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Model for noncancellation of quantum electric field fluctuations
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A localized charged particle oscillating near a reflecting boundary is considered as a model for noncancellation
of vacuum fluctuations. Although the mean velocity of the particle is sinusoidal, the velocity variance produced
by vacuum fluctuations can either grow or decrease linearly in time, depending upon the product of the oscillation
frequency and the distance to the boundary. This amounts to heating or cooling arising from noncancellation of
electric field fluctuations, which are otherwise anticorrelated in time. Similar noncancellations arise in quantum
field effects in time-dependent curved space-times. We give some estimates of the magnitude of the effect, and
discuss its potential observability. We also compare the effects of vacuum fluctuations with the shot noise due to
emission of a finite number of photons. We find that the two effects can be comparable in magnitude, but have
distinct characteristics, and hence could be distinguished in an experiment.
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I. INTRODUCTION

Consider a localized charged particle coupled to quantum
electromagnetic field fluctuations in the vacuum state. We
will treat it as a classical particle, but more generally it
can be viewed as a quantum particle in a wave packet state
sharply peaked in space. Because the vacuum is the state
of lowest energy of the quantum field, the particle cannot,
on average, acquire energy from the electromagnetic field.
This does not prevent energy fluctuations which are within
the limits set by the energy-time uncertainty principle. The
particle can acquire additional energy from an electric field
fluctuation, but the energy must be surrendered on a time scale
inversely proportional to the magnitude of the energy. Energy
conservation is enforced by temporally anticorrelated electric
field fluctuations, which are guaranteed to take back the energy
within the allowed time. Thus on average, neither the particle
nor the quantum field gains energy.

This holds in any static situation, including one where
reflecting boundaries are present. Although classical image
charge effects can be present, no net energy may be extracted
from the vacuum. A model with a charge maintained at fixed
mean distance from a plane mirror was treated in Ref. [1].
Switching on the effect of the mirror can cause the particle’s
mean squared velocity to either increase or decrease, but after
transients have died away, it approaches a constant. This need
not be the case in a time-dependent situation, which will be
the topic of this paper. The cause of the time dependence may
be a source of energy, so it is now possible for the particle’s
energy to either grow or decrease in time. However, one may
also view the time dependence as upsetting the anticorrelated
fluctuations which are present in a static situation. In the static
case, the anticorrelated fluctuation takes exactly the amount
of energy obtained by the particle in a previous fluctuation.
The time dependence may either enhance or suppress the
magnitude of the the second fluctuation, resulting in either
a decrease or increase, respectively, of the particle’s energy.
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We will see both possibilities illustrated in the model discussed
in Sec. II.

Examples of noncancellation of field fluctuations arise in
cosmology. One is Brownian motion of charged particles in
an expanding universe [2]. Other examples were discussed in
Refs. [3–5], where it was argued that quantum stress tensor
fluctuations during inflation can lead to density and gravity
wave perturbations which depend upon the total expansion
during inflation. In the present paper we consider a simple flat
space model which is of interest both in its own right, and
as an analog model for effects in curved space-time. Lorentz-
Heaviside units with c = h̄ = 1 will be used.

II. THE MODEL

A. Formulation and calculations

Our model consists of a particle of mass m and electric
charge q undergoing bounded, nonrelativistic motion in a
direction normal to a perfectly reflecting plane mirror. We
take this to be the z direction, and write

z(t) = d + Af (t), (1)

where d is the mean distance to the mirror, A > 0 is the
amplitude of the motion, and f (t) is a dimensionless function
which we later take to be sinusoidal. We require z(t) > 0 for all
t and |ż(t)| = A |ḟ (t)| � 1. We assume that the components
of the particle’s velocity satisfy a Langevin equation,

v̇i = q

m
Ei(x,t), (2)

