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Comment on “Improved bounds on entropic uncertainty relations”
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We provide an analytical proof of the entropic uncertainty relations presented by J. I. de Vicente and
J. Sánchez-Ruiz [Phys. Rev. A 77, 042110 (2008)] and also show that the replacement of Eq. (27) by Eq. (29)
in that reference introduces solutions that do not take fully into account the constraints of the problem, which in
turn lead to some mistakes in their treatment.
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Consider two observables A and B, nondegenerate, with
discrete spectra and complete orthonormal sets of eigenvectors
{|ai〉}Ni=1 and {|bj 〉}Nj=1, respectively. Denote by pi(A) =
|〈ai |�〉|2 the probabilities for the outcomes of observable A

(and analogously for B) when the system is in the (pure)
quantum state |�〉. Let c = maxi,j |〈ai |bj 〉| ∈ [ 1√

N
; 1] be the

so-called overlap between the observables. Maassen and
Uffink (MU) [1] proved a nontrivial universal lower bound
for the sum

H (A) + H (B) � −2 ln c = BMU, (1)

where H = −∑
i pi ln pi denotes Shannon entropy. This

entropic uncertainty relation (EUR) has also been proved by
Bialynicki-Birula and Mycielski [2] in the special case when
the observables are conjugated, namely, 〈ai |�〉 and 〈bi |�〉 are
linked by a Fourier transform; then the bound is sharp in the
sense that there exists a state |�〉 for which the inequality is
saturated, with H (A) + H (B) = ln N .

In Ref. [3], de Vicente and Sánchez-Ruiz (VS) present an
improvement of the MU-EUR (1), showing numerically that
H (A) + H (B) � BVS, where the bound reads

BVS =

⎧⎪⎪⎨
⎪⎪⎩

−2 ln c if 0 < c � 1√
2

H1(c) if 1√
2

� c � c∗

F(c) if c∗ � c � 1,

(2)

with

F(c) = −(1 + c) ln

(
1 + c

2

)
− (1 − c) ln

(
1 − c

2

)
(3)

and

H1(c) = −PA ln PA − (1 − PA) ln(1 − PA)

−PB ln PB − (1 − PB) ln(1 − PB), (4)

where

PA ≡ cos2 α, PB ≡ cos2(θ − α), c ≡ cos θ, (5)

and α is a (numerical) solution of the equation

0 = sin(2α) ln

(
1 + cos(2α)

1 − cos(2α)

)

+ sin[2(α − θ )] ln

(
1 + cos[2 (α − θ )]

2[1 − cos2(α − θ )]

)
, (6)

where α �= θ/2 and α �= θ/2 + π/4 in order to specify PA �=
PB . The approximate value of c∗ is determined numerically
in [3].

We show that the replacement of Eq. (27) of Ref. [3] by
Eq. (6), via the change of variables (5), introduces solutions
that do not take fully into account the constraints of the
problem. This could potentially lead to erroneous conclusions.
In the following we provide an analytical proof of such results,
discussing in detail all possible cases. At the end of the
Comment we give some concluding remarks.

The mechanism proposed in Ref. [3] to improve the
bound (1) introduces the Landau-Pollak inequality (LPI)

arccos
√

PA + arccos
√

PB � arccos c, (7)

where PI = maxi pi(I ) for I = A,B, in two steps. First, for
I = A and B, minimize Shannon entropy H (I ) subject to a
fixed maximum probability PI , which leads to the minimal
entropies Hmin(PI ); second, search for the infimum of

M(PA,PB) = Hmin(PA) + Hmin(PB) (8)

over the possible PA and PB , subject to the LPI. According to
Ref. [3], the normalized probability distribution that minimizes
H (I ) subject to fixed PI is (PI , . . . ,PI︸ ︷︷ ︸

MI

,1 − MIPI ,0, . . . ,0),

where MI is a positive integer such that

1

MI + 1
< PI � 1

MI

. (9)

Then, one has

Hmin(PI ) = −MIPI ln PI − (1 − MIPI ) ln(1 − MIPI )

(10)
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for I = A and B, and the minimization of M is restricted
by the inequality constraints (7) and (9). We present rigorous
solutions to the problem, for different cases.

