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Preparation of subradiant states using local qubit control in circuit QED
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Transitions between quantum states by photon absorption or emission are intimately related to the symmetries
of the system which lead to selection rules and the formation of dark states. In a circuit quantum electrodynamics
setup, in which two resonant superconducting qubits are coupled through an on-chip cavity and driven via the
common cavity field, one single-excitation state remains dark. Here, we demonstrate that this dark state can
be excited using local phase control of individual qubit drives to change the symmetry of the excitation field.
We observe that the dark state decay via spontaneous emission into the cavity is suppressed, a characteristic
signature of subradiance. This local control technique could be used to prepare and study highly correlated
quantum states of cavity-coupled qubits.
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Symmetry properties of a quantum system interacting with
a radiation field provide information about possible transitions
within the system. Symmetry operations such as translation,
rotation, or reflection, which leave the system invariant, lead
to selection rules in molecular and solid-state systems [1].
For an ensemble of identical atoms, the symmetry under
permutation of particles allows only for transitions between
symmetric collective states [2,3]. These highly entangled
Dicke states, e.g., the single-excitation W state, have attracted
much attention in the field of quantum information processing
with trapped ions [4], optical photons [5], and superconducting
qubits [6] due to their robustness under decoherence [7] and
particle loss [8,9]. Moreover, collective states have been used
for quantum information storage in atomic memories [10].
The particular symmetry of Dicke states also affects their
decay. Spontaneous emission can be enhanced for superradiant
states [2,3], or inhibited, if the symmetry of the state does
not allow for the emission of a photon. This effect is known
as subradiance and is closely related to the concept of
decoherence-free subspaces, regions in Hilbert space which
are not affected by decoherence, and therefore are appealing
for quantum information processing [11]. Though theoretically
well studied [12,13], subradiant states are difficult to realize
and experimental evidence of subradiance is rare [14,15].

Here we present a method to prepare two qubits in the
antisymmetric Dicke state and demonstrate its subradiance
in circuit quantum electrodynamics (QED) [16,17]. In this
architecture, superconducting artificial atoms are coupled to
a common field mode of a planar microwave cavity. Strong
resonant coupling of individual qubits [18–20] and qubit en-
sembles [21] to single microwave photons has been achieved.
Moreover, cavity-mediated interactions between distant qubits
[22–24] form the basis for on-chip quantum information
processing [25,26] using entangled states of currently up to
three qubits [27].

In circuit QED experiments, radiative decay into the
cavity—known as the Purcell effect [28]—provides a sig-
nificant qubit relaxation channel [29]. It can be reduced
by operating the individual qubits in the dispersive regime,
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by advanced circuit designs [30], or by using a tunable
coupling qubit that provides Purcell protection within a
decoherence-free subspace (DFS) [31,32]. Here, instead, we
demonstrate Purcell protection of two cavity-coupled qubits in
an antisymmetric superposition state which is prepared using
local phase control of the driving microwave field [Fig. 1(a)].
We consider two qubits resonant with each other but not
with the cavity, modeled by a generalized Tavis-Cummings
Hamiltonian [33],

HTC/h̄ = ωra
†a + ωqJz + g(aJ+ + a†J−), (1)

where the dominant cavity mode is at frequency ωr and the
qubits are at frequency ωq . The operators Jz ≡ 1/2

∑N
i σ (i)

z

and J± ≡ ∑N
i σ

(i)
± are collective spin operators [3] for N

qubits with σ
(i)
± ≡ (σ (i)

x ± iσ (i)
y )/2 and Pauli operators σ (i)

x,y,z

for the individual qubits (i = 1,2). a(†) is the annihilation
(creation) operator of the field interacting with the qubits with
equal coupling strength g. For the single-excitation manifold
the eigenstates of HTC are

|ψa〉 = |0; ψ−〉,
|ψr〉 = cos θm|1; gg〉 + sin θm|0; ψ+〉, (2)

|ψs〉 = sin θm|1; gg〉 − cos θm|0; ψ+〉,
where the mixing angle θm is given by cos 2θm =
−�/