where x = x(t) is the spatial location of the particle at time
t . Here E is the total electric field, including both a classical
applied field, including possible image charge effects, and the
quantized electric field. This is the usual equation of motion
for a nonrelativistic charged particle when magnetic forces
are neglected. Our key assumption is that it may be used in
the presence of a fluctuating electric field. For now we ignore
dissipation effects, which have been discussed in Refs. [6,7].
We will treat dissipation by emitted radiation in Sec. III A.
Note that an alternative to moving the charge with the mirror
fixed is to move the mirror, or to use a charge moving at
constant speed near a corrugated mirror. The latter strategy
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was first used by Smith and Purcell [8] to create radiation, and
is the basis of the free electron laser.

With the initial condition vi(t0) = 0, we may integrate the
Langevin equation and then take expectation values in the
electromagnetic field vacuum state to write the variance in
vi as a double time integral of the electric field correlation
function:

〈
�v2

i (t)
〉 = q2

m2

∫ t

t0

dt1

∫ t

t0

dt2[〈Ei(x1,t1) Ei(x2,t2)〉
− 〈Ei(x1,t1)〉 〈Ei(x2,t2)〉]. (3)

Here x1 = x(t1) and x2 = x(t2), the spatial locations of the
particle at times t1 and t2, respectively. Any classical part to
the electric field will cancel in the correlation function. For
now we focus on the quantum part of the electric field, for
which 〈Ei(x,t)〉 = 0. We are interested only in the effect of
the boundary, as the empty space correlation function will not
produce any growing terms in 〈�v2

i (t)〉. The quantum electric
field correlation function may be written as a sum of an empty
space part and a boundary correction. We drop the former and
write

〈
�v2

i

〉 = q2

m2

∫ t

t0

dt1

∫ t

t0

dt2〈Ei(x1,t1)Ei(x2,t2)〉b, (4)

where the subscript b indicates the boundary correction to the
two-point function. These corrections may be found by the
method of images, and are [9]

〈Ex(x1,t1)Ex(x2,t2)〉b = − τ 2 + (z1 + z2)2

π2[τ 2 − (z1 + z2)2]3
(5)

for a transverse direction, and

〈Ez(x1,t1)Ez(x2,t2)〉b = 1

π2[τ 2 − (z1 + z2)2]2
(6)

for the longitudinal direction, where τ = t1 − t2, and z1 =
z(t1), etc. Here we assume that the particle does not move
far compared to the distance to the mirror, and have equated
the coordinates in the transverse directions, x1 = x2 and y1 =
y2. Note that, for example, 〈vx vz〉b = 0, so there will be no
correlation between the random motion in the transverse and
longitudinal directions.

Next we assume that |Af (t)| � d, and Taylor expand the
two-point functions to second order in A. The integrand for
the longitudinal variance becomes

1

(τ 2 − {2d + A[f (t1) + f (t2)]}2)2

≈ 1

(τ 2 − 4d2)2
+ 8d

(τ 2 − 4d2)3
A[f (t1) + f (t2)]

+ 2(τ 2 + 20d2)

(τ 2 − 4d2)4
A2[f (t1) + f (t2)]2. (7)

We are seeking contributions to 〈�v2
i 〉 which grow in time.

The zeroth order term describes the case of a stationary charge,
which was treated in Ref. [1], and gives a constant contribution.
The first order term yields a purely oscillatory function when
f (t) is sinusoidal. Thus we omit both of these terms and focus

on the second order term. Note that the τ -dependent part of
this term may be written as a total derivative

Fz(τ ) ≡ 2(τ 2 + 20d2)

(τ 2 − 4d2)4
≡ d4

dτ 4
G(τ ) = ∂2

∂t2
1

∂2

∂t2
2

G(τ ). (8)

The function G(τ ) may be expressed in terms of logarithmic
functions, but we will not need its explicit form, beyond the
fact that it has only a logarithmic singularity at τ = 0.

