results as follows: Using the
method developed in the present article we give in Eq. (11)
a general ν-dependent solution for the wave functions of
the time-dependent quadratic Hamiltonian (without linear
terms) using a linear invariant. Using Mehler’s formula
a general propagator for this Hamiltonian was obtained,
independent of the choice of ν, in Eq. (15). The calculation of
the wave functions was then generalized and the propagator
for time-dependent Hamiltonians including linear terms
[Eqs. (20) and (22), respectively] by generalizing the invariant
as given in Eq. (18). The importance of the linear terms is
immediate. The linear term in X̂ represents the external force
applied, whereas the linear term in P̂ appears most commonly
in electromagnetic (EM) interactions. One of the beautiful
aspects of Glauber’s method is that it allows the calculation
of the propagator of any quadratic (plus linear) Hamiltonian
(even if one expects it to be in the continuum). This is because
the method yields a complete (time-dependent) set of states
which can be used to obtain the propagator, irrespective of the
fact that these states may be very different from the eigenstates
of Ĥ at any particular time. Finally, we note that our method
yields the propagator in terms of the basic parameters of the
Hamiltonian, without any need for transformations of variables
or of canonical transformations or calculation of the classical
action.

There is a lot of scientific activity in this field (see,
e.g., Refs. [2,4,18–22]) but use of Glauber’s method for
the general time-dependent Hamiltonian (with linear terms)
seems to have been exploited only in the present work.
Our general results for the propagator of the general
time-dependent Hamiltonian, including time-dependent lin-
ear terms, should be useful for various physical problems
(see, e.g., Ref. [4]).
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