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Universal phase structure of dilute Bose gases with Rashba spin-orbit coupling
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A Bose gas subject to a light-induced Rashba spin-orbit coupling possesses a dispersion minimum on a circle in
momentum space; we show that kinematic constraints due to this dispersion cause interactions to renormalize to
universal, angle-dependent values that govern the phase structure in the dilute-gas limit. We find that, regardless
of microscopic interactions, (a) the ground state involves condensation at two opposite momenta and is, in finite
systems, a fragmented condensate and and (b) there is a nonzero-temperature instability toward the condensation
of pairs of bosons. We discuss how our results can be reconciled with the qualitatively different mean-field phase

diagram, which is appropriate for dense gases.
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The advent of ultracold gases has vastly increased the
range of physically realizable many-body bosonic systems,
enabling the exploration of quantum-degenerate Bose gases
possessing tunable interactions and band structure as well
as internal degrees of freedom. Among such systems, those
of particular interest involve single-particle Hamiltonians
having degenerate ground states related by symmetries.
Bose-Einstein condensation (BEC), i.e., the macroscopic
occupation of a particular single-particle state, typically
entails breaking these symmetries; hence the order pa-
rameter space and defects of such BECs are richer than
those of conventional BECs. For instance, spin-1 BECs
[1] support fractionally quantized vortices, and in this
sense resemble exotic fermionic condensates such as triplet
superconductors.

Just as these exotic defects stem from broken internal
symmetries, those of the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state, such as vortex-dislocation bound states [2], stem
from its broken translational and rotational symmetries. The
present work addresses purely bosonic analogs of the FFLO
states, in which the degenerate single-particle ground states
have distinct spatial wave functions. In particular, we consider
the case in which the single-particle Hamiltonian possesses a
dispersion minimum on a circle in momentum space, so that
BEC occurs at one or more nonzero momenta. Our work is
motivated by a recently proposed realization of such a Hamilto-
nian, viz., a spin—% Bose gas subject to a light-induced Rashba
spin-orbit coupling [3]. Simpler forms of spin-orbit coupling,
having multiple discrete minima, have been experimentally
demonstrated [4]. An alternative approach to realizing a
circular dispersion minimum would be to load the atoms into
the excited band of an optical lattice; in this case, too, multiple
discrete minima have been realized [5], and under appropriate
conditions (e.g., “sublattice-exchange-even faulted” stackings
of bilayer honeycomb lattices [6]) continuous minima are
realizable.

Spin-orbit-coupled BECs were originally addressed in
Refs. [7,8] as examples of unconventional condensation; it
was argued in Ref. [8] that, for a pure Rashba coupling
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and isotropic interactions, a fragmented condensate should
form. More recently, the case of the Rashba-coupled BEC
was treated using mean-field theory [9] and incorporating
Gaussian fluctuations [10]; related systems have been studied
in Refs. [11]. In general, two phases have been found,
depending on the spin dependence of interactions: a time-
reversal symmetry-breaking (TRSB) state and a density-wave
state. In the present work, we describe how interaction-
renormalization effects qualitatively change the phase dia-
gram at low densities (see Fig. 1), destabilizing the TRSB
state and giving rise to a number-squeezed (and, in finite
systems, “fragmented”) limit of the density-wave state. These
changes are due to the strong, emergent angle dependence of
renormalized interactions; such angle-dependent renormaliza-
tions are generic in systems whose low-energy modes occur
around momentum-space surfaces, e.g., Fermi liquids [12].
Our results, while consistent with those of Ref. [8] in the
special case of isotropic interactions, hold more generally for
any interactions that are repulsive in all angular momentum
channels.

Our primary results are as follows. At zero temperature,
we find, exploiting the properties of a quantum critical point
introduced in Ref. [13], that the renormalized interactions for
a dilute gas universally favor a state in which the BEC forms
at a pair of opposite momenta. For finite, weakly trapped
systems, fragmented BEC is energetically favored over simple
BEC at either a single momentum or a coherent momentum
superposition such as a density wave. In the thermodynamic
limit, the fragmented BEC, though favored over a coherent
superposition, becomes degenerate with squeezed states that
break translational symmetry. The resulting ground-state
energy per particle scales unusually with the density n, i.e.,
as n*3; note that this scaling is the same as that of the
“extremely anisotropic Wigner crystal” [14], which, in fact,
approaches the fragmented state in the zero-density limit.
At nonzero temperature, we argue using renormalization-
group (RG) methods that the leading instability is toward
condensation of boson pairs and estimate the condensation
temperature.
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FIG. 1. (Color online) Zero-temperature phase diagram as a
function of the interaction anisotropy y = c¢»/c¢ and the chemical
potential p, showing the phases and transitions discussed in the
main text. The (dashed) phase boundaries in the crossover region are
schematic; the thick line indicates a first-order transition predicted by
mean-field theory [9].