Now we assume that f (t) and its first three derivatives
vanish in the past and future. This allows us to integrate over
all t1 and t2, and to perform integrations by parts with no
boundary terms. Thus we may write∫ ∞

−∞
dt1dt2 Fz(τ ) [f 2(t1) + f 2(t2)]

=
∫ ∞

−∞
dt1dt2 G(τ )

∂2

∂t2
1

∂2

∂t2
2

[f 2(t1) + f 2(t2)] = 0. (9)

This implies that only the cross term in the last term in Eq. (7)
can give a nonzero contribution. Now we may write

〈
�v2

z

〉 = 2

π2

q2

m2
A2

∫ ∞

−∞

∫ ∞

−∞
dt1 dt2 Fz(τ ) f (t1) f (t2). (10)

Next we adopt a specific form for f (t1), which is f (t1) =
sin(ωt1) for 0 � t1 � t and f (t1) = 0 for t1 � 0 and t1 � t .
The approximate signs indicate that f should fall smoothly to
zero at the end points of the interval. This describes a charge
which oscillates sinusoidally at angular frequency ω for a time
t . This sinusoidal motion could be driven by a classical electric
field of the form Ecl

z (t) = −E0 sin(ωt), in which case

A = q E0

m ω2
. (11)

The integration in Eq. (10) is effectively over a square of side
t . Next, we change integration variables to τ and u = t1 + t2.
Because Fz(τ ) falls to zero rapidly if |τ | � d, and because
we assume t � d, the integration on τ may be taken over an
infinite range. However, the u integration is restricted to a finite
interval:

〈
�v2

z

〉 = 1

2π2

q2

m2
A2

∫ 2t

0
du

∫ ∞

−∞
dτFz(τ )

× [cos(ωτ ) − cos(ωu)]. (12)

The integral of the cos(ωu) term will generate an entirely
oscillatory contribution, which may be ignored compared to
the linearly growing term, so we may write

〈
�v2

z

〉 ≈ 2

π2

q2

m2
A2 t

[∫ ∞

−∞

(τ 2 + 20d2)

(τ 2 − 4d2)4
cos(ωτ ) dτ

]
. (13)

At this point, it is useful to note that τ should have a small,
negative imaginary part in Eqs. (5) and (6). This arises because
these two-point functions are expressible as integrals of the
form ∫ ∞

0
dω ω3 e−iωτ , (14)

which are absolutely convergent if Im(τ ) < 0. We can imple-
ment this condition by replacing τ by τ − iε in Eq. (13), where
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ε is a small positive real number. We can write the denominator
in the integrand as

[(τ − iε)2 − 4d2]4 = (τ − iε + 2d)4(τ − iε − 2d)4, (15)

revealing that there are two fourth-order poles in the upper
half-plane are τ = ±2d + iε. Next we write cos(ωτ ) in terms
of complex exponentials. The τ integration is along the real
axis, so the e−iωτ term gives no contribution when the contour
is closed in the lower half-plane. The eiωτ term yields the
residues of the two poles when the contour is closed in the
upper half-plane. The sum of the residues is a real function.

B. Key results

The result of the evaluations of the longitudinal velocity
variance, after using Eq. (11), is

〈
�v2

z

〉 = q4 E2
0

16πm4 d
Rz t, (16)

where

Rz = 1

2ξ 4
[(3 − 5ξ 2) sin(2ξ ) + 2ξ (ξ 2 − 3) cos(2ξ )], (17)

and ξ = ω d.
The same mathematical technique holds for the transverse

direction; only the precise form of the integrand changes. Let
Fz → Fx , where

Fx(τ ) = −4(40d4 + 34d2τ 2 + τ 4)

[(τ − iε)2 − 4d2]5
. (18)

In this case, there are two fifth-order poles in the upper half-
plane, but otherwise the evaluation procedure is the same. Now
the velocity variance in the x direction, which is also the mean
squared velocity in this direction, is found to be