√
4(

√
2g)2 + �2 with the qubit-resonator detuning � ≡

ωq − ωr . |n; 〉 is a state with n photons in the resonator, and
|ψ±〉 = (|ge〉 ± |eg〉)/√2 are the symmetric and antisymmet-
ric qubit Bell states. Only the qubit state which reflects the
symmetry of the cavity mode—i.e., belongs to a compatible
irreducible representation of the permutation group [12]—
mixes with the field to form the hybridized matter-field states
|ψr〉 and |ψs〉. In our case, the coupling to the first harmonic
cavity mode has the same sign for both qubits (g(1) ≈ g(2)) [24].
Therefore, the symmetric qubit state |ψ+〉, which is invariant
under permutation of the qubits, couples to the photon field
[Fig. 1(b)] with enhanced collective coupling strength

√
Ng

for N = 2 [21]. The antisymmetric qubit state |ψ−〉 remains
uncoupled and forms the dark state |ψa〉. In general, two
hybridized bright states and (N − 1) uncoupled dark states
are established for an N qubit system.
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FIG. 1. (Color online) (a) Schematic of a cavity QED setup with
individual phase control of the driving field for each qubit. (b)
Energy-level diagram of the two-qubit system coupled dispersively
to a common cavity field. Symmetric states are indicated by thick
solid (green) lines and the antisymmetric state is identified by the
thick dashed (red) line.

For our experiments, two superconducting transmon qubits
[34] have been integrated into a coplanar niobium resonator on
a sapphire substrate [Figs. 2(a) and 2(b)]. The qubits have sim-
ilar Josephson energies EJ /h ≈ 37.6 GHz, charging energies
EC/h ≈ 285 MHz, and coupling strengths g/2π ≈ 116 MHz
to the first harmonic mode of the microwave transmission line
resonator. The resonator frequency is ωr/2π = 6.937 GHz
and its decay rate is κ/2π = 3.01 MHz. In the dispersive
regime where θm ≈ π , the photonic contribution |1; gg〉 to the
symmetric state |ψs〉 is small (of order

√
2g/�) and the state

has predominantly a qubit character. It is, however, shifted
in energy by 2J ≡ 2g2/� corresponding to the dispersive J

coupling discussed in Refs. [22] and [24] [Fig. 1(b)]. The
antisymmetric wave function |ψa〉 has no photonic component
and therefore its energy experiences no Lamb shift. In this
description the qubit-qubit coupling J can be understood as
the collective Lamb shift (

√
2g)2/� = 2J of the symmetric

state |ψs〉.
The symmetry of the collective states is also reflected in

selection rules for electric dipole transitions. In fact, for a drive
applied directly to the cavity, transitions from the ground to the
symmetric bright state |ψs〉 are allowed, while transitions to
the antisymmetric dark state |ψa〉 are forbidden [24]. The drive
conserves the symmetry under permutation of qubits, and only
transitions within the class of symmetric states [Fig. 1(b); solid
green lines] are allowed [12]. This constraint can be overcome
by addressing the qubits individually via capacitively coupled
charge lines [35] and tuning the relative phase φ of the
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FIG. 2. (Color online) Setup and micrograph of the sample with
a transmission line resonator (green) and two transmon qubits (blue)
addressable via local charge lines (yellow).

microwave drive at the qubit positions. When choosing a
relative phase of φ = π , the opposite sign of the local fields
results in allowed transitions to the antisymmetric state. This
method has been discussed in Ref. [36] and applied recently
in flux qubit systems to suppress transitions at degenerate
frequencies [37,38].

In the rotating frame, the drive acting on the individual
qubits with frequency ωd and coupling ε is

Hd = h̄ε(σ (1)
+ + ξeiφσ

(2)
+ ) + H.c., (3)

where ξ is the amplitude ratio of the local qubit drives. Starting
in the ground state, the drive Hd can induce transitions to the
state |ψ〉, if the matrix element �(ψ) ≡ |〈ψ |Hd |0; gg〉|/h̄ is
nonzero. The dark state is defined by �(ψdark) = 0. In the
dispersive regime, the matrix element for the symmetric and
antisymmetric state is

�(ψs/a) = ε
√

(1 + ξ 2 ± 2ξ cos φ)/2. (4)

�(ψa) vanishes for equal drive amplitudes (ξ = 1) and zero
relative phase (φ = 0), which corresponds to a drive applied
to the cavity in the vicinity of the first harmonic mode, and
the antisymmetric state |ψa〉 remains dark [24]. For φ = π

and ξ = 1, however, �(ψa) is maximal, while the transition
rate �(ψs) to the symmetric state vanishes. The transition can
thus be enabled or disabled by adjusting the relative phase
appropriately.