Case PA �= 1
MA

and PB �= 1
MB

. The minimiza-
tion is solved by introducing the Lagrangian∑

I=A,B[Hmin(I ) + μI (PI − 1
MI

) + νI ( 1
MI +1 − PI )] +

λ(arccos c − arccos
√

PA − arccos
√

PB) with Lagrange
parameters μA, μB, νA, νB , and λ. Deriving with respect
to PA and PB and using Karush-Khun-Tucker necessary
conditions for a minimum, one has

−MI ln
PI

1 − MIPI

+ λ

2
√

PI (1 − PI )
+ μI − νI = 0, (11)

μI

(
PI − 1

MI

)
= 0, νI

(
1

MI + 1
− PI

)
= 0, (12)

λ(arccos c − arccos
√

PA − arccos
√

PB) = 0, (13)

with μI ,νI ,λ � 0, for I = A and B.
Since the inequalities (9) are strict in this case, from (12) one

has μI = νI = 0. It is proved in Ref. [3] that λ �= 0 [otherwise
PI = 1/(MI + 1)]; therefore, the LPI becomes an equality.
Taking the cosine of this equality and using the constraints
(9), one has

c =
√

PAPB −
√

(1 − PA)(1 − PB) (14)

� 1 − (MA − 1)(MB − 1)√
MAMB

. (15)

As MI is a positive integer and c > 0, at least one MI must be
unity, and then

c � 1√
max(MA,MB)

. (16)

One can assume MA = 1 and MB = M � 1. Extracting λ from
Eq. (11) when I = A and B, one gets√

PA(1 − PA) ln

(
PA

1 − PA

)

= M
√

PB(1 − PB) ln

(
PB

1 − MPB

)
. (17)

These equations have several solutions. For example, a
solution for M = 1 is given by PA = PB = 1+c

2 , making the
function F given in Eq. (3) a possible candidate for a lower
bound of the entropy sum. For PA �= PB , Eqs. (14)–(17)
do not have analytic solutions. At this stage, the authors
in Ref. [3] perform the change of variables (5) and solve
numerically Eq. (6), instead of Eq. (17) with M = 1, proposing
the function H1 given in Eq. (4) as a possible minimum in a
range 0 < c � c∗. This is the critical point that motivates this
Comment.

We will present below a detailed analysis that exhibits the
following facts, depending on the value of the overlap:

(1) In the range 0 < c < 1√
2
:

(a) For M = 1, Eq. (17) together with (9) and (14) have
only the trivial solution PA = PB , leading to F . The value of
H1 reported in Ref. [3] corresponds to PA and PB outside the
allowed interval [see Eqs. (9) and (14)]. This seems to open
the way to improve the MU bound in this range.

(b) However, the extremum attained at 1+c
2 happens to be a

maximum for M. If this value lies below the MU bound, so is

the minimum; but, for the range c ∈ (c†; 1√
2
) with c† ≈ 0.61,

the maximum is higher than −2 ln c.
(c) In fact PA (respectively PB) “lives” within a given

interval and the minimum of M is attained at the end points
of that interval. Moreover, this minimum is less than −2 ln c,
which analytically and rigorously proves the result of Ref. [3]
in 0 < c � 1√

2
.

(2) In the range 1√
2

� c � c∗, solution 1+c
2 still corresponds

to a maximum for M(PA,PB ). However, Eq. (17) (with
M = 1) admits two symmetrical solutions yielding the same
minimum H1. We prove analytically that the extremizing
values of PA and PB satisfy the constraints (9) and (14).
However, the value H1(c) can be evaluated only numerically.
The result given in [3] is then confirmed in this range. In
passing, we prove that c∗ is a solution of the transcendental
equation

c∗ ln

(
1 + c∗

1 − c∗

)
= 2 ⇔ c∗ arctanh(c∗) = 1; (18)

then c∗ ≈ 0.834 as found in Ref. [3].
(3) In the range c∗ < c � 1, only the solution 1+c

2 remains,
as observed in Ref. [3]. Moreover, it corresponds there to a
minimum. We justify this analytically, confirming the result
of Ref. [3].

