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Phase transitions and dark-state physics in two-color superradiance

Mathias Hayn, Clive Emary, and Tobias Brandes
Institut für Theoretische Physik, Technische Universität Berlin, D-10623 Berlin, Germany

(Received 12 September 2011; published 29 November 2011)

We theoretically study an extension of the Dicke model, where the single-particle Hamiltonian has three
energy levels in Lambda configuration (i.e., the excited state is coupled to two nondegenerate ground states
via two independent quantized light fields). The corresponding many-body Hamiltonian can be diagonalized
in the thermodynamic limit with the help of a generalized Holstein-Primakoff transformation. Analyzing the
ground-state energy and the excitation energies, we identify one normal and two superradiant phases, separated
by phase transitions of both first and second oder. A phase with both superradiant states coexisting is not stable.
In addition, in the limit of two degenerate ground states a dark state emerges, which seems to be analogous to
the dark state appearing in the well-known stimulated Raman adiabatic passage scheme.

DOI: 10.1103/PhysRevA.84.053856 PACS number(s): 42.50.Nn, 05.30.Rt, 32.80.Qk, 32.90.+a

I. INTRODUCTION

Superradiance is a collective phenomenon originating
from atomic physics. There, it is regarded as a collective
spontaneous emission process of a dense ensemble of radiating
atoms [1]. The atoms interact indirectly via a light field. An
early microscopic description of this phenomenon was given
by Dicke [2].

In the context of phase transitions a collection of two-
level systems coupled linearly to one scalar bosonic mode
undergoes a second-order phase transition from a normal to
a superradiant phase at a certain critical coupling strength.
This phase transition has been investigated theoretically a
long time ago by Hepp and Lieb [3] and also by Wang and
Hioe [4]. However, there is no experimental realization in
atomic systems to date. There were theoretical proposals to
produce this phase transition in artificial quantum systems such
as circuit or cavity quantum electrodynamic (QED) systems
[5–7]. However, there exist no-go theorems for atomic, cavity,
and circuit QED systems, which theoretically preclude the
normal-superradiant phase transition [8–10].

Recently, experimental progress was achieved in this field
by the group of Esslinger, who coupled a Bose-Einstein
condensate to a single mode of an open optical cavity
[11]. The unitary dynamics of this system is described by
an effective Dicke Hamiltonian [11,12]. Experimentally, the
normal-superradiant phase transition is observed by measuring
the mean intracavity photon number.

Inspired by this experimental realization of an effective
Dicke-Hamiltonian, in this paper we theoretically investigate
an extension of the Dicke model. Here, three-level systems
in �-configuration are considered, which are coupled to two
independent scalar bosonic modes. We are interested in how
the phase transition is changed in this configuration. Further-
more, coherent population trapping [13], dark states, and the
stimulated Raman adiabatic passage (STIRAP) scheme [14]
are associated with this kind of system in the single-particle
and semiclassical case. We therefore study to what extent
dark-state physics plays a role in our quantum-many-body
setting.

The paper is organized as follows: At the beginning, in
Sec. II we introduce the model, give a detailed description of
the Hamiltonian, and discuss the symmetries of the model.

Subsequently in Sec. III we describe the Holstein-Primakoff
transformation for multilevel systems and derive an effective
Hamiltonian in the thermodynamic limit. We diagonalize this
effective Hamiltonian and give explicit expressions for the
ground-state energy and the excitation energies. Section IV
addresses the phase transition: The zero-temperature phase
diagram is mapped out and analyzed. In Sec. IV B we
discuss properties of the appearing dark state. Finally, Sec. V
concludes our contribution.

