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Optical vortex interaction and generation via nonlinear wave mixing
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Optical vortex beams are made to interact via degenerate two-wave mixing in a Kerr-like nonlinear medium.
Vortex mixing is shown to occur inside the medium, leading to exchange of topological charge and cascaded
generation of vortex beams. A mean-field model is developed and is shown to account for the selection rules of
the topological charges observed after the wave-mixing process. Fractional charges are demonstrated to follow
the same rules as for integer charges.
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Optical vortices, or wave-front dislocations, have been
identified as the singular points where the field goes to zero
and around which the phase screws up as an n armed spiral,
with n the topological charge [1–3]. When appearing in a large
number, as after the propagation through a distorting medium,
such phase singularities, also called topological defects, have
been seen as disturbances imposing severe limitations to
aberration correction systems [4]. Their statistical properties
have been investigated also in nonlinear optical systems and
shown to provide the scaling laws associated with the route
toward space-time chaos [5]. More recently, the presence
of single, or a few, optical vortices, appearing as phase
singularities in low-order Gauss-Laguerre beams, has been
revisited in view of useful applications, as the exchange of
angular momentum between light and matter [6], realization
of optical tweezers [7,8], quantum computation [9], and
improvement of astronomical imaging [10].

Up to now, the controlled generation of optical vortex beams
has been mainly realized by using linear methods, including the
synthesis through holographic masks [11,12], the deformation
of segmented adaptive mirrors [13], spiral glass plates [14]
or pre-imposed director orientation in liquid-crystal samples,
so-called, q-plates [15], or from micron-sized liquid-crystal
droplets [16]. On the other hand, nonlinear vortex interaction
has been investigated in a few experimental situations, namely,
second-harmonic generation (SHG) [17] and parametric down-
conversion in solid-state crystals [18], Raman-resonant four-
wave mixing (4WM) in hydrogen gas [19], and nondegenerate
4WM in Rb atomic vapors [20]. Except for the parametric
down-conversion, angular momentum conservation has been
shown to be satisfied in the other cases, leading to selection
rules of the type lSHG = 2lin for SHG, where lSHG is the
charge of the frequency doubled beam and lin that of the
input beam; lA = 2lP − lS for resonant 4WM, where lA is
the charge of the anti-Stokes beam, lP that of the pump,
and lS that of the signal; and lS = lF + lB − lP , where lF
and lB are the charges of, respectively, the forward and
the backward beam, for the nondegenerate 4WM. From the
theoretical point of view, nonlinear vortex interaction in wave-
mixing processes has been predicted to induce a cascaded
generation of vortices, leading to fundamental effects such
as the generation of helical soliton beams in nonlinear optics
[21] or Bose-Einstein condensation in two-dimensional wave
turbulence [22].

Here, we show that optical vortex beams can be created and
controlled by realizing degenerate two-wave mixing processes
in a Kerr-like nonlinear (NL) medium. As a NL medium we
use a liquid-crystal light valve (LCLV), for which a high
Kerr-like nonlinearity and efficient wave-mixing processes
have been already demonstrated [24,25]. The principle scheme
of the vortex beam interaction is shown in Fig. 1(a), whereas
Fig. 1(b) displays the corresponding experimental snapshots.
Two optical vortex beams, with respective topological charges
la and lb and propagation wave vectors �ka and �kb, are
synthesized via a holographic mask and, then, made to interact
in the NL medium. There, they mix up by inducing a dynamical
refractive index grating, from which they are themselves
diffracted. The NL medium is thin, d = 15 μm is the thickness
of the liquid-crystal layer, so that several diffracted order
beams are obtained at the output, each one carrying a new
topological charge. We observe that while the charge is the
same along the respective propagation directions of the input
beams (0 and −1 output orders), it changes on the outer
orders. In particular, on the +1 and −2 orders, the charge
satisfies the selection rules l+1 = 2la − lb and l−2 = 2lb − la ,
respectively. From the theoretical side, we model the wave
mixing between the beams carrying the phase singularities in
the mean-field approximation, providing the selection rules
for the topological charge on each m output order beam.
The theoretical predictions are confirmed by the experimental
observations, both for integer and fractional charges of the
interacting beams.

The whole experimental setup is represented in Fig. 2. An
input laser beam, λ0 = 532 nm and intensity I = 3 mW/cm2,
is divided in two beams of equal intensity, both sent to a
spatial light modulator (SLM), where the input vortex beams
are synthesized. Polarizers and half-wave plates are used to
select the polarization of the input beams to be linear and
parallel to the liquid-crystal nematic director. A lens system
is used to image the beams at the output of the SLM onto the
LCLV, and another lens imaging system allows the recording
of the output beam onto a CCD camera, as displayed in
the bottom inset of Fig. 2. Optical vortex beams of desired
topological charge la,b are obtained by programing the SLM
with suitable holographic masks [11]. The incoming beams
are enlarged to a transverse size diameter of 1.3 cm, whereas
the SLM transmission function is programed to be the interfer-
ence pattern of a plane wave with a helical phase structure of