Model. We begin with the following effective model of a d-
dimensional Bose gas having a circular dispersion minimum:
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H= [ d%¥'(k) M+2M{(|k2D| ko)™ + k1 }|W(k)
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where W (k;) are Bose fields of momentum k;, kop = (ky k),
k, encodes all other momentum components, U is a possibly
momentum-dependent interaction, and we have seti = 1. For
Rashba-coupled bosons, spin-dependent interactions in the
microscopic model imply momentum-dependent interactions
because, for modes near kg, the spin is locked to the
momentum. We shall first consider the universal properties of
the general Hamiltonian H and then relate these to the phases
of the specific microscopic model considered in Ref. [9]. We
focus primarily on the two-dimensional (2D) case, in which
k, = 0, and then touch on the (similar) three-dimensional (3D)
case.

We assume that energies associated with temperature 7,
chemical potential u, system size, etc., are smaller than the
spin-orbit coupling scale k3 /2M. Typical values of k, !are on
the order of an optical wavelength [4], which is exceeded by
the interparticle spacing in many experiments (k(% /2M cannot
be smaller than these scales if spin-orbit coupling is to play a
significant role).

As we are concerned with the low-energy limit, it is conve-
nient to study only the degrees of freedom in a momentum shell
of thickness 2A centered on the dispersion minimum, giving
rise to an energy scale 2, = A?/2M intermediate between
ko/2M and the low-energy scales p and 7. Integrating out
degrees of freedom with energies ><2, generates effective
interactions for modes with energies <€2,; as we discuss
below, these interactions are further renormalized and, for
energies €24, take on universal values that are independent
of A. A careful treatment of the high-energy renormalization,
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FIG. 2. (a) Loop correction in the particle-particle channel, which
governs the hierarchy of couplings at the QCP. (b) Loop correction
in the particle-hole channel. These corrections vanish at 7' = 0.
(c) Kinematic constraints due to the dispersion structure: (left) case of
6 # 0, outgoing momenta are constrained to lie in the shaded region,
of area ~A?; (right) case of @ = 0, for which the shaded region’s area
scales as A/koA.

including the other Rashba bands, appears in a recent paper
[15] and confirms this picture.

Quantum critical point. The model described by H has
a quantum critical point (QCP) at u = 0, corresponding to
the phase transition from the empty vacuum to a BEC. This
QCP was analyzed in Ref. [13] for fermions, but the analysis
extends straightforwardly to bosons. Given that A < ko,
kinematics constrains the resulting form of the effective
interaction vertices within the momentum shell (i.e., those
for which all four momenta satisfy ||k;| — ko| < A) to lie
in the following channels: (i) forward-scattering processes,
which involve momentum transfer <A [denoted Fg,(0),
where 6 is the angle between the incoming momenta], and
(ii) “Cooper-channel” processes, in which incoming momenta
are almost equal and opposite [denoted Vg, (6), where 6
is the angle between incoming and outgoing momentum
pairs (see, e.g., Ref. [12])]. These channels renormalize
differently: owing to the nonpolarizability of the vacuum
[16], all renormalizations are due to the repeated scattering
processes shown in Fig. 2(a), which have different amplitudes
in the forward-scattering and Cooper channels. For forward
scattering, intermediate momenta are constrained to lie in the
regions shaded in Fig. 2(c), whereas in the Cooper channel
intermediate momenta run over the entire circle of radius k.

The outcome of renormalization depends on the sign of the
microscopic interactions. Any attractive interactions lead to an
instability in the Cooper channel [13] and thereby to bound
states; this case is not expected to yield universal behavior.
If, on the other hand, the initial interactions are all repulsive,
one arrives at the following expressions for the renormalized
interactions for incoming frequencies of order 2 < Q4 (see
Ref. [13]):

Fa(0) = o -
1+ [MFq, (6)/(27 sin)] In (&)

1+ M Fa, O ko/ VIS £i(%)
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where fi(x) and f>(x) are scaling functions that are of
order unity as x — oo and approach zero as x — 0 and
Vim) = 02” V(6)e'™ df. Subscripts € denote the incoming
frequencies. Thus the low-energy (i.e., 2/, — 0) values
of all couplings are “universal,” i.e., independent of their
microscopic values. Note that F(O =m) =), ..., V(m).
Thus, given that A/ky < 1, the couplings assume the follow-
ing hierarchy: Vo(m) ~ Fo(@ =) < Fo(@ =0) K Fo@ #
0,7). Hence, interactions between particles at opposite mo-
menta are negligible compared with other interactions [17].