II. MODEL

We consider a quantum mechanical system consisting of N
distinguishable particles and two independent scalar bosonic
modes. Each particle i possess three energy levels |1〉(i),
|2〉(i), and |3〉(i) with energies E1 � E2 � E3, respectively.
For later analysis we define, � = E3 − E1, δ = E2 − E1,
with � � δ � 0. The level scheme is in so-called lambda
(�)-configuration. Each of the two lowest energy levels couple
to the highest energy level via one of the bosonic modes
respectively (see Fig. 1). The Hamiltonian has the form (h̄ = 1)

Ĥ =
3∑

n=1

En Â n
n +

2∑
n=1

{
ωn â†

n ân

+ gn√
N

(â†
n + ân)

(
Â 3

n + Â n
3

)}
. (1)

Here, Â s
r are defined by

Â s
r =

N∑
i=1

|r〉(i)〈s| , r,s = 1,2,3, (2)

and represent collective particle operators.
The diagonal operators Â n

n measure the occupation of the
nth energy level (i.e., how many of the N particles are in
the energy state |n〉). This illustrates the first term in the
Hamiltonian of Eq. (1). The second term gives the energy of
the two scalar bosonic modes, each one having the excitation
energy ω1 and ω2 respectively. The operators â

†
n and ân create

and annihilate a boson in the nth mode. They fulfill canonical
commutator relations, [ân,â

†
m] = δn,m and [ân,âm] = 0. Lastly,

the third term in the Hamiltonian Eq. (1) represents the
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FIG. 1. (Color online) Level structure of the �-configuration.
One particle has two ground states |1〉, |2〉 , and one excited state
|3〉, where the excited state is coupled to the two ground states
via two independent scalar bosonic modes with in general different
frequencies ω1, ω2 and coupling strengths g1, g2.

interaction of the particles with the two bosonic modes. Here,
gn are the corresponding coupling constants.

We call the first |1〉 and the third |3〉 energy levels of
the particle system together with the first bosonic mode blue
branch, since � � δ is assumed. Correspondingly, we call
the second |2〉 and the third |3〉 energy level of the particle
system together with the second bosonic mode red branch
(cf. Fig. 1).

Symmetries and phase transition. Our model is a generaliza-
tion of the Dicke model [2,15], where particles with only two
energy levels are considered, and the two states are coupled via
one scalar bosonic mode. In the thermodynamic limit the Dicke
model exhibits a nonanalytic behavior in physical observables
as a function of the coupling strength g. Thus, the Dicke model
exhibits a (quantum) phase transition, which is continuous (i.e.,
of second order) and separates two phases: a normal phase and
a so-called superradiant phase. The superradiant phase has a
ground state with spontaneously broken symmetry. A similar
behavior is anticipated in the extended model.

In analogy to the Dicke model, there exist two symmetry
operators

�̂n = exp
{−iπ

(−Â n
n + â†

n ân

)}
, n = 1,2, (3)

which commute with the Hamiltonian Eq. (1). These operators
have the physical meaning of parity operators and have
eigenvalues ±1. The operator η̂n = −Â n

n + â
†
n ân in the

exponent of the parity operator in Eq. (3) is related to the
number of excitations in the blue (n = 1) or in the red (n = 2)
branch of the �-system and the number of excitations in the
corresponding nth bosonic mode, respectively. The operator
η̂n itself is not conserved (i.e., [η̂n,Ĥ ] �= 0). This is consistent
with the Dicke model [15]. In the rotating wave approximation
the operators η̂n become conserved quantities. Conservation of
the two parities means that the Hilbert space decomposes into
four irreducible subspaces. It is the parity that is spontaneously
broken in the superradiant phase of the Dicke model. Thus, we
expect that at least one of the parities is also spontaneously
broken in our model.

Using the definition [Eq. (2)] of the operators Â s
r , one can

show that the two sets of operators { 1
2 (Â 3

3 − Â n
n ),Â 3

n ,Â n
3 },

n = 1,2 fulfill the angular momentum algebra, respectively

[i.e., they are generators of the special unitary group SU(2)
and can be understood as angular momentum operators]. In
addition, the operators Â s

r fulfill the algebra of generators of
the unitary group U(3) [16,17][

Â s
r ,Â m

n

] = δs,n Â m
r − δr,m Â s

n (4)

and are, according to that, generators of the group U(3). It is
known that the generators of the group U(N) can be represented
by either N or by N − 1 independent bosons [16,17]. The
first choice corresponds to the Schwinger boson representation
[16], the latter choice to the Holstein-Primakoff transformation
of the generators [16–18].