We have spectroscopically measured the transition am-
plitude as a function of relative phase φ between the local
qubit drives in the vicinity of the bare qubit frequencies
ωq/2π = 6.647 GHz. To control φ, the local microwave fields
are generated by a single microwave source operating at
the carrier frequency ωLO = ωd + ωIF. We use two in-phase
& quadrature (IQ) mixers to generate sidebands of the
carrier signal at the frequency ωd . The signal (IF) at the
intermediate frequency ωIF = 150 MHz is synthesized with
an arbitrary wave-form generator and applied to each mixer
with relative phase φ [Fig. 2(a)]. The phase φ of the local
qubit drives can then be controlled with high precision by the
phase of the IF signals. Pulsed spectroscopy is used [39,40],
where the measurement tone is switched on after a 500-ns
saturation pulse. The difference between the transmitted signal
s(t) and the signal with both qubits in their ground state
sgg(t) integrated over tm = 520 ns yields the transmission
amplitude S = ∫ tm

0 {s(t) − sgg(t)}dt . The measured value of S

corresponds to the steady-state population of the single-excited
qubit states when appropriately normalized [41]. A signal can
also be detected when the qubits are in the antisymmetric state,
decoupled from the cavity. The cavity then remains at its bare
frequency, in contrast to the frequency shift that is established
when both qubits are in the ground state.

Two spectroscopic lines, varying in amplitude as a function
of relative phase φ, are observed at ωa/2π = 6.647 GHz
and ωs/2π = 6.578 GHz. These correspond to the states
|ψa〉 and |ψs〉, respectively. As expected, the zeros of the
populations of the symmetric and the antisymmetric state
are ∼180◦ out of phase (Fig. 3). The measured values
are in good agreement with the steady-state population of
the excited states calculated using the dissipative Bloch
equations for a two-level system driven at zero detuning [42],
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FIG. 3. (Color online) Spectroscopy of dark and bright states as
a function of the relative phase φ between drives. (a) Normalized
integrated transmission amplitudes Sn = S/Smax of the antisymmetric
state ψa (black solid dots) and the symmetric state ψs (red open
diamonds) at the frequencies ωa/2π = 6.647 GHz and ωs/2π =
6.578 GHz, respectively, as indicated by the arrows in (b). Sn is
normalized to unity at the maximum value of both curves (Smax).
The lines indicate fits to the expected steady-state populations. (b)
Transmission amplitude as a function of frequency νd and relative
phase φ of the spectroscopic saturation pulse.

S = S0{1 − 1/[1 + T1T2�(ψ)2]}/2. The scaling factor S0

takes account of the integrated voltage at the analog-digital
converter. The dephasing times T2,s = 322 ± 26 ns and T2,a =
526 ± 36 ns of |ψa〉 and |ψs〉 are determined in independent
Ramsey-fringe experiments. The energy relaxation times T1,s

and T1,a are measured in separate time-delay experiments and
are discussed below. From independent fits of S to both curves
using �(ψs/a) from Eq. (4), we obtain the relative phase
difference φs − φa = π − 0.3 ± 0.03 rad between the zeros
of the populations of the symmetric and the antisymmetric
state. The deviation of the measured phase difference from π

is simply caused by the difference in cable lengths of the
two-qubit drive lines. In addition, we have determined an
on-off ratio �14 from Rabi oscillations of the antisymmetric
state population driven with a relative phase difference of 0
and π .

Using the presented method, it is possible to verify the
subradiant character of the antisymmetric state by testing
its resilience to cavity-induced Purcell decay [28], which
is caused by the indirect coupling of the qubits to the
environment via the cavity. According to Fermi’s golden rule,
the induced voltage fluctuations ∝(a† + a) of the cavity field
lead to a decay rate γκ = κ|〈0; gg|a|ψ〉|2 to the ground state
[18,34]. The total decay rate is then given by γ = γi + γκ

with the intrinsic, nonradiative decay rate γi . Although the
Purcell decay can be made small by operating the qubits
in the dispersive regime [γκ ≈ (g/�)2κ] it cannot be fully
avoided for transmon qubits. For the dark state, however, the
matrix element |〈0; gg|a|ψa〉| vanishes completely, since by
symmetry |ψa〉 has no photon admixture. In other words,

destructive interference of the photons emitted from either
qubit leads to a suppression of the spontaneous emission
process and the dark state is protected against Purcell decay.

