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Spectral transformations in the regime of pulse self-trapping in a nonlinear photonic crystal
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We consider the interaction of a femtosecond light pulse with a one-dimensional photonic crystal with
relaxing cubic nonlinearity in the regime of self-trapping. By use of numerical simulations, it is shown that,
under certain conditions, the spectra of reflected and transmitted light possess the properties of narrowband
(quasimonochromatic) or wideband (continuumlike) radiation. It is remarkable that these spectral features appear
due to a significant frequency shift and occur inside a photonic band gap of the structure under investigation.
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I. INTRODUCTION

The need for taking into account the noninstantaneousness
of the nonlinear response of a medium was realized soon after
the rise of nonlinear optics. From the end of the 1960s spe-
cialists studied the influence of nonlinearity relaxation in the
framework of the Debye model on such effects as laser beam
self-focusing [1,2] and parametric amplification [3]. Among
recent studies, attention has been attracted to modulational
instability effects in media with noninstantaneous nonlinearity
[4–6], resulting in generation of pulse trains [7] and solitons
[8], instability of speckle patterns [9], and reshaping of solitary
pulses [10].

However, the theoretical nonlinear optics of photonic band
gap materials usually deals with instantaneous processes of
nonlinearity. Many results may be found in reviews and mono-
graphs (see, for example, Refs. [11–14]). We should also note
some effects connected with ultrashort-pulse interaction with
nonlinear photonic crystals, such as pulse compression and
temporal soliton formation [15,16], subdiffractive propagation
[17,18], and pulse localization on a defect [19–21].

In this paper we consider spectral transformations of fem-
tosecond pulses interacting with a one-dimensional photonic
crystal with relaxing cubic nonlinearity. As was shown in
our previous publication [22], light self-trapping occurs in
such a nonlinear structure due to formation of a nonlinear
dynamical cavity (or trap) inside it. The present paper is a
logical continuation of that paper. The importance of spectral
investigation is connected with the possibility of spectral
broadening, which in some extremal cases can result in su-
percontinuum generation. This phenomenon can be observed,
for example, in photonic crystal fibers [23] or in filamentation
processes in bulk materials [24]. Spectral broadening is one of
the main points of our research.

The paper is logically divided into several sections. In
Sec. II we give the problem formulation and consider some
additional details of the self-trapping effect important for the
present paper. Section III is devoted to the spectral features
connected with the nonlinear interaction of a pulse with a
photonic crystal in the regime of self-trapping. Finally, Sec. IV
contains a short conclusion.

*dvnovitsky@tut.by

II. SELF-TRAPPING EFFECT

Propagation of an ultrashort pulse in a one-dimensional
nonlinear photonic crystal [a structure of (AB)N type] is
described by the Maxwell wave equation

∂2E

∂z2
− 1

c2

∂2(n2E)

∂t2
= 0, (1)

with the dependence of refractive index on light intensity
I = |E|2 as follows:

n(z,t) = n0(z) + δn(I,t). (2)

Here E is the electric field strength, n0(z) is the linear part
of the refractive index varying along the z axis, and δn is the
nonlinear part of the refractive index, which is governed by
the Debye model of relaxing nonlinearity [25]

tnl

dδn

dt
+ δn = n2I, (3)

where n2 is the Kerr nonlinear coefficient and tnl is the
relaxation time, which is assumed to be of the order of several
femtoseconds (fast electronic cubic nonlinearity). Further we
consider femtosecond light pulses with the amplitude of
Gaussian shape A = Am exp(−t2/2t2

p), where tp is the pulse
duration. To analyze the interaction of such a pulse with a
nonlinear photonic crystal, we use the finite-difference time-
domain method of numerical simulations which was described
in detail in Ref. [22]. The spectra of pulses (incident, reflected,
transmitted) in this paper are calculated as the absolute values
of the Fourier transform of the corresponding field profiles.
The spectra are normalized to the peak value of the incident
pulse spectrum which is recognized as unity.