III. METHODS

The Dicke model was introduced in 1954 [2]. To our knowl-
edge there exists no exact analytical solution to this model for a
finite number N of particles. However, the Dicke Hamiltonian
can be exactly diagonalized in the thermodynamic limit [15]
(i.e., N → ∞). This can be achieved by using the already
mentioned Holstein-Primakoff transformation. In this article
we apply a generalized version of the Holstein-Primakoff
transformation to diagonalize the Hamiltonian [Eq. (1)] of
the �-system.

A. Generalized Holstein-Primakoff transformation

In the present paper we discuss the � system, which has
N = 3 single-particle states. Though, we will formulate the
following argument for a general number N of single-particle
states. The number of particles is denoted by N , whereas the
number of single-particle states is denoted by N.

The generalized Holstein-Primakoff transformation maps
the generators Â s

r of the group U(N) onto a combination of
creation and annihilation operators b̂

†
r ,b̂r of N − 1 independent

bosons. Hence, the operators b̂
†
r and b̂r fulfill canonical com-

mutator relations [b̂r ,b̂
†
s ] = δr,s , [b̂r ,b̂s] = 0. These bosons we

will refer to as Holstein-Primakoff bosons (HP bosons). One
of the N states of the one-particle system is called the reference
state, which we denote with |m〉. The meaning of the state |m〉
and which of the N states can be used as a reference state will
be elucidated later. Then, the generalized Holstein-Primakoff
transformation is given by [17]

Â s
r = b̂

†
r b̂s ,

Â m
r = b̂

†
r 	̂m(N ),

Â s
m = 	̂m(N ) b̂s ,

Â m
m = 	̂m(N )2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

r,s �= m (5)

with

	̂m(N ) =
√
N −

∑
r �=m

b̂
†
r b̂r . (6)

There are at most N HP bosons per mode (i.e., the expectation
value satisfies 〈b̂†r b̂r〉 � N r �= m, due to the operator 	̂m(N )
and the fact that b̂r acting on a state with zero HP bosons
in the rth mode equals to zero). In addition, the number
of HP bosons in all N − 1 modes does not exceed N (i.e.,∑

r �=m 〈b̂†r b̂r〉 � N ).

053856-2



PHASE TRANSITIONS AND DARK-STATE PHYSICS IN . . . PHYSICAL REVIEW A 84, 053856 (2011)

|1

|2

|3

b̂†2
b̂†3 δ

Δ

|1

|2

|3

b̂†1

b̂†3

δ
Δ

FIG. 2. (Color online) Physical interpretation of the bosons
introduced via the generalized Holstein-Primakoff transformation
[Eq. (5)]: The two bosonic operators b̂†

r , with r �= m, can be
understood as collectively exciting the particles from the reference
state |m〉 (left: m = 1, right: m = 2) to the state |r〉. The analog holds
for the annihilation operators b̂r .

We now apply the generalized Holstein-Primakoff trans-
formation [Eq. (5)] to the Hamiltonian of Eq. (1) with, for
example, |1〉 as the reference state (m = 1) and obtain

Ĥm=1 = E1 N + δ b̂
†
2 b̂2 + � b̂

†
3 b̂3 +

2∑
n=1

ωn â†
n ân

+ g1√
N

(â†
1 + â1) [b̂†3 	̂1(N ) + 	̂1(N ) b̂3]

+ g2√
N

(â†
2 + â2) (b̂†3 b̂2 + b̂

†
2 b̂3). (7)

The first line is the free part of the Hamiltonian, from which
one can infer the meaning of the HP bosons: The number
of HP bosons in the mode with frequency δ is given by the
operator b̂

†
2 b̂2. This means that b̂

†
2 is related to the creation of

excitations with energy δ, which is the energy separation of the
single-particle energy levels |1〉 and |2〉. Thus, the operator b̂

†
2

can be understood as collectively exciting the particles from
the first energy level to the second one. This is visualized in
Fig. 2. An analogous reasoning can be given for the other HP
boson corresponding to the operator b̂3.

