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Dynamical bifurcation as a semiclassical counterpart of a quantum phase transition
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We illustrate how dynamical transitions in nonlinear semiclassical models can be recognized as phase transitions
in the corresponding—inherently linear—quantum model, where, in a statistical-mechanics framework, the
thermodynamic limit is realized by letting the particle population go to infinity at fixed size. We focus on lattice
bosons described by the Bose-Hubbard (BH) model and discrete self-trapping (DST) equations at the quantum
and semiclassical levels, respectively. After showing that the Gaussianity of the quantum ground states is broken
at the phase transition, we evaluate finite-population effects by introducing a suitable scaling hypothesis; we
work out the exact value of the critical exponents and provide numerical evidence confirming our hypothesis.
Our analytical results rely on a general scheme obtained from a large-population expansion of the eigenvalue
equation of the BH model. In this approach the DST equations resurface as solutions of the zeroth-order problem.
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The emergence of nonlinear phenomena typical of semi-
classical models from more fundamental, inherently linear,
quantum models represents a basic question that has attracted a
fair amount of attention in the literature. The many experiments
with ultracold atoms trapped in optical lattices evidencing
both quantum [1–4] and nonlinear [5–8] effects make the
Bose-Hubbard model [9–11] an ideal setting in this respect. A
general form for the Bose-Hubbard Hamiltonian, describing
interacting bosons hopping on the sites of a discrete structure,
is

H =
L∑

j=1

[
sU

2
(a†

j )2(aj )2 + vjnj

]
−J

∑
j�

a
†
jAj�a�, (1)

where j is a site label, Aj � is the adjacency matrix of the
structure, aj is an on-site (annihilation) boson operator, and
[aj , a

†
�] = δj�. As for the parameters, U > 0 is the strength of

the on-site interaction, whose attractive or repulsive character
is dictated by s = ±1, and J is the hopping amplitude. The
semiclassical counterpart of Eq. (1),

H =
L∑

j=1

[
sU

2
|αj |4 + vj |αj |2

]
−J

∑
j�

α∗
j Aj�α�, (2)

can be obtained by trading the quantum operator aj for a
c-number αj , whose square modulus and angle represent the
boson population and macroscopic phase attached to the site
j , respectively. Actually, the complex variables αj governed
by the Hamiltonian in Eq. (2) are the variational parameters
of a coherent-state ansatz for the Hamiltonian in Eq. (1)
[12–14]. The nonlinear equation of motion ensuing from the
Hamiltonian in Eq. (2) are known as discrete self-trapping
(DST) equations [15] and the relevant normal modes are
often compared to the eigenstates of the Hamiltonian in
Eq. (1).

One of the most striking features stemming from the nonlin-
ear character of DST equations is the occurrence of dynamical

instabilities, such as modulational instability [15]: For (attrac-
tive) interactions among bosons exceeding a critical value, the
uniform solution of the DST equations on translation-invariant
lattices becomes unstable. This critical value is expected to
coincide with the threshold for spatial localization in the
ground state of the system (i.e., soliton formation). The
quantum counterpart of this well known semiclassical feature
has been investigated—mostly on two- and three-site lattices
at finite population—by employing several indicators, such
as energy gaps [16], number fluctuations [17–20], condensate
fraction [14], occupation probability in the Fock space [21],
localization width [22], fidelity [23], entanglement [24–27],
and Bethe ansatz techniques [24,28]. Here we show that this
semiclassical dynamical transition can be seen as a genuine
quantum phase transition, characterized by a vanishing gap, in
which the thermodynamic limit is realized at fixed lattice size
by letting the bosonic population go to infinity. We connect
the order of the phase transitions to the bifurcation pattern
characterizing the solutions to the DST equations. Specifically,
we find that on one-dimensional lattices comprising L =
2 and L � 6 sites the modulational instability threshold
coincides with a second-order critical point, while for L = 3–5
only first-order transitions are present. In the second-order
case, we determine the critical exponents characterizing the
divergence of the fluctuations. In addition, we analyze the
crossover heralding the phase transition at finite population
by verifying the finite-size scaling hypothesis typical of
statistical mechanics. In the same framework we show that
at finite population the spectrum is not gapless at the tran-
sition point, but exhibits the expected avoided-level-crossing
pattern.