The parameters used in our calculations are as follows:
the linear parts of the refractive indices of the layers A and
B of the photonic crystal na = 2 and nb = 1.5, respectively;
their thicknesses a = 0.4 and b = 0.24 μm; the number of
layers N = 200; the pulse duration tp = 30 fs; the central
wavelength of the initial pulse spectrum is λc = 1.064 μm if
not stated otherwise. The nonlinear coefficient of the material
is defined through the nonlinear term of the refractive index,
so that n2I0 = 0.005; this means that the pulse amplitude is
normalized by the value A0 = √

I0. The relaxation time of the
nonlinearity of both layers is tnl = 10 fs.

As it was predicted in our previous work [22], the
interaction of the pulse (whose duration is comparable to the
relaxation time) with a nonlinear photonic crystal results in
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FIG. 1. (Color online) Dependence of the output light energy
(normalized to the input energy) on the peak amplitude of the incident
pulse. Energy is integrated over the time 200tp (about six times larger
than the pulse transmittance time in the linear regime).

the effect of pulse self-trapping. This situation when the energy
of radiation leaving the structure is only a small fraction of the
incident pulse energy is shown in Fig. 1. It is seen that, for large
enough intensity of the pulse, the output energy demonstrates
a profound decrease corresponding to the self-trapping of
the pulse inside the photonic crystal. The output energy is
calculated by intensity integration over time at the input and
output points of the structure; thus we obtain the energies of
the reflected and transmitted light, and the total output energy
is their sum. As the amplitude of the incident pulse increases
further, light is trapped closer and closer to the input face of
the crystal so that the reflected radiation energy gets larger and
larger. Finally, the trapping occurs near the actual input, so that
most of the light is immediately reflected. The range of pulse
durations and relaxation times for the self-trapping effect to be
observed in our structure was studied in Ref. [22] as well: tnl

FIG. 2. Spectral curves for reflectivity (upper panel) and group
velocity dispersion (lower panel) of the photonic crystal under
consideration. The parameters of the structure are given in the text.

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ut

pu
t e

ne
rg

y

Wavelength (μm)

 A=5A
0

 A=2.5A
0

 A=2A
0

(a)

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ut

pu
t e

ne
rg

y

Wavelength (μm)

 transmitted
 reflected
 total

(b)

FIG. 3. (Color online) Dependence of the output light energy
(normalized to the input energy) on the central wavelength of the
incident pulse. (a) The results for different values of the amplitude.
(b) Comparison of transmitted and reflected energies for the pulse
with Am = 5A0. Energy is integrated over the time 200tp .

varies from a fraction of a femtosecond to about 150 fs, and tp
from about 10 fs to about 200 fs.

For better understanding of this effect, let us consider
its frequency dependence. In Fig. 2 we see the reflectivity
and group velocity dispersion (GVD) of the photonic crystal
considered as functions of the light wavelength. It is well
known that the GVD parameter k2 = d2k/dω2 is decisive
in observation of pulse compression [16,25]. Indeed, if the
nonlinearity coefficient n2 is positive (this is the case in our
consideration), then one needs to have a medium with negative
GVD. Since the self-trapping effect is characteristic for the
regime of pulse compression [22], we can expect that the pulse
will be trapped inside the photonic crystal if the pulse spectrum
lies in the negative-dispersion domain. This expectation is
justified in Fig. 3 where the output energy dependence on the
central wavelength of the pulse spectrum is represented. The
dip in this dependence is unambiguously correlated with the
negative-GVD region in Fig. 2(b). Moreover, the appearance
of a minimum in the output energy implies that there are some
competitive processes which come in contact and determine
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the result of the pulse-crystal interaction. It seems natural
to suggest that these processes are dispersion spreading and
nonlinear light-matter interaction as in the case of usual pulse
compression.

Figure 3(a) also shows that, for larger values of the pulse
amplitude, the optimal value of the central wavelength is
situated further from the band gap (compare the curves at Am =
2.5A0 and 5A0). At the same time, the dip for Am = 2.5A0

is deeper, which is in accordance with the assumption about
optimal (or close to optimal) trapping in this case (see Fig. 1).
Note that for Am = 2A0 there is no self-trapping behavior but,
nevertheless, there is a very shallow dip even closer to the
forbidden gap than at Am = 2.5A0.