Case of T = 0. We now turn from the QCP to phases in
its vicinity. Suppose that the system is sufficiently dilute that
when renormalization is cut off at a scale set by the chemical
potential w, the interactions are deep in the universal scaling
regime. Then the interaction Hamiltonian is given by H ~
Zgﬂ, F(0 — 0" )ngng, where ny denotes the boson density at
a momentum of magnitude ko and direction 6. The hierarchy
of universal coupling constants implies that H is minimized
by a “fragmented” state, having precisely N /2 bosons at some
0 and N/2 at 6 4+ & [18]. Fragmentation is favored owing to
a momentum-space analog of Coulomb blockade (cf. Sec. 2.6
of Ref. [19]): bosons with opposite momenta do not interact
with one another to leading order in /A / ko, whereas those at
nonopposite momenta do interact.

In more quantitative terms we can deduce the ground-
state energy from the relation [20] pu = (n/2)F,(0 = 0) =~
(n/M)(uM/ k)", giving

Va(m) = (2¢)

N
EN)= ) —— . (3)
M A3k

o=+

where A is the system area and N. denote the number of
particles at 6 and 6 + 7, respectively. Note that this expression
is universal, i.e., independent of the microscopic interaction
strengths, and its unusual scaling is a consequence of the
renormalization discussed above. As E(N) is minimized when
Ny = N_ = N/2, the ground state for finite N is fragmented.
Such a fragmented state can be understood as a density wave
of wave vector ky along the direction 6 with a randomly
varying phase (analogous, e.g., to interfering independent
condensates [21]).

Fragmented states are typically unstable relative to simple
condensates (i.e., those having a fixed phase relation) because
spatial inhomogeneities tend to phase lock the fragments [19].
In the present case, a phase-locked, coherent superposition
would involve fluctuations of order \/ﬁ in N4 and hence cost
an energy of order unity relative to the fragmented state even
in the thermodynamic limit. Thus, a few scattering sites cannot
overcome the tendency toward fragmentation. Similarly, a
weak harmonic potential (i.e., of characteristic length much
larger than the interparticle spacing) would not stabilize a
coherent superposition relative to a fragmented state, even
in the thermodynamic limit, provided that, according to the
standard prescription, the trap frequency w — 0 so as to keep
Nw? constant. This is because the typical matrix element
between +k due to the trap is of order exp(—ZkSN ), which
rapidly decreases as N — oo.
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Although a coherent superposition is disfavored in the
thermodynamic limit, the energy cost of number fluctuations
of order unity vanishes as 1/N. Thus, the thermodynamic
ground state (e.g., in a trap) is likely to be a squeezed state
with small but nonvanishing phase variance, as opposed to the
fragmented state, in which the phase is entirely random. This
observation extends to translation-invariant systems, which
should therefore exhibit spontaneously broken translational
invariance in the thermodynamic limit.

Implications for T =0 phase diagram. The dilute-limit
phase diagram is simpler than that obtained from mean-field
theory: it predicts that BEC occurs at two momenta regardless
of microscopic interactions, provided these are repulsive. By
contrast, mean-field theory [9] predicts a TRSB state or a
density-wave state, depending on microscopic interactions.
We now give an account of the crossover between universal
and mean-field regimes and estimate the minimum densities
required for mean-field results to apply.

The dilute-gas results apply when, upon renormalization,
the pertinent interactions have already achieved their uni-
versal forms at a length-scale shorter than the interparticle
spacing; thus, a TRSB state is disfavored if F,(mw) < F,(0),
regardless of whether the (larger) F, (6 # 0,7) couplings have
approached their universal values. Note that F5 (0 = 0,7) are
related to the parameters ¢y and c¢; in Ref. [9] as follows:
Fx()/FxA(0) = 1 4 ¢3/co. [These relations, and similar ones
for other couplings, can be derived as outlined following
Eq. (3) in Ref. [9]. Provided ¢; < ¢y, all microscopic couplings
are of comparable magnitude.] Therefore, in terms of ¢y and
¢, the TRSB state is favored only if

Co - co+ 2
14+ Lo /ko/n'2 1+ qM(co + e2)(ko/n'/?)’

“4)

where ¢ is a constant of order unity.