〈
�v2

x

〉 = 〈
v2

x

〉 = q4 E2
0

16πm4 d
Rx t, (19)

where

Rx = ξ 2 − 1

4ξ 4
[(4ξ 2 − 3) sin(2ξ ) + 6ξ cos(2ξ )], (20)

Note that the Ri , which are dimensionless, are proportional to
the rate of change of the corresponding velocity variance:

Ri(ξ ) = 16πm4d

q4E2
0

d
〈
�v2

i

〉
dt

. (21)

These quantities are illustrated in Fig. 1.
Of significant interest here is that for both the longitudinal

and transverse components, the coefficient of the time depen-
dence of 〈�v2

i 〉 can be either positive or negative, depending
on the frequency of the oscillation and distance to the mirror.
These results can be interpreted in terms of noncancellation
of previously anticorrelated electric field fluctuations. When
there is linear growth, the fluctuations are adding energy to
the particle on average. Similarly, a linear decrease signifies
that they are removing energy, which could be described as
a “cooling mode.” The latter effect can only go so far, and
at some point our approximation of localized particles would
break down.

FIG. 1. (Color online) This graph shows the dimensionless
quantities Rz and Rx , which are proportional to the rates of change
of velocity variance in the longitudinal direction and a transverse
direction, respectively. Here ξ = ω d .

It is also of interest to examine the low and high frequency
limits of the above results. At low frequency, ξ � 1, we have

〈
�v2

x

〉 ∼ −2
〈
�v2

z

〉 ∼ q4 E2
0 ξ

30πm4 d
t, (22)

and at high frequency, ξ � 1,

〈
�v2

x

〉 ∼ q4 E2
0 t

16πm4 d
sin(2ξ ),

〈
�v2

z

〉 ∼ q4 E2
0 t

16πm4 d ξ
cos(2ξ ).

(23)

Note that the effect tends to be larger in a transverse
direction than in the longitudinal direction, especially at high
frequencies.

Next we wish to make some estimates of the magnitude of
the heating or cooling effect. We do this by defining a change
in effective temperature for the i direction, �Ti , by

1
2m

〈
�v2

i

〉 = 1
2kB�Ti, (24)

where kB is Boltzmann’s constant. Strictly speaking, this is
not a real temperature, since it is not isotropic, but it is a useful
measure of the size of the effect. From either of Eqs. (16) or
(19), we find

�Ti = q4 E2
0

16πkBm3 d
Ri t. (25)

This may be expressed as

�Ti ≈ 10−8 K

(
I

1 W/cm2

)(
1 μm

d

) (
t

1 s

)
Ri, (26)

where we have replaced E2
0/2 by I , the power per unit area in

a plane electromagnetic wave with peak electric field E0. We
have also set q = e, the electronic charge.

Our approximation of a perfectly reflecting plate should
hold both for modes whose wavelength is of order d and at
angular frequencies of order ω. Note that ξ = 2πd/λ, where λ

is the wavelength of the driving field. From Fig. 1 we see that
Rz reaches its maximum value of about 0.5 at ξ ≈ 2.5 and Rx

first reaches its maximum of about 1.0 at ξ ≈ 4. Both of these
correspond to λ > d. If d � λP , the plasma wavelength of the
metal in the plate which can be in the range of 0.1 μm, then
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the perfect reflectivity assumption should be valid. Ultimately,
whether this effect can be measured in a realistic experiment
depends upon the sensitivity of temperature measurements,
the power intensity I of the driving field which can be used,
and the time t which can be achieved. On the latter point, it is
possible that planar Penning traps will be able to achieve very
long coherence times with single electrons [10].