III. SPECTRAL FEATURES OF LIGHT
IN THE SELF-TRAPPING REGIME

The change in shape of the reflected intensity connected
with the dynamical trap formation can be traced in Fig. 4,
where we plotted the results for different values of incident
pulse amplitude corresponding to the cases marked by the
arrows in Fig. 1. Most of all, we are interested in Figs. 4(c)
and 4(d), which show some remarkable features to be discussed
in detail. In contrast to the usual peaks of reflected light in
Figs. 4(a) and 4(b), corresponding to the cases of zero trapping
and maximal trapping, respectively, Fig. 4(c) was calculated
for a point on the upward slope of the reflected energy curve
(the amplitude is Am = 5A0). This means that self-trapping
still exists but some part of the radiation leaves the nonlinear
trap inside the photonic crystal. As one can see in Fig. 4(c),
this leaving radiation represents almost stationary radiation for
quite a long time. As a result, we can expect that the spectrum
of reflected light has to possess a pronounced narrow peak
corresponding to this quasimonochromatic radiation. This
expectation is entirely justified, as spectral plots demonstrate
in Fig. 5(a). It is seen that, for Am = 5A0, the spectrum of
reflected light really has a sharp peak, while in the cases Am =
A0 and Am = 3A0 the spectra approximately correspond to
the spectrum of the incident Gaussian pulse. Moreover, the

(a) (b)

(c) (d)

FIG. 4. Shape of the reflected intensity at different peak am-
plitudes of the incident pulse: (a) Am = A0, (b) Am = 3A0,
(c) Am = 5A0, and (d) Am = 7A0. The central wavelength of the
pulse spectrum is λc = 1.064 μm.
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FIG. 5. Spectra of (a) reflected and (b) transmitted radiation at
different peak amplitudes Am of the incident pulse corresponding to
those used in Fig. 4. The dashed curve depicts the spectrum of the
incident Gaussian pulse. The band gap of the linear photonic crystal
is shaded.

position of the spectral peak also provokes our interest,
since it is situated deep inside the photonic band gap of the
structure.

If we take a pulse with greater amplitude (Am = 7A0), then,
as mentioned above, the reflected light appears immediately
with a wide and seemingly unstructured envelope [Fig. 4(d)].
It turns out that its spectrum in this case completely covers
the band gap in continuumlike fashion [see Fig. 5(a)]. Note
that the spectra of transmitted radiation do not intrude into the
forbidden gap, as is witnessed by Fig. 5(b). In general, spectral
broadening can be linked with self-phase-modulation resulting
in the generation of new frequencies in the pulse spectrum due
to the temporal variation of the refractive index [24]. However,
the fact that the sharp edges of the spectrum include just the
entire band gap seems to be unexpected. In fact, we have a
situation when light converts under nonlinear interaction in
such a way that the spectrum is more and more pulled into
the forbidden gap. On the other hand, we should keep in mind
that self-trapping is connected with a local change of reflective
properties of the photonic crystal [22].

053857-3



DENIS V. NOVITSKY PHYSICAL REVIEW A 84, 053857 (2011)

(a)

(b)

FIG. 6. (Color online) (a) Shape of the transmitted intensity. (b)
Spectra of reflected and transmitted radiation. The peak amplitude of
the incident pulse is Am = 3A0. Calculations were performed for a
photonic crystal with linear A layers (first layers of the period). The
band gap of the linear photonic crystal is shaded.