In carrying out our analysis we develop a fully analytical
general scheme based on a large-population expansion of the
secular equation for the Bose-Hubbard (BH) Hamiltonian on
an L-site lattice. This expansion results in a Schrödinger-like
equation (SLE) set in an L-dimensional space directly related
to the Fock space of the original quantum problem. In
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this framework the DST equations emerge naturally as the
equations for the extrema of the potential part of the SLE at
the lowest order of the expansion. The analysis of the small
oscillations about the local minima of such a potential gives
access to an entire class of solutions to the original quantum
problem, which improve significantly on the coherent states
employed as trial wave functions in the variational derivation
of the DST equations. Similar to the coherent state, away
from criticality, our solution is a Gaussian function centered
at a particular occupation-number Fock state dictated by the
time-independent DST equations. However, our perturbative
approach provides an exact calculation of the Gaussian widths.
This gives us access to the correct quantum fluctuations in the
system. Furthermore, our picture captures situations where the
solutions of the SLE are not Gaussian, which correspond to
the above-mentioned quantum critical points.

Our analysis starts from the eigenvalue equation for the
BH model, H |�〉 = E|�〉, where the eigenstate |�〉 has been
expanded over the Fock space of occupation numbers,

|�〉 =
∑

�x

′
ψ(�x)|�x〉, |�x〉 =

L∏
j=1

(a†
j )Nxj

(Nxj )!
|0〉. (3)

The labels of the Fock state |�x〉 have been conveniently
normalized, so that xj ∈ [0,1] independent of the total boson
population N , which is conserved owing to the commutation
relation [H,

∑
j a

†
j aj ] = 0. The prime on the summation

symbol in the first of Eqs. (3) signals that xj = kjN
−1, with

kj ∈ N0, and
∑

j xj = 1. When recast in terms of the expan-
sion coefficients ψ(�x), the eigenvalue equation can be seen as
a discrete equation on the vertices of a mesh grid covering
the portion of the (L − 1)-dimensional hyperplane defined
by

∑
j xj = 1 and xj ∈ [0, 1]. The N → ∞ limit plays the

twofold role of a thermodynamic limit for the size of the
fixed-number Fock space and a continuous limit for the mesh
grid. Assuming that the expansion coefficients can be seen
as a continuous function ψ(x1, x2, . . . ,x� + N−1, . . . ,xN ) −
ψ(x1, x2, . . . ,x�, . . . ,xN ) = O(N−1), the eigenvalue equation
becomes a SLE of the form [U − D]ψ(�x) = Ēψ(�x), where,
to the leading order in N−1, the self-adjoint operators are

U(�x) =
∑

j

(
sx2

j + v̄j xj

) − 2τ
∑
j�

Aj�

√
xjx�, (4)

D(�x) = τ

N2

∑
j�

Aj�

∂

∂(xj − x�)
√

xjx�

∂

∂(xj − x�)
. (5)

The effective parameters appearing in Eqs. (4) and (5) are
τ = J/UN , v̄j = vj/UN , and Ē = E/UN2. We remark that
a similar approach has been adopted in Refs. [17,19,20,29,30],
mostly for the two-site case. Note that the leading terms in
D(�x) and U(�x) are of order N0 and N−2, respectively. This
suggests that significant solutions to the above differential
equation might be strongly localized in the vicinity of the
local minima of U(�x). Thus a satisfactory description of a
subset of eigenstates of the Hamiltonian in Eq. (1) can be
obtained through the analysis of the small oscillations about
such minima.

Imposing the stationarity condition of U(�x) results in the
equation

sxj

√
xj + v̄j

√
xj − τ

∑
�

Aj�

√
x� = λ

√
xj , (6)

where λ is a Lagrange multiplier enforcing the constraint on �x.
Note that, upon setting

√
xj = αj , Eq. (6) is equivalent to the

time-independent DST equations, which thus emerge in our
description without any variational ansatz.