As noted earlier, 〈�v2
x〉 = 〈v2

x〉 because the mean transverse
velocity vanishes, 〈vx〉 = 0. Thus the increased drift in the
transverse directions when 〈v2

x〉 > 0 is a signature of this
effect. When 〈v2

x〉 < 0 due to the shift in electromagnetic
vacuum fluctuations, then we need to interpret the effect as a
reduction in mean squared transverse velocity, with a positive
contribution coming from other effects, such as quantum
uncertainty in speed, classical thermal effects, or shot noise
(to be discussed in Sec. III B). This reduction is closely related
to the phenomenon of negative energy density in quantum field
theory, whereby it is possible to reduce to local energy density
below the vacuum level with either boundaries or quantum
coherence effects [11].

In the longitudinal direction there is a nonzero mean
velocity given by the response to the classical driving force.
The time averaged square of this velocity is

〈
v2

z

〉
c
= 1

2

(
qE0

mω

)2

= 1

2
(Aω)2. (27)

It is of interest to compare this quantity with the quantum
variance given by Eq. (16), and write

〈
�v2

z

〉
〈
v2

z

〉
c

= q2ξ 2 Rz t

8πm2d3
= 0.16ξ 2Rz

(
1 μm

d

)3 (
t

1 s

)
. (28)

Given that we expect ξ ∼ Rz ∼ O(1), it is possible for the
random motion produced by electric field fluctuations to
approach a significant fraction of the classical motion.

So far we have treated the charges as classical point
particles, but the same conclusions about changes in 〈�v2

i 〉
should hold for quantum particles if they are localized in space
on scales small compared to d, the distance to the mirror.
Ehrenfest’s theorem tells us that classical equations of motion
hold, on average, in quantum mechanics. We are concerned
here with changes in the variance of the particles’ momentum,
which follow from momentum conservation considerations.

III. RADIATION AND SHOT NOISE

A. Radiated power

In this subsection we will address the dissipation effect
due to emitted electromagnetic radiation. First, we determine
the average power radiated by our oscillating charge. It acts
as an electric dipole, and so we may use the far-zone field
formulas, with the method of images to obtain the field
components. (This problem has been extensively studied in
the literature. See, for example, Ref. [12] for further references
and a detailed treatment of the near-zone fields.) What follows
are the nonzero field components at a point of observation P
located in the x-z plane, where r1 is the distance from P to the
real dipole, and r2 the distance from P to the image dipole. We

have assumed that P is far enough away that both r1 and r2 have
approximately the same polar angle θ . First, the z component:

Ez = sin2 θ

4π
pe ω2

(
eiωr1

r1
+ eωr2

r2

)
, (29)

where pe is the peak value of the oscillating electric dipole
moment and ω is the frequency. From here we make further
approximations: given a distance 2d separating the dipoles, we
can let r1 ≈ r + d cos θ and r2 ≈ r − d cos θ . Furthermore,
since we are assuming d � r , we approximate r1 ≈ r2 ≈ r in
the denominators. The z component is then

Ez = pe ω2

2π

eiωr

r
sin2 θ cos(ωd cos θ ). (30)

Similarly, for the other nonzero field components, we have

Ex = −pe ω2

4π

eiωr

r
sin θ cos θ cos(ωd cos θ ) (31)

and

Hy = −pe ω2

2π

eiωr

r
sin θ cos(ωd cos θ ). (32)

The next step is to obtain P (θ ), the power radiated per
unit solid angle in the direction of a unit vector n = sin θ x̂ +
cos θ ẑ. From the Poynting vector we find

P (θ ) = r2 n · (E × H∗)

= r2 (sin θ x̂ + cos θ ẑ)(−EzH
∗
y x̂ + ExH

∗
y ẑ)

= p2
e ω4

8π2
[sin4 θ cos2(ωd cos θ )

+ sin2 θ cos2 θ cos2(ωd cos θ )]

= p2
e ω4

8π2
[sin2 θ cos2(ωd cos θ )]. (33)

We next integrate P (θ ) to obtain the total power radiated:

PT =
∫ 2π

0

∫ π/2

0
P (θ )d�. (34)

Let u = cos θ and use pe = qA and ξ = ω d to write

PT = p2
e ω2

4π

∫ 1

0
(1 − u2) cos2(ξu)du

= p2
e ω2

96π

{
8 + 3

ξ 3
[−2ξ cos(2ξ ) + sin(2ξ )]

}

= q2A2ω4

12π
ST , (35)

where

ST = 1 + 3

8ξ 3
[−2ξ cos(2ξ ) + sin(2ξ )]. (36)

This gives us PT , the energy radiated per unit time.
We can write the energy radiated per oscillation cycle Ec

as

Ec = 2πPt

ω
= 1

6
q2A2ω3ST . (37)
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The ratio of this quantity to the particle’s average kinetic
energy is

Ec

〈Ekin〉 = q2A2ω3ST

3m〈v2〉 = 2q2A2ω3ST

3mA2ω2
, (38)

Ec

〈Ekin〉 = 2q2ω

3m
ST . (39)

The function ST is of order one when ξ is of order one. Then,
inserting the charge and mass values for an electron, as well
as our typical frequency value of 1014 Hz, the estimate comes
out to

Ec

〈Ekin〉 ≈ 8 × 10−9. (40)

Thus, the electron radiates only a few parts per billion
of its own kinetic energy per cycle. The small value of
this ratio shows that the electron with our driving field is
a weakly damped driven oscillator that needs only minimal
energy restoration for preservation. The emitted radiation is
the primary irreducible source of dissipation. This estimate
indicates that it is reasonable to neglect its dissipative effects
on the motion of the particle.

B. Shot noise from photon emission

However, there is another effect arising from the emitted
radiation to be considered. Because the power radiated by the
particle consists of discrete photons, there will be a statistical
uncertainty in the momentum lost by the particle. This will lead
to an additional contribution to 〈�v2〉, the velocity variance
of the particle. Any experiment which seeks to measure the
effects of vacuum fluctuations on the variance, Eqs. (16) and
(19), will have to contend with this shot noise as a background.
Let Pi be the average power radiated by the particle in direction
i. Then in time t , an energy and magnitude of momentum of
pi = Pi t will be radiated in this direction, corresponding to
a mean number of photons of Ni = Pi t/ω. The statistical
uncertainty in this number is

√
Ni , assuming that the emission

of different photons are uncorrelated events. This leads to an
uncertainty in the i component of the particle’s momentum of
order

�pi = ω
√

Ni =
√

Piω t, (41)

and a variance in the velocity in direction i of

�v2
si = Piω t

m2
, (42)

where the s subscript refers to shot noise.
Now we find the total power radiated in the z direction. This

quantity is found by projecting onto the z axis, and integrating
over a hemisphere:

Pz = r2
∫ 2π

0

∫ π/2

0
P (θ ) cos θ d�

= 2πr2
∫ π/2

0
P (θ ) cos θ d(cos θ )

= p2
eω

4

4π

∫ 1

0
u(1 − u2) cos2(ξu) du, (43)

FIG. 2. (Color online) The relative magnitudes of velocity vari-
ance in the z direction with only shot noise Sz, and with both shot
noise and quantum electric field fluctuations Sz + 4Rz.

where u = cos θ , as before. The result is

Pz = 1

64π

p2
e

d4
{−3 − 2ξ 2 + (3 − 4ξ 2) cos(2ξ )

+ 2ξ [ξ 3 + 3 sin(2ξ )]}. (44)

Next, introduce substitutions for the dipole moment as follows:

p2
e = q2A2 = q2

(
qE0

mω2

)2

. (45)

We now have

Pz = q4E2
0

64πm2

Sz

ξ
, (46)

where

Sz

ξ
= 1

ξ 4
{−3 − 2ξ 2 + (3 − 4ξ 2) cos(2ξ ) + 2ξ [ξ 3 + 3 sin(2ξ )]}.