B. Thermodynamic limit

The expectation value of the HP boson operators b̂r is
zero for a finite number N of particles. In contrast, in the
thermodynamic limit the expectation value of this operator can
be finite, and is then macroscopic. Given that the occupations
〈Â n

n 〉, and 〈â†
n ân〉 should scale with the particle number N ,

we make the ansatz

b̂r =
√
N
r + d̂r , r �= m, (8a)

ân =
√
Nϕn + ĉn, n = 1,2, (8b)

in the thermodynamic limit. Here
√
N 
r and

√
N ϕn are the

ground-state expectation values of b̂r and ân, respectively. This
means that the ground-state expectation value of the bosonic
operators d̂r and ĉn is zero and, consequently, these operators
can be interpreted as quantum fluctuations. Furthermore,
they fulfill canonical commutator relations and their matrix
elements are of the order of N 0. The parameters 
r and ϕn

can be chosen real and range from zero to one, which ensures
〈b̂†r b̂r〉 � N . Another viewpoint is that the operators d̂r and ĉn

can be generated from b̂r and ân respectively by a canonical
transformation and can be considered as displaced bosonic
modes [15].

Using the ansatz [Eq. (8)] we find that the ground-state
occupations of the particles and of the scalar bosonic modes
are given by

〈Â r
r 〉 = N 
2

r + 〈d̂†
r d̂r〉 , r �= m, (9)

〈Â m
m 〉 = N ψ2

m −
∑
r �=m

〈d̂†
r d̂r〉 , (10)

〈â†
n ân〉 = N ϕ2

n + 〈ĉ†n ĉn〉 , n = 1,2, (11)

with the abbreviation

ψ2
m = 1 −

∑
r �=m


2
r . (12)

Inserting the ansatz [Eq. (8)] into the operator 	̂m(N )
[Eq. (6)] of the Holstein-Primakoff transformation [Eq. (5)]
we obtain

	̂m(N )=
√
N ψ2

m −
∑
r �=m

[
d̂
†
r d̂r +

√
N 
r (d̂†

r + d̂r )
]

. (13)

Since we are working in the thermodynamic limit, we can
asymptotically expand the square root in powers of

√
1/N

and obtain up to the order N−1

	̂m(N )≈
√
Nψm

{
1− 1

2
√
Nψ2

m

∑
r �=m


r (d̂†
r + d̂r ) − 1

2N ψ2
m

×
∑
r �=m

[
d̂†

r d̂r +
∑
s �=m


r 
s

4 ψ2
m

(d̂†
r + d̂r )(d̂†

s + d̂s)

]}
.

(14)

In this expansion we have neglected terms of the order N−3/2

and higher, which do not contribute to the Hamiltonian of
Eq. (7) in the thermodynamic limit.

Finally, we insert the expression [Eq. (14)] for the operator
	̂m(N ) and the ansatz [Eq. (8)] into the Hamiltonian of Eq. (7).
In the thermodynamic limit we can neglect terms with inverse
powers of N and constants of the order N 0. This eventually
yields

Ĥm=1 = N ĥ
(0)
m=1 +

√
N ĥ

(1)
m=1 + ĥ

(2)
m=1, (15)

with

ĥ
(0)
m=1 = E1 + δ 
2

2 + �
2
3 + ω1 ϕ2

1 + ω2 ϕ2
2

+ 4g1ϕ1 ψ1 
3 + 4 g2 ϕ2 
2 
3, (16)

ĥ
(1)
m=1 = (d̂†

2 + d̂2)[δ 
2 − 2 g1 ϕ1 
2 
3/ψ1

+ 2g2 ϕ2 
3] + (d̂†
3 + d̂3)

[
�
3

+ 2g1 ϕ1 ψ1
(
1 − 
2

3

/
ψ2

1

) + 2 g2 ϕ2 
2
]