In order to observe subradiant Purcell protection, we
have detuned the qubits from the first harmonic mode by
�/2π = −290 MHz ∼ −2.5g into a regime where radiative
losses dominate over intrinsic qubit losses (γκ > γi). At this
frequency, the lifetime of the symmetric and antisymmetric
state, as well as the decay rates of the individual qubits, have
been measured. A delayed measurement pulse technique has
been employed, where we apply a π pulse resonant with the
respective transition frequency and delay the time �t before
applying the readout pulse. The lifetimes of single qubit
excitations T1,ge = 401 ± 16 ns and T1,eg = 364 ± 16 ns at
this frequency are comparable to the bright state lifetime
of T1,s = 368 ± 30 ns. In contrast, the measured dark state
lifetime T1,a = 751 ± 13 ns exceeds these values by a factor
of 2—a clear signature of subradiance that demonstrates
the decoupling of the antisymmetric state from the cavity
environment and, as a consequence, its enhanced stability. The
population decay versus time of both the bright and the dark
state is plotted in Fig. 4(a).

The lifetime of the dark state is shown at different detunings
in Fig. 4(b), along with the lifetimes of the bright state and the
uncoupled single-qubit states. The effect of subradiant decay
of the dark state is suppressed because of local dephasing
acting on individual qubits. This process mixes symmetric
and antisymmetric states by adding a random relative phase
between the states |ge〉 and |eg〉. The rapidly decaying
bright state contribution leads to a shorter effective lifetime
of the dark state at small detunings. For the same reason,
the superradiant decay rate of the bright state approaches
the single-qubit Purcell-enhanced decay rate. This has been
verified by numerical master equation simulations of the
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FIG. 4. (Color online) (a) Population of the antisymmetric dark
(ψa , black dots) and the symmetric bright (ψs , red diamonds) state
vs time at �/2π = −290 MHz with exponential fits to the data.
The inset shows the energy relaxation of ψa and ψs . Only the
symmetric state ψs is affected by Purcell decay γκ . (b) Measured
decay times of ψs (red diamonds), ψa (black dots) and uncoupled
qubit states |eg〉 (orange points) and |ge〉 (green crosses) as a function
of detuning �. Exponential fits to numerically simulated populations
are shown for ψs (dashed lines), ψa (solid lines), and |eg〉 (dotted line)
including dephasing (thick lines) and without dephasing (thin lines).
The vertical gray line indicates the frequency of the T1 measurement
in (a) and the spectroscopic measurements shown in Fig. 3.
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dissipative dynamics for ψa and ψs using the pure dephasing
rate of the individual qubits γ2,φ/2π = 0.18 MHz measured
in independent Ramsey-fringe experiments.

In the context of quantum computation, the logical qubit
formed by the ground and the dark state realizes a decoherence-
free subspace [31,32], which is insensitive to cavity dissipation
as well as to global dephasing acting simultaneously on both
qubits. Note, however, that the subspace spanned by |0; gg〉,
|ψa〉, and the doubly excited state |0; ee〉 forms a only weakly
nonlinear qubit with anharmonicity 2J , which sets a minimum
time limit of ∼1/(2J ) for gate operations without pulse
optimization [43].

More generally, this local control technique may be used
to excite highly entangled Dicke states belonging to different
symmetry classes with a single microwave pulse conditioned
on the choice of phases between individual drives. The
possibility to address states of different symmetry classes of
multiqubit systems can be exploited to encode information in
collective qubit states. For readout, they can be transformed

into entangled states in the computational basis by rapidly
detuning the qubit transition frequencies out of qubit-qubit
resonance.

In conclusion, we have demonstrated a method to populate
dark states of a two-qubit system in circuit QED. The transi-
tions to either dark or bright two-qubit states can be selected by
adjusting the relative phase between individual qubit drives,
thus changing the symmetry of the field and enforcing a
symmetry-induced selection rule. With this technique we have
demonstrated Purcell protection of the subradiant dark state
against spontaneous emission. An extension to more qubits
could provide further insight into the unitary and dissipative
dynamics of multiparticle quantum states that can be directly
prepared in the coupled qubit basis.
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