(47)

Consequently the mean square velocity in the z direction from
shot noise is

�v2
sz = q4E2

0Sz

64πm4d
t. (48)

Now compare this effect to that of the electric field fluctuations,
using Eq. (16) to write 〈

�v2
z

〉
�v2

sz

= 4Rz

Sz

. (49)

Figure 2 compares these effects, showing the relative
magnitudes of what would be seen without and with quantum
electric field fluctuations, as a function of ξ .

We can make a similar calculation for the power radiated
in the x direction, and find

Px = r2
∫ 2π

0

∫ π/2

0
P (θ ) sin θ d� = 3

128

q4E2
0

m2

Sx

ξ
. (50)

Here

Sx = ξ

[
2
J2(2ξ )

ξ 2
+ 1

]
(51)
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FIG. 3. (Color online) The relative magnitudes of velocity vari-
ance in the x direction with only shot noise Sx , and with both shot
noise and quantum electric field fluctuations.

and J2 is a Bessel function of the first kind. We find the x

direction velocity variance to be

�v2
sx = 3

128

q4E2
0

m4d
Sxt. (52)

The ratio of the effect of electric field fluctuations to that of
shot noise for the transverse direction is〈

�v2
x

〉
�v2

sx

= 8Rx

3πSx

. (53)

The same graphical comparison as for the z direction leads
to Fig. 3. We see that the effects of quantum electric field
fluctuations and of shot noise are comparable in order of
magnitude when ξ is of order one. However, the sum of the two
effects always seems to lead to a positive velocity variance. In
the limit that ξ � 1, we find〈

�v2
z

〉
�v2

sz

∼ 2
cos(2ξ )

ξ 2
(54)

and 〈
�v2

x

〉
�v2

sx

∼ 8 sin(2ξ )

3πξ
. (55)

Thus, in the limit of high oscillation frequency or large distance
to the mirror, the shot noise effect dominates.

IV. SUMMARY

In summary, we have presented a model in which charges,
such as electrons, moving in the quantum electromagnetic

vacuum near a mirror may increase or decrease their velocity
variance. The ultimate energy source is the driving field, but the
mechanism can be viewed as noncancellation of anticorrelated
electric field fluctuations. The effect is a form of squeezing
of the particle’s velocity uncertainty by the electromagnetic
vacuum fluctuations. The most striking aspect of this effect
is that the mean squared velocity can decrease, corresponding
to an effective cooling of the charges. Although the effect is
normally small, it might be observable.

In our model we have assumed that the charges move and
the mirror remains stationary. However, for nonrelativistic
motion, one would obtain the same result if the opposite
were true. A rapidly oscillating mirror is more difficult to
achieve, although rapid electrical switching of the reflectivity
of a mirror might be possible, and has been explored in the
context of the dynamical Casimir effect, the quantum emission
of photons by a moving mirror [13,14]. This effect seems to
have been recently observed in the context of superconducting
circuits [15]. Although the effect discussed in the present
paper involves exchange of kinetic energy between charges
and a quantum field in the presence of a boundary, rather
than quantum creation of photons, it can be viewed as a
variant of the dynamical Casimir effect. In the latter case,
the kinetic energy of the boundary is converted into photons.
In the model of this paper, it is converted into random motion
of a charged particle, but both are effects in quantum field
theory.

An alternative to switching of a mirror is the use of charges
moving near a corrugated mirror, as in the Smith-Purcell effect
[8]. In this configuration the effect studied here should also
arise.

We compared the effects of electromagnetic vacuum fluc-
tuations with shot noise due to emission of a finite number
of photons. The two effects can be of the same order of
magnitude, but have distinct signatures, so it should be possible
to distinguish them experimentally.

The effect studied here is also of interest as an analog
model for quantum effects in cosmology. A curved background
space-time can also cause noncancellation of otherwise anti-
correlated fluctuations. Thus the effect discussed here bears
some relationship to the effects studied in Refs. [2–5].
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