+ (ĉ†1 + ĉ1)(ω1 ϕ1 + 2 g1 ψ1 
3)
]

+ (ĉ†2 + ĉ2)(ω2 ϕ2 + 2 g2 
2 
3)
]
, (17)
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ĥ
(2)
m=1 = d̂

†
2 d̂2[δ − 2 g1 ϕ1 
3/ψ1]

+ d̂
†
3 d̂3[� − 2 g1 ϕ1 
3/ψ1]

+ω1 ĉ
†
1 ĉ1 + ω2 ĉ

†
2 ĉ2

− (d̂†
2 + d̂2)2 1

2g1 ϕ1 
2
2 
3

/
ψ3

1

− (d̂†
3 + d̂3)2g1 ϕ1 
3/ψ1

(
1 + 1

2
2
3

/
ψ2

1

)
− (d̂†

2 + d̂2)(d̂†
3 + d̂3)g1 ϕ1 
2/ψ1

(
1 + 
2

3

/
ψ2

1

)
+ (d̂†

3 d̂2 + d̂
†
2 d̂3)2 g2 ϕ2

− (ĉ†1 + ĉ1)(d̂†
2 + d̂2)g1 
2 
3/ψ1

+ (ĉ†1 + ĉ1)(d̂†
3 + d̂3)g1 ψ1

(
1 − 
2

3

/
ψ2

1

)
+ (ĉ†2 + ĉ2)(d̂†

2 + d̂2)g2 
3

+ (ĉ†2 + ĉ2)(d̂†
3 + d̂3)g2 
2. (18)

The Hamiltonian Ĥ separates into three parts ĥ(n), each one
scaling with N (2−n)/2 and containing products of n operators
d̂r , ĉi .

C. Ground-state properties

The ground-state energy ĥ(0)
m [Eq. (16)] of the Hamiltonian

[Eq. (15)] is a function of the parameters ϕ1, ϕ2, 
2 and 
3.
Next, we extremize the ground-state energy with respect to
theses parameters, i.e., we stipulate

∂ĥ
(0)
m=1

∂ϕn

!= 0, n = 1,2, (19a)

∂ĥ
(0)
m=1

∂
r

!= 0, r = 2,3. (19b)

In the case of ψ1 being finite, this stipulation is equivalent
to set the coefficients of the linear Hamiltonian ĥ

(1)
m=1 [Eq. (17)]

equal to zero (cf. Ref. [15]).
The first set of Eqs. (19a) gives conditional equations for

the parameters ϕn of the scalar bosonic modes,

ϕ1 = −2
g1

ω1
ψ1 
3, ϕ2 = −2

g2

ω2

2 
3, (20)

which, when inserted into the second set of Eqs. (19b), gives
conditional equations for the parameters 
r of the HP bosons,[

δ + 4

(
g2

1

ω1
− g2

2

ω2

)

2

3

]

2 = 0, (21a)

[
� − 4

g2
1

ω1

(
1 − 
2

2 − 2
2
3

) − 4
g2

2

ω2

2

2

]

3 = 0. (21b)

These equations have several sets of solutions:
(i) Normal state. The trivial solution, 
2 = 
3 = 0, is

attended by ϕ1 = ϕ2 = 0 [cf. Eq. (20)]. Since ϕ2
n measures

the macroscopic (∼ N ) ground-state expectation value of the
nth scalar bosonic mode [cf. Eq. (11)], this trivial solution
describes the normal state (i.e., no superradiant state) of the
system. In addition, the ground-state expectation value of the
occupation of the nth energy level, which is given by 〈Â n

n 〉,
is macroscopic for n = 1 only [cf. Eqs. (9), (10)]. Thus,
all particles occupy their respective ground state |1〉. The

ground-state energy of the many-particle system is given by
ĥ

(0)
normal = E1. Finally, we note that the normal state is always

a solution of Eqs. (20) and (21), irrespective of the couplings
g1 and g2. However, analyzing the Hessian matrix of ĥ

(0)
m=1

restricts the range of the first coupling to

g1 <
√

�ω1 /2 ≡ g1,c. (22)