If the above stationary points correspond to nondegenerate
locally quadratic minima of U , the problem is mapped onto
a quantum harmonic oscillator. In particular, the expansion
coefficients ψ(�x) of the (local) ground state is a Gaussian
whose width is, in principle, accessible. As we mention,
the trial wave function in the coherent-state approach of
Refs. [13,22] is also a Gaussian whose center is the Fock state
corresponding to the relevant stationary solution of the DST
equations. However, once the center is chosen, the width of
such a Gaussian is constrained by the coherent-state structure.
Conversely, in our picture, the analysis of the local harmonic
potential provides the correct width for the Gaussian function,
which results in the exact description of the scaling of quantum
fluctuations in the N → ∞ limit. In addition, while coherent
trial wave functions are inherently Gaussian, our description
allows for non-Gaussian eigenstates. It should be remarked
that while our approach is surely applicable to low-lying
eigenfunctions of the Hamiltonian in Eq. (1), the assumption
of continuity may not hold for higher energies, as exemplified
in Fig. 1.

We now specialize the above discussion to the study of the
localization to delocalization transition for actractive bosons
on a one-dimensional translation-invariant (vj = 0) lattice
comprising L sites. As it is well known, the uniform state
xj = L−1 is always a solution to Eq. (6) and it coincides
with the absolute minimum of U(�x) [22,31] for attractive
interactions and τ > τloc as well as for repulsive interactions
at any τ . Below such a localization threshold the minimum of
U(�x) is L-fold degenerate and the corresponding solution of
Eq. (6) spontaneously breaks the translational symmetry due
to the nonlinear interaction term. For L > 5 the localization
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FIG. 1. (Color online) (a) Density plot for |ψ(x1,x2,1 − x1 −
x2)|2 for a midspectrum eigenstate of an L = 3 lattice containing
N = 600 bosons at τ = 0.26 > τloc. The discontinuous character
of the expansion coefficients is apparent. (b) Normalized number
fluctuations vs effective hopping amplitude on a lattice comprising
L = 6 sites for increasing N . The dashed and dotted lines are
the theoretical predictions obtained from Eq. (9) and from the
coherent-state approach [12–14], respectively.
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threshold coincides with the critical value below which the
uniform state becomes modulationally unstable, τloc = τmi =
[2L sin2(π/L)]−1. The same happens in the two-site case. For
L = 3–5 the low-lying stationary points of U(�x) exhibit a
more complex bifurcation pattern and there is a region of
metastability of the uniform state τmi < τloc. As a consequence,
the L-equivalent symmetry-breaking local minima of U(�x)
do not merge continuously with the symmetric minimum at
τ = τloc, but disappear abruptly [22,31]. The analysis of the
ground state of Eq. (1) is particularly simple in the region
τ > τloc, where the absolute minimum of U(x) is always
locally harmonic. In order to analyze the small oscillations
about such a minimum we introduce the small deviations ηk ,

xj = 1

L
+ 1√

L

L−1∑
k=1

exp

(
i
2π

L
jk

)
ηk. (7)

This choice decouples the equation [U − D]ψ = Ēψ into L −
1 independent equations,[

η2
k

4σ 4
k

− ∂2

∂η2
k

]
ψk(ηk) = Ēkψk(ηk), (8)

where ψ = ∏
k ψk , Ē = 4τ/(LN )2 ∑

k Ek/τk , and

σ 2
k (τ ) = 1

NL

√
τ

sτk + τ
, τk = 1

2L sin2
(

π
L
k
) . (9)

In particular, the lowest-energy gap of the original problem,
Eq. (1), is E = 4J/L

√
(sτ1 + τ )/ττ 2

1 . We note that the
above results were obtained in Ref. [18] within a Bogoliubov
approach and in Ref. [29], where Eq. (8) was derived by
introducing the small deviations from the uniform solution,
Eq. (7), directly into the structure of the Fock states.

Our method, however, is more general since it can, in
principle, be applied to any stable solution of the time-
independent DST equation, emerging as a nondegenerate
locally harmonic minimum of U(�x). Again, the eigenstate of
the Hamiltonian in Eq. (1) is a Gaussian state whose square
width vanishes as N−1. Note that, unlike Eq. (9), the square
width of the uniform solution in the coherent-state approach
[12–14] is (NL)−1, irrespective of τ and k.

The above calculation allows us to evaluate the (nor-
malized) number fluctuations (τ,N ) = N (〈x2

j 〉 − 〈xj 〉2) =
N

∑
k �=0〈η2

k〉 = N
∑

k �=0 σ 2
k (τ ), where the factor N ensures

that this quantity remains finite in the large-N limit. Figure 1(b)
shows that numerical estimates of  obtained from population
quantum Monte Carlo simulations [32] exhibit good agreement
with our analytical prediction in the large-N limit.