Thus, if we are on the upward slope of Fig. 1, we can
obtain narrowband radiation in reflection. In other words, this
corresponds to stronger coupling between the pulse and the
nonlinear structure than in the case of the optimal self-trapping
effect due to the greater value of the incident intensity. One
might suggest that something similar should be observed in
the opposite situation when the light-medium interaction gets
weaker, i.e., in the region of the very abrupt downward slope in
Fig. 1. Obviously, the narrowband spectrum is expected to be
obtained in transmitted (not reflected) radiation in this case. In
order to prove this statement, we use another method to make
the coupling between the pulse and the nonlinear photonic
crystal weaker. We take materials with smaller nonlinearity,
rather than decreasing the intensity of the pulse. In Fig. 6
the results are shown for the (AB)N structure with linear A

layers, while the parameters of the B layers remain unchanged.
It is seen that the structure of the transmitted radiation is
similar to that of Fig. 4(c). As a result, in the spectrum
of transmitted light a pronounced quasimonochromatic peak
occurs [Fig. 6(b)]. This peak, however, is situated near the very
edge of the band gap of the linear photonic crystal. Obviously,
low-intensity quasimonochromatic radiation seen in Fig. 6(a)
cannot significantly change the refractive properties of the
structure through which it is to be transmitted. Therefore,
there is only a slight shift of the forbidden gap, which can
be referred to as a self-induced transparency effect in the
nonlinear photonic crystal.

Let us return to Fig. 3 and consider spectral transformations
for incident pulses with different central wavelengths λc. The
dip corresponding to the self-trapping phenomenon is situated
between two band gaps plotted in Fig. 2 (we call it the intergap
region). Changing λc in this region, one can obtain all the
variants of spectral peculiarities discussed above and even
more as can be seen in Fig. 7. Further, we list the main features
seen in this figure:

(i) When the spectrum of the incident pulse is out of the
intergap region (λc = 0.71 μm, which is the region of negative
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FIG. 7. (Color online) Spectra of reflected and transmitted radi-
ation at different central wavelengths λc. The peak amplitude of the
incident pulse is Am = 5A0. The band gap of the linear photonic
crystal is shaded. The position of the spectrum of the incident pulse is
characterized by the bell-shaped curve in the spectrum of the reflected
light.

GVD; see Fig. 2), the spectrum of reflected radiation has a
sharp peak near the very low-frequency (on the dip side) edge
of a narrow band gap.

(ii) If the spectrum is in the positive-GVD domain (λc =
0.8 μm), the peak for reflected radiation still occurs, but there
also appears a peak in the transmitted light spectrum near
the edge of the wider (long-wave) band gap. Self-induced
transparency is also observed due to the shift of the forbidden
gap. Obviously, this situation corresponds to the weak light-
matter coupling regime discussed previously in connection
with Fig. 6.

(iii) As we move further inside the negative-GVD region
(the region of the self-trapping dip, λc = 0.9 and 1 μm), the
peaks near both the wide and narrow gaps diminish and become
less and less pronounced (the peak for transmitted light moves
away from the edge of the gap).

(iv) At λc = 1.06 μm we see a narrow quasimonochromatic
peak actually inside the forbidden gap (compare with Fig. 5,
Am = 5A0). Note that the reflected radiation also appears
inside the narrow (short-wave) band gap.

(v) At λc = 1.08 μm the reflected light spectrum in the band
gap widens and takes a continuumlike shape with characteristic
oscillatory fine structure (compare with Fig. 5 at Am = 7A0).
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FIG. 8. (a)–(c) Spectrograms of reflected radiation at peak amplitudes of the incident pulse Am = A0, 5A0, and 7A0, respectively. The
central wavelength is λc = 1.064 μm. (d) Spectrogram of transmitted radiation at Am = 5A0 and λc = 0.8 μm.

(vi) If the initial spectrum is almost entirely inside the band
gap (λc = 1.15 μm), then we have the usual reflection without
any evidence of nonlinear interaction.

(vii) At λc = 1.4 μm we are also outside the dip and inside
the positive-GVD region. The spectra of both reflected and
transmitted light demonstrate a sharp break right on the edge
(the side opposite to the dip) of the band gap. There is no any
sign of self-induced transparency.