Note that, in addition to the TRSB phase, the Hamiltonian
of Ref. [9] also exhibits a regime in which a coherent
superposition is lower in energy than the fragmented state,
owing to terms of the form W;kowiko Y, Yo, wWhich involve
momenta of order 2k and thus do not appear in H.

These considerations lead us to the phase diagram shown
in Fig. 1, in which there is no direct transition from the
vacuum to the TRSB state. The transition from the vacuum
to the density-wave state is unusual in being a continuous
transition (known to be continuous as the properties of the
QCP are understood exactly [13]) at which both rotational and
translational symmetry are broken. As a general rule (see, e.g.,
Refs. [2,22]), transitions that break rotational andtranslational
symmetry are first order. For densities >AZ, at which the
renormalization effects discussed in the present work are not
present, mean-field simulations show evidence of metastability
[9]; this would suggest a first-order transition between the
density-wave and TRSB states.

Case of T > 0. Following standard treatments of the dilute
Bose gas [20], we assume that 7 > . Beyond the momentum
scale A7 = 1/+/2MT, the physics is captured by a classical
free-energy functional of the form

S = / dk[—p + (k — ko)1 Yx|* + Si, (5)
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where S4 denotes the set of angle- and channel-dependent
couplings and we have set 2M = 1. S is a complex-field
version of Brazovskii’s model [22] (the relevance of Bra-
zovskii’s model was previously suggested in Ref. [7]). The
initial values for the couplings in S4 are the renormalized
interactions at a scale Q2 = T. At scales SAr, the vacuum is
nontrivial, owing to the presence of thermal particles; hence,
all couplings are renormalized by the particle-hole channel
[Fig. 2(b)]. It is convenient to expand F as well as V in terms
of angular momenta. One can then implement the momentum-
shell RG procedure described in Ref. [23] by integrating out
modes satisfying A7(1 — dl) < |k — ko| < Ar and rescaling
k — (1 +dhk,y — [1 —(3/2)dl]yr, and p — p/A%. The
couplings transform as follows (ignoring the flow of w):

dFi(m) _ _ARm A, Vim)

ar T T A Y
dVi(m) _AVEm) ¥, Fim)

ar =M sy A S O

where A = 2mko/Ar. If the coupling constants at Ay are in
the universal regime, one can use the fact that V < F to drop
terms of order V2. The last term in the flow equations drives all
even V (m) (which are initially near zero) to negative values at
some Ay = Ar[l — o(Ar/ko)], triggering a runaway growth
of the even-parity V(m) couplings. Such runaway growth is
associated with a pairing instability, which should, in principle,
occur simultaneously in all even-m channels. (However, as
noted in Ref. [8], the confining trap acts as a kinetic-energy
term of the form Vg, which penalizes higher-m channels.)
The pair-condensation temperature can be estimated by
observing that arbitrarily weak attractive interactions in
the Cooper channel give rise to pairs [24] whose binding
energy is A~M Vzk%. Pairing is favored for A > T.
As T/Ey>~ (A1/ko)* < (A/ko)> <V ~1In(A/A;), one
expects pairs to be tightly bound at length scales comparable
to 1/A7; at longer distances they can be treated as
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nonoverlapping. The system is thus a dilute gas of pairs,
which condense at a temperature given implicitly [20]
by T, ~ (h®n/4m) x 1/ Inln(na?), where a is an effective
dimer-dimer scattering range, which is of order A.

Pairing would be straightforward to detect experimentally
via radio-frequency spectroscopy, which should reveal a peak
corresponding to the pair binding energy; moreover, a pair
condensate would support half-quantized vortices detectable
via rotation.

3D case. For this case, k, =k, in Eq. (1); thus, the
dispersion minimum is circular rather than spherical and
imposes the same kinematic constraints as in two dimensions.
The 2D analysis thus generalizes readily; the chief difference
is that the forward-scattering couplings in 3D renormalize to
nonuniversal T matrices rather than universal values, and the
ground-state energy thus depends on microscopic couplings.
However, Cooper-channel couplings approach the following
universal expression as 2/ Q2 — 0:

Va ~ 1/ koM In(2, /)] . (N

Hence, as in two dimensions, ), V(m)~ F(@ =) <
F(6 # m) at low energies. It follows that the dilute-limit
ground state universally preserves time-reversal symmetry.
This qualitative resemblance to two dimensions extends to the
T > 0 case, in which the free-energy functional, in this case,
the variant of Brazovskii’s model having two transverse dimen-
sions discussed in Ref. [25], develops a pairing instability as in
two dimensions. As the Cooper-channel couplings approach
universal values more slowly, however, the conditions for the
dilute limit to obtain are more stringent in three dimensions
than in two dimensions.
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