(ii) Blue superradiant state. The second solution of
Eqs. (21) is given by


2 = 0, 
3 = ±
√

1

2

√
1 −

(
g1,c

g1

)2

, (23a)

ϕ1 = ∓ g1

ω1

√
1 −

(
g1,c

g1

)4

, ϕ2 = 0. (23b)

In contrast to the previous solution, this solution has a finite
parameter ϕ1 and for this reason a finite and macroscopic
occupation 〈â†

1 â1〉 of the first scalar bosonic mode. This
solution corresponds to a superradiant state of the sys-
tem, where superradiance occurs in the blue branch of the
�-system. More precisely, we call this state a blue superradiant
state. Furthermore, the first and the third single-particle energy
level are macroscopically occupied. If we insert the solution
[Eq. (23)] into the ground-state energy [Eq. (16)] of the
many-particle system, we obtain

ĥ
(0)
blue = E1 − �

4

(
g1

g1,c

)2[
1 −

(
g1,c

g1

)2]2

. (24)

Hence, the ground-state energy of the superradiant state is
always smaller than the ground-state energy of the normal
state. However, this solution is only valid for couplings g1 �
g1,c, since for smaller couplings g1 the nonzero parameters
of the solution [Eq. (23)] become purely imaginary and, in
addition, the Hessian matrix of ĥ

(0)
m=1 becomes indefinite.

(iii) Red superradiant state. There can be another set of
parameters ϕn, 
r that extremize the ground-state energy ĥ(0)

m .
This set cannot be deduced from the ground-state energy ĥ

(0)
m=1

from Eq. (16), because it represents not a local but a global
minimum of ĥ

(0)
m=1. Since ĥ

(0)
m=1 is defined on the unit ball B2 =

{(x,y) ∈ R2 | x2 + y2 � 1}, the global minimum lies on the
boundary of B2, that is 
2

2 + 
2
3 = 1 (ψ1 = 0) holds. To obtain

this global minimum one has to first of all set ψ1 = 0 in Eq. (16)
and omit all terms involving ψ1 in Eq. (17). Secondly, one
extremizes the ground-state energy as before, but taking the
constraint 
2

2 + 
2
3 = 1 into account. Eventually, we obtain


2 = ±
√

1

2

√
1 +

(
g2,c1

g2

)2

, (25a)


3 = ±
√

1

2

√
1 −

(
g2,c1

g2

)2

, (25b)

ϕ1 = 0, ϕ2 = ∓ g2

ω2

√
1 −

(
g2,c1

g2

)4

, (25c)

where we have introduced

g2,c1 ≡
√

(� − δ) ω2

2
. (26)
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The occupation of the first energy level |1〉 is not macroscopic
(i.e., it is negligible in the thermodynamic limit). Since ϕ1 = 0
and ϕ2 is finite, this state also corresponds to a superradiant
state, whereat superradiance occurs in the red branch of the
�-system. We call this superradiant state a red superradiant
state.

This solution can also be found by direct extremization of
the ground-state energy ĥ

(0)
m=2(
1,
3) (i.e., if one considers

the second level |2〉 as the reference state m of the Holstein-
Primakoff transformation [Eq. (5)]). In general, one can
say that using the Holstein-Primakoff transformation in the
thermodynamic limit with the mth state as the reference state,
one can describe many-particle states in which the occupation
of the mth energy level of the single-particle system is finite.
In order to describe the normal state, which is a state where all
particles occupy their respective ground state |1〉, one has to
take |1〉 as the reference state (m = 1). In contrast, to describe
a state where no particle occupies its respective ground state
|1〉, either |2〉 (m = 2) or |3〉 (m = 3) has to be chosen as the
reference state. Furthermore, we note that one can easily obtain
ĥ

(0)
m=2(
1,
3) from ĥ

(0)
m=1(
2,
3) from Eq. (16) by substituting

ψ1 
→ 
1 and 
2 
→ ψ2 = √
1−
2

1 −
2
3 .