061801-11050-2947/2011/84(6)/061801(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.061801


RAPID COMMUNICATIONS

LENZINI, RESIDORI, ARECCHI, AND BORTOLOZZO PHYSICAL REVIEW A 84, 061801(R) (2011)

a

b

a

b

2 -a b

nonlinear 
medium

k
a 
,

k
b 
,

k
-2 

,

k
-1 

,

k
0 
,

k
+1 

,

=1

=2

3

1

2

0

E
a

E
b

E
-2

E
1

E
0

E
-1

(a)

(b)

2 - ab

a

b

FIG. 1. (Color online) (a) Principle scheme of the vortex in-
teraction for la = 1 and lb = 2, and (b) experimental snapshots
showing the intensity of the input beams and the phase profiles of
the corresponding output beams.

the type eilholϕ , that is, f (x,ϕ) = C[1 + cos(lholϕ − 2πx/�)],
where C is a normalization constant and � the fringe spacing of
the hologram. In correspondence with the phase singularity, the
hologram has a pitchfork structure from which the diffraction
of a plane wave provides a series of scattered orders, the mth
order being at an angle sin θm = mλ/� and carrying a topo-
logical charge mlhol, with λ the wavelength of the input beam.
Moreover, in order to get a better diffraction efficiency on the
m > 0 orders, we have used the equivalent function of a blazed
grating [23], that is, f (r,ϕ) = mod [lholϕ − (2πNf /L)x,2π ],
where L is the length of the grid of the SLM (in pixels) and Nf

is the total number of fringes. The self-imaging system before
the LCLV is used to minimize diffraction effects. Indeed,
topological charges with |l| > 1 are structurally unstable upon
propagation, tending to separate in |l| unitary topological
charges of sign sign(l) [26]. Once the vortex beams Ea and
Eb are prepared, the wave mixing is performed by sending
them to interact in the LCLV. Ea and Eb have diameters of 3
mm and intensities of (116 ± 3) μW/cm2 and, respectively,
(103 ± 3) μW/cm2.

Examples of vortex interaction in the case of integer input
charges are shown in Fig. 1(b) and in Fig. 3. In Fig. 3, the
displayed snapshots, cases la = 0, lb = 1 [Fig. 3(a)] and la =
1, lb = −2 [Fig. 3(b)], represent the input beams (left panels)
together with the corresponding −2 and +1 output order beams
(right panels). The phase profiles are obtained by interfering
the vortex beam with a homogeneous reference beam that has
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FIG. 2. (Color online) Experimental setup: the input laser is
divided into two beams, each passing through the spatial light
modulator (SLM) where the input vortex beams Ea and Eb are
synthesized through holographic masks; the two beams are then sent
to interact in the LCLV; PH, pinhole; BS, beam splitter. The bottom
inset shows the self-imaging system before and after the LCLV.

passed through a long focal length (50 cm) lens, hence, it has
a slightly curved wave front. The resulting concentric fringe
pattern allows an easy visualization of the optical vortex as an
l-armed spiral starting from the center, l being the topological
charge and the direction of the spiral rotation being the sign.
From the interferometric measurements it appears clearly
that the topological charges mix up during the wave-mixing
process. On each output order, new charges are observed that
follow the selection rules fixed by the vortex interaction inside
the medium. On the examples shown in Fig. 3 it can be easily
verified that for la = 0, lb = 1 we obtain l−2 = 2, l+1 = −1;
while for la = 1, lb = −2 we get l−2 = −5, l+1 = 4.

Similar selection rules are observed also for input beams
with fractional charges. A fractional charge can be constructed
in the near field by imposing a half-fringe phase slippage
over one half of the interferometric hologram. However,
it is unstable upon propagation in free space, because it
transforms into a charge with a value equal to its nearest
integer plus an infinite array of unitary charges of alternate
sign [26,27]. Correspondingly, the field amplitude goes to
zero, generating a characteristic black line in the intensity
profile. Examples of the interaction between vortex beams with
fractional charges are shown in Fig. 4 for la = 0, lb = +1/2
in Fig. 4(a) and la = +1, lb = +1/2 in Fig. 4(b). The output
charges are l−2 = 1, l+1 = −1/2 and l−2 = 0, l+1 = +3/2,

061801-2



RAPID COMMUNICATIONS

OPTICAL VORTEX INTERACTION AND GENERATION VIA . . . PHYSICAL REVIEW A 84, 061801(R) (2011)

(a)

(b)

0

+1
-1

+2

+1

-2

-5

+4NL
medium

E
a

E
b

E
a

E
b

E
-2

E
1

E
-2

E
1

NL
medium

FIG. 3. (Color online) Vortex interaction for integer input
charges. Left: input beams Ea and Eb (phase, intensity); right: output
beams E1 and E−2 (intensity, phase) with new topological charges;
(a) la = 0, lb = +1 and l−2 = −1, l+1 = +2; (b) la = +1, lb = −2
and l−2 = −5, l+1 = +4.

respectively. In the second example, on the −2 order we obtain
the cancellation of the topological charge. Even though this
cancellation results clearly from the interference image, the
near-field intensity profile still conserves the zeros of the field.
These zeros disappear upon propagation and are totally absent
in the far field.