In the study of the ground state for attractive interactions
(s = −1), two situations do not fit in the above general
picture and require a separate discussion. For τ < τloc the
potential has L degenerate (harmonic) absolute minima while
for τ = τloc = τmi, on lattices comprising L = 2 or L > 5
sites, the (nondegenerate) absolute minimum of the potential is
not harmonic. In the first case, the expansion coefficients ψ(�x)
are the superposition of L Gaussian functions having the same
width and centered at the absolute minimum points. Figure 2
illustrates an example of this situation for L = 3. Thus the
τ < τloc interval is analogous to a first-order phase transition
line, where several different phases coexist.
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FIG. 2. (Color online) Ground state for N = 1200 attractive
bosons on a lattice comprising L = 3 sites at τ = 0.21 < τloc = 0.25.
(a) Density plot of |ψ(x1,x2,1 − x1 − x2)|2 showing that it consists
of the superposition of three peaks. (b) Plot along the cut x1 = x2

[dashed white line in (a)] showing that the peaks (thin black line)
are well approximated by a Gaussian function (thick green line).
The discrepancy at the tails is a finite-size (population) effect. See
Ref. [22] for more plots.

Likewise, the τ = τloc = τmi case is analogous to a second-
order critical point. Note indeed that since τ±1 = τmi, the
fluctuations of the first small-oscillation modes diverge as
σ±1(τ∗) ∼ τ

−1/4
∗ , where τ∗ = τ − τmi. In addition, the gap

vanishes as E ∼ τ
1/2
∗ . This signals that the harmonic term

of U vanishes for τ = τmi [33], so that the remaining leading
term is quartic and one has [�±1η

4
±1 − N−2∂2/∂η2

±1]ψ±1 =
Ē±1ψ±1. Introducing the rescaled variables η̃ = N1/3η±1 and
Ẽ = N4/3Ē±1, we find that ψ±1(η±1) = ϕ(N1/3η±1), where
ϕ is the (non-Gaussian) ground-state solution of [�±1η̃

4 −
∂2/∂η̃2]ϕ = Ẽϕ. This means that for τ∗ = 0 at finite N , the
system is not gapless as suggested by the Gaussian approx-
imation, but exhibits the expected avoided-level crossing.
Straightforward calculations allow us to determine the critical
exponent governing the vanishing of the energy gap with
increasing population, E ∝ JN−1/3. Likewise, we obtain

〈
η2

±1

〉 ∼ N−2/3,
〈
η2

k

〉 ∼ N−1 for |k| > 1, (10)

i.e., the singular part of the number fluctuation  is dic-
tated by 〈η2

±1〉, where the scaling of the |k| > 1 modes is
the same as far from criticality. Figure 3(a) illustrates the
correctness of Eqs. (10) in the L = 6 case. Assuming that
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FIG. 3. (Color online) (a) Scaling of N〈η2
k〉 for L = 6 and several

N . The numeric data points (symbols) are compared to the theoretical
predictions (solid lines) in Eqs. (9) and (10). (b) Data collapse
of finite-N numerical data showing the correctness of the scaling
hypothesis for the fluctuation of the first modes.
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〈η2
±1〉 obeys the standard finite-size scaling relation 〈η2

±1〉 =
Nγ/νf̃ (N1/ντ∗), from Eqs. (9) and (10) one easily works out
the critical exponents γ = −1 and ν = 3/2. As we mention,
here the boson population plays the role reserved for the system
size in the usual scaling approach. Figure 3(b) illustrates
how numerical data for a lattice comprising L = 6 sites
nicely collapse according to the above scaling hypothesis. We
conclude by remarking that for 2 < L < 6, where τmi < τloc,
there is no second-order critical point. The situation is similar
to ferromagnetic Ising models with a p-body interaction
(p > 2) [34].

In summary, we develop a general technique for the study
of a bosonic quantum system in the large-occupation limit.
In this framework the corresponding semiclassical model is
recovered without the need of an ansatz for the structure of
the quantum state and the dynamical transitions thereof incon-
trovertibly emerge as genuine quantum phase transitions. We
study in detail the localization transition of the paradigmatic
Bose-Hubbard model with attractive interactions, for which
we calculate explicitly some significant critical exponents
and perform a finite-size scaling analysis. Our findings are
supported by extensive numerical simulations.
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