Finally, to make clear the connection between temporal
curves and spectra, we turn to the spectrogram technique
widely used in supercontinua investigation [23]. The spec-
trogram is calculated as [23]

S(ω,τ ) =
∣∣∣∣
∫ +∞

−∞
E(t)g(t − τ )e−iωtdt

∣∣∣∣
2

, (4)

where E(t) is the field under investigation (in our case, the
reflected or transmitted field), and g(t) = exp(−t2/2t2

p) is the
gate function which is chosen to be a replica of the input pulse.
The spectrogram S(ω,τ ) allows an intuitive understanding of
the correlation between temporal and spectral features of a
given signal. In Fig. 8 such spectrograms are shown; Figs. 8(a)–
8(c) corresponding to temporal and spectral curves of the
reflected radiation depicted in Figs. 4 and 5(a), respectively.
Figure 8(d) represents the spectrogram of transmitted radiation

of the spectrum demonstrated in the upper right panel of Fig. 7
(the case of λc = 0.8 μm).

The spectrogram of reflected light at the incident pulse
amplitude Am = A0 [Fig. 8(a)] shows two intensity peaks seen
in Fig. 4(a). These peaks are concentrated near the central
wavelength λc = 1.064 μm without any significant frequency
shift. Such a shift is easily seen in Fig. 8(b) at Am = 5A0,
so that low-intensity quasimonochromatic radiation occurs
exactly inside the photonic band gap. It is also worth noting that
at t � 75tp a frequency shift in the reverse direction (toward
λc) exists. This fact can be associated with the chaotic ending
of quasimonochromatic radiation seen in Fig. 4(c). For larger
input intensity (Am = 7A0), this reverse shift occurs earlier in
time, but the spectrum covers a wider frequency range with
approximately uniform intensity giving rise to continuumlike
radiation inside the band gap. The last spectrogram [Fig. 8(d)]
shows the transmitted quasimonochromatic radiation with a
large frequency shift from λc = 0.8 μm to about 1.12 μm. It
is easily seen that this shift happens very fast in time.

IV. CONCLUSION

In conclusion, in this paper we have studied the spec-
tral transformations of ultrashort (femtosecond) light pulses
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resulting from their interaction with a nonlinear photonic
crystal in the regime of self-trapping. In our analysis we
used only the processes of light self-action, so that the
effect of generation of wide and narrow spectra cannot be
connected by high harmonics and sum-frequency appearance.
However, as our results demonstrate, these self-interaction
processes are sufficient for impressive spectral transformations
in nonlinear photonic crystals. These transformations concern
both reflected and transmitted light spectra and depend on
the regime of light-material interaction. In particular, if this
interaction is strong (the pulse is trapped near the entrance
of the photonic crystal), a narrow peak and continuumlike
spectral features occur in reflected light. On the other hand, if
the light-structure interaction is weak (the pulse is trapped
near the exit of the photonic crystal), a narrow peak near
the edge of the band gap appears in the transmitted light
spectrum. Obviously, relaxing (noninstantaneous) behavior of
the nonlinearity and periodic change of the linear refractive
index (a photonic crystal per se) are the key conditions due to
the necessity of self-trapping.

We should also say a few words about perspectives of
this research. First, some improvements are possible in the
realization and control of the self-trapping effect by adjustment
of the photonic structure. In particular, a chirped photonic

crystal with varying period can be employed to shift the
trapping position inside the structure and, perhaps, to relax
the requirements on the materials. However, this modification
is still to be studied in detail. The second question is
connected with the possibility of experimental realization of
self-trapping and the corresponding spectral effects. Although
the parameters used do not belong to some specific nonlinear
medium, they seem to be quite realistic. The relaxation times
(a few femtoseconds) are characteristic of media with a fast
electronic mechanism of Kerr nonlinearity. However, such
media possess relatively low nonlinear coefficients; therefore
one has to use high-intensity pulses (∼100 GW/cm2) and take
into account the problem of the damage threshold, which is
high enough in the case of femtosecond pulses. We believe that
one can find some materials (for example, doped glasses [26])
which satisfy all these conditions.
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