Note that two-wave mixing in the LCLV can lead to
optical amplification, when the intensity of one of the two
beams, usually called the pump, is much higher than the
intensity of the other beam, the signal to be amplified
[25]. In the present set of experiments, for the purpose of
better revealing the output selection rules, vortex mixing
was performed with two beams of almost equal intensity.
However, it is worth noting that vortex mixing can in general be
performed in the classical pump-signal scheme, with the pump
intensity much higher than the signal intensity. In particular,
a zero topological charge pump could be used to amplify
a weak vortex beam, as previously synthesized through a
holographic mask or other methods often introducing intensity
losses.

The theoretical description can be developed by considering
the nonlinear Schrödinger equation [28]

ı
∂A

∂z
= −

(
1

2k0n0
∇2

⊥ + n2k|A|2
)

A, (1)

where k0 = 2π/λ0 is the optical wave vector, A is the
slowly varying amplitude of the optical field E = Aeı(k0z−ωt),
n0 = 1.6 the constant part of the refractive index, and n2 =
−7 cm2/W the Kerr-like coefficient of the LCLV [25]. The
amplitude of the optical field before the interaction is the sum
of the two vortex beams Aa and Ab, carrying, respectively, the
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FIG. 4. (Color online) Vortex interaction for fractional input
charges. Left: input beams Ea and Eb (phase, intensity); right: output
beams E1 and E−2 (intensity, phase) with new topological charges;
(a) la = 0, lb = +1/2 and l−2 = +1, l+1 = −1/2; (b) la = +1,
lb = +1/2 and l−2 = 0, l+1 = +3/2.

topological charges la and lb, that is, |A(�r,z = 0)|2 = |Aa|2 +
|Ab|2 + 2AaAb cos[ �Kg · �r + (	b − 	a)φ], the two beams in-
duce a phase grating with spatial period � = 2π/Kg and with
a dislocation given by the difference 	b − 	a . In the usual
experimental conditions, � � d, so the beam coupling can
be treated in the Raman-Nath regime of diffraction; hence,
the field at the exit of the NL medium can be analytically
calculated and is given by [25]

E(�r,z = d) =
+∞∑

m=−∞
Ameı(�km·�r+	mφ−ωt) + c.c., (2)

that is, it is made up of a series of diffracted orders,
the amplitude of each is given by Am = ım[AaJm(ρ) +
ıAbJm+1(ρ)]eık0d(n0+n2|Aa |2+n2|Ab|2), with Jm the Bessel func-
tion of the first kind and of order m and ρ = 2k0dn2AaAb, and
each is characterized by the wave vector

�km = �ka − m �Kg, (3)

which expresses the momentum conservation, and by the
topological charge

	m = 	a − m(	b − 	a), (4)

which expresses the angular momentum conservation.
Equation (4) gives the selection rules on each output order,

nicely accounting for the experimental observations. The 0 and
−1 orders, propagating parallel to Ea and, respectively, Eb,
maintain the same topological charge. On the other hand, the
topological charge of the +1 and −2 orders is, respectively,
(2	a − 	b) and (2	b − 	a), that is, during the vortex mixing
the topological charge is exchanged on the diffracted beams.
Experimentally, we have verified that the charge observed on

061801-3



RAPID COMMUNICATIONS

LENZINI, RESIDORI, ARECCHI, AND BORTOLOZZO PHYSICAL REVIEW A 84, 061801(R) (2011)

the outer orders up to m = ±3 coincides with the theoretical
predictions. Note, also, that the vortex interaction generates a
cascade of topological charges, with multiple vortex beams at
the output. For instance, if we consider the +1 and −2 orders,
we have the same la + lb topological charge as at the input,
but taking also the −2 and +2 orders, we get 2(la + lb), that
is, the double of the input charge.

Finally, we have verified that the diffusive term characteriz-
ing the NL medium response, and neglected in the mean-field
approximation, does not influence the topological charge of the
output orders. Indeed Eq. (1) should be coupled with a spatial
relaxation equation for the refractive index (1 − l2

d∇2
⊥)n =

n0 + n2|E|2, where ld ∼ 5 μm is the transverse diffusion
length in the NL medium [25]. When inserted into Eq. (1),
the above expression allows us to arrive at the same result
as before, except that the shape of the vortex is slightly

smoothed by a weak correction provided by the diffusion term.
However, the output charge remains unaltered for all the output
orders.

In conclusion, we have shown that vortex mixing can be
performed in a Kerr-like nonlinear medium. The selection
rules for the output charges are theoretically identified and
experimentally demonstrated. The obtained cascade of topo-
logical charges is particularly interesting for vortex control
applications, such as multiplication of the topological charge
and generation of new vortex beams, whereas vortex beam
amplification could be obtained by exploiting the gain feature
of the wave-mixing process.
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