The proofs are as follows. First, we rewrite Eq. (14) as c +√
(1 − PA)(1 − PB) = √

PAPB . As both sides are positive,
they can be squared without further ado leading to a quadratic
equation in

√
1 − PB whose only allowed solution is√

1 − PB =
√

PA(1 − c2) − c
√

1 − PA. (19)

Solving for PB for given c gives

PB(PA) = (
√

(1 − c2)(1 − PA) + c
√

PA)2. (20)

We realize that PA, apart from lying between 1
2 and 1

[from (9) since MA = 1], is constrained to be larger than
c2 [from the positivity of (19)]. Furthermore, the bounds (9)
for I = B applied to (19) yield additional constraints on PA.
Summarizing, when M = 1, we get that PA belongs to the
interval

(P −
A ; P +

A ) =
{( 1

2 ; (c+√
1−c2)2

2

)
if 0 < c < 1√

2
(c2; 1) if 1√

2
� c � 1.

(21)

Next, we consider MM (PA) = M(PA,PB (PA)). The goal is to
study its behavior versus PA so as to determine its minimum.
To such end we compute successive derivatives of MM , with
the help of some auxiliary functions. Noting that, for given c,
dPB

dPA
= −

√
PB (1−PB )√
PA(1−PA)

, we obtain M′
M (PA) = EM (PA)√

PA(1−PA)
, where

EM (PA) = M
√

PB(1 − PB) ln

(
PB

1 − MPB

)

−
√

PA(1 − PA) ln

(
PA

1 − PA

)
(22)

has the same sign as M′
M . It is obvious that setting EM = 0

solves (17). In the following, let us restrict ourselves to the case
M = 1 (we will confirm later that the cases M > 1 need not to
be considered). We demonstrate now thatE1 has only four types

056101-2



COMMENTS PHYSICAL REVIEW A 84, 056101 (2011)

of behavior. Its derivative writes as E ′
1(PA) = − K(PA)

2
√

PA(1−PA)
,

where

K(PA) = (1 − 2PB ) ln

(
PB

1 − PB

)

+ (1 − 2PA) ln

(
PA

1 − PA

)
+ 4 (23)

has the opposite sign of E ′
1. We will see that K has always

the same behavior versus PA independently of c: it increases
up to a maximum and then decreases. This behavior, together
with the sign of the maximum of K, completely determines
the shape of E1. The derivative of K is K′(PA) = N (PA)√

PA(1−PA)
,

where

N (PA) = 2
√

PB(1 − PB) ln

(
PB

1 − PB

)
− 1 − 2PB√

PB(1 − PB)

−2
√

PA(1 − PA) ln

(
PA

1 − PA

)
+ 1 − 2PA√

PA(1 − PA)

has the same sign as K′. Finally, the derivative of N is
N ′(PA) = dPB

dPA

(1−2PB )R(PB )+4√
PB (1−PB )

− (1−2PA)R(PA)+4√
PA(1−PA)

, where R(x) =
ln( x

1−x
) + 1−2x

2x(1−x) . From the negativity of R(x) for x ∈ ( 1
2 ; 1)

and of dPB

dPA
, we conclude that N ′ < 0. Summing up, for any c,

N is continuous, strictly decreases in (P −
A ; P +

A ), and has only
one root: N ( 1+c

2 ) = 0. As a result, K increases with PA in the
interval (P −

A ; 1+c
2 ) and decreases in ( 1+c

2 ; P +
A ). Furthermore,

we notice that limPA→P −
A
K(PA) = limPA→P +

A
K(PA) due to the

fact that when PA → P −
A , then PB → P +

A , and vice versa.
With respect to the sign of K(PA), we show that only three
situations arise:

(1) when c ∈ (0; 1√
2
), the maximum of K, given by

K( 1+c
2 ) = −2c ln( 1+c

1−c
) + 4, is positive. Besides, the value

of K at the end points, given by limPA→P ±
A
K(PA) =

−2c
√

1 − c2 ln( 1+2c
√

1−c2

1−2c
√

1−c2 ) + 4, decreases with c from 4 to
−∞ and thus can have either sign.

(2) when c ∈ ( 1√
2
; c∗), the maximum of K is also positive,

while limPA→P ±
A
K(PA) = −∞. We can determine the value

of c∗ precisely when the maximum K becomes zero, arriving
at Eq. (18).

(3) when c ∈ (c∗; 1), the maximum ofK is negative and thus
K < 0 for all PA.

Going back to functions E1(PA) and M1(PA), we conclude
that:

(1) when c ∈ (0; 1√
2
), if K(P ±

A ) � 0, E ′
1 � 0 and

thus E1 is strictly decreasing; on the contrary, if
K(P ±

A ) < 0, E1 increases, decreases, and again increases.
In both cases, limPA→P −

A
E1(PA) = − limPA→P +

A
E1(PA) =

1−2c2

4 ln(
√

1−c2+c√
1−c2−c

) > 0; hence E1 = 0 has only one solution,

given by PA = 1+c
2 . This justifies that the value of H1 is

computed from values of PA and PB that do not satisfy
constraints of Eq. (9) in this range. Moreover, E1 changes
from a positive to a negative sign at 1+c

2 , implying that (i) the
extremum of M1 at 1+c

2 corresponds in fact to a maximum as
we previously claimed, and (ii) the minimum of M1 would be

attained at the end points P ±
A . As a conclusion, M1 is lower

bounded by limPA→P ±
A
M1(PA) given by

Minf = −1 + 2c
√

1 − c2

2
ln

(
1 + 2c

√
1 − c2

4

)

− 1 − 2c
√

1 − c2

2
ln

(
1 − 2c

√
1 − c2

4

)
. (24)

We now define the difference of the MU bound to this infimum:
�Minf (c) = BMU(c) − Minf(c). The derivative of �Minf with

respect to c is 1−2c2√
1−c2 [ln( 1+2c

√
1−c2

1−2c
√

1−c2 ) − 2
√

1−c2

c(1−2c2) ] which can be
analytically proved easily to be always negative in the range
c ∈ (0; 1√

2
). This implies that �Minf (c) is decreasing, with

the lowest difference given by lim
c→ 1√

2

− �Minf (c) = ln 2 > 0.

This analytically proves that Minf < BMU: it is impossible to
improve the MU-EUR in the range 0 < c < 1√

2
. This confirms

the result of Ref. [3]. Notice that studying what happens for
M > 1 or for PI = 1

MI
is then not necessary.

(2) when c ∈ ( 1√
2
; c∗), E1 increases, decreases, and again

increases, with limPA→P −
A
E1(PA) = − limPA→P +

A
E1(PA) =

−c
√

1 − c2 ln( c2

1−c2 ) < 0; hence E1 = 0 has now three solu-
tions: 1+c

2 , corresponding to a maximum of M1 (E1 locally
decreases), and another two giving the same minimum for
M1 (by symmetry). The minimum value of M1 in this
range is denoted as H1 in Ref. [3], where it is obtained
after solving numerically for α in Eqs. (5) and (6). The
same result is obtained here directly from (17) and (20),
taking care of the constraints (21) for PA [notice that only
M = 1 has to be considered as (16) enforces M � 1

c2 ]. We
also numerically confirm that H1(c) > −2 ln c, thus giving
the possibility of improving the MU-EUR in this range (see
the cases PI = 1/MI below).

(3) when c ∈ (c∗; 1), E1 always increases, and the limiting
values at the end points P ±

A are the same as in the previous
case, but the unique root 1+c

2 corresponds to a minimum:
M1( 1+c

2 ) = F(c) given in Eq. (3) (notice that only M = 1 has
to be considered since M � 1

c2 ). Consider now the difference
�F (c) = BMU(c) − F(c), whose derivative is 2

c
[c ln( 1+c

1−c
) −

2] > 0 in the range c > c∗. Thus �F (c) increases; since
�F (1) = 0, then �F (c) < 0 in this range, and therefore we
analytically prove that F > BMU, as observed in [3]. Again
the MU-EUR can possibly be improved in this range (see the
cases PI = 1/MI below).

What happens in the particular cases c = 1√
2

and c = c∗

follows from the continuity of the functions involved.
Cases PA = 1

MA
and/or PB = 1

MB
. In Ref. [3] the authors

check the case PI = 1
MI

for I = A or B and find as a possible
minimum for M(PA,PB)

G(c) = −c2

⌊
1

c2

⌋
ln c2 −

(
1 − c2

⌊
1

c2

⌋)
ln

(
1 − c2

⌊
1

c2

⌋)
,

(25)

where �·� indicates integer part (floor). They base their
procedure on the equivalent of Eq. (11) and claim that M

must be either 1 or 2, assuming the nonnegativity of the
Lagrange multipliers. As far as we understand, this reasoning
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seems erroneous, i.e., the multiplier μI corresponding to the
“equality constraint” PI = 1

MI
is not necessarily nonnegative,

as it should be for “inequality constraints.”
As already mentioned, the MU-EUR could be improved

only when c > 1√
2
. For PA = 1

MA
and PB �= 1

MB
(or the

contrary, exchanging the roles of observables A and B), we
have for I = B the same Eqs. (11) and (12); also Eq. (13)
remains valid. One still has μB = νB = 0, and thus λ �= 0.
The LPI remains saturated, which means that Eqs. (14), (16),
(19), and (20) are still valid. Thus, the constraint PA > c2 due
to Eq. (19) enforces PA = 1; thus MA = 1. As a consequence,
Eq. (20) gives PB = c2, which means also that, from (9),
MB = � 1

c2 �. In turn, one arrives at the function G given above,
valid only for c > 1√

2
. This also entails that � 1

c2 � = 1, and then

G = −c2 ln c2 − (1 − c2) ln(1 − c2) which corresponds, as it
should, to the Shannon entropy of the probability distribution
(c2,1 − c2,0, . . . ,0). One can numerically prove that G > H1

and, analytically, that for c � c∗, G > F ; therefore G does not
correspond to the minimal M.

Finally, we study the case PA = 1
MA

and PB = 1
MB

. The

sum of the minimum Shannon entropies is M( 1
MA

, 1
MB

) =
ln(MAMB). It is straightforward to see that the minimal M is
0 if c = 1 or ln M if 1√

M
� c < 1√

M−1
where M = 2,3,4, . . ..

Clearly these bounds are nonoptimal.
Summing up, we revisit analytically the full resolution

of the problem presented in Ref. [3] that deals with the
uncertainty related to the measurement of two discrete
quantum observables, using as a measure the sum of Shannon

entropies associated to both distributions constrained by the
Landau-Pollak inequality. De Vicente and Sánchez-Ruiz show
in [3] that the Maassen-Uffink bound can be improved using
this constraint when the overlap c between observables is in
the range ( 1√

2
; 1); we confirm analytically this result. Our

central contributions were to provide an analytical proof of
the nonimprovement of the bound when c is in the range
(0; 1√

2
), and the analytical proof that F is indeed a minimum

of the entropy sum M for c in the range (c∗; 1). Additionally,
we obtained the value of c∗ from an analytical expression,
given in Eq. (18). We detected a mistake in the VS-treatment
of the constrained extremization problem: the function H1

was computed for solutions of Eq. (6) that do not take
into account the whole set of restrictions on the pertinent
probabilities. This seemed to open the possibility of improving
the Maassen-Uffink bound in the range c ∈ (0; 1√

2
). But in

fact, we rigorously show that it is impossible to improve the
MU-EUR with the LPI in this range.

Moreover, let us comment that the function F(c) can be
interpreted as half the Jensen-Shannon divergence between
the pure states |ai〉〈ai | and |bj 〉〈bj |, for which the overlap is
maximum [4]. An interesting future research topic is to exploit
this relationship for establishing new entropic uncertainty
relations.
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