At last, the ground-state energy of this red superradiant state
is given by

ĥ
(0)
red =E1 + δ− 1

4

[(√
�+

√
δ
) g2

g2,c2

− (√
� −

√
δ
)g2,c2

g2

]2

,

(27)

where

g2,c2 ≡
(√

� + √
δ
)√

ω2

2
(28)

is a second critical coupling strength.
Unphysical solution. There is also a solution of the Eqs. (21)

that corresponds to a state where both branches of the
�-system are superradiant. However, this state is either not
well defined for certain couplings g1 and g2 or it does not
minimize the ground-state energy [Eq. (16)]. In the latter case,
this solution can be attributed to a point of inflection on the
energy landscape ĥ

(0)
m=1(
2,
3).

A further solution of the Eqs. (21) represents a dark state.
This state is discussed in detail in Sec. IV B.

D. Excitation energies

So far, we have extremized the ground-state energy ĥ(0)

of the Hamiltonian [Eq. (15)] in the thermodynamic limit.
By this procedure the linear part ĥ(1) is eliminated as well.
The next step is to diagonalize the quadratic part ĥ(2). This
can be achieved by means of a principle axis or Bogoliubov
transformation [15]. The diagonalized Hamiltonian is then
given by

ĥ(2) =
∑

k

εk ê
†
k êk, (29)

where ê
†
k(êk) create (annihilate) quasiparticles, which refer

to bosonic excitations (i.e., ê
†
k and êk satisfy canonical

commutator relations). The operators ê
†
k,êk and the excitation

energies εk have to be evaluated separately in the three different

states. The determination of these quantities reduces to a
diagonalization of two-by-two matrices. The diagonalization
procedure yields four excitation energies, given by [k = (x ∈
{1,2},σ ∈ {+,−})]

ε2
x,± = 1

2

[
ω2

1 + ω2
1,− + 2λ ω1,−

±
√(

ω2
1 − ω2

1,− − 2λ ω1,−
)2 + 16 g̃2

1 ω1 ω1,−
]
,

(30)

ε2
x ′,± = 1

2

[
ω2

2 + ω2
2,− ±

√(
ω2

2 − ω2
2,−

)2 + 16 g̃2
2 ω2 ω2,−

]
,

(31)

with the abbreviations

ω1,− = �̄

2
(1 + ηx), ω2,− = δ̄ − �̄

2
(1 − ηx), (32a)

λ = −�̄

8

(1 − ηx)(1 + 3 ηx)

1 + ηx

, (32b)

g̃x = gx

√
2

ηx(1 + ηx)
, g̃x ′ = ±gx ′

√
ηx − 1

2 ηx

. (32c)

It holds for the normal state: x = 1, x ′ = 2, �̄ = �,
δ̄ = δ, and η1 = η2 = 1; for the blue superradiant state:
x = 1,x ′ = 2, �̄ = �, δ̄ = δ, and η1 = (g1/g1,c)2; and for the
red superradiant state: x = 2,x ′ = 1, �̄ = � − δ, δ̄ = −δ, and
η2 = (g2/g2,c1 )2.

IV. PHASE TRANSITIONS

Comparing the ground-state energies of the states we found
in the last section, we can derive the zero-temperature phase
diagram. As mentioned before, the normal state is only stable
for couplings g1 < g1,c and its energy is independent of both
coupling strengths g1 and g2. We also observed that the energy
of the blue superradiant state is always less than the energy of
the normal state. However, the blue superradiant state is stable
for g1 � g1,c only. In addition, by comparing the energies of
the blue [Eq. (24)] and the red [Eq. (27)] superradiant states, we
see that only for g2 � g2,c2 the red superradiant state is stable.
Furthermore, in this parameter regime its energy is always
smaller than the energy of the normal state (cf. Eq. (27) with
g2 = g2,c2 ).

A. Phase diagram

From this discussion we derive the phase diagram, which is
shown in Fig. 3. It consists of three phases: one normal phase
for couplings g1 < g1,c and g2 < g2,c2 , one blue superradiant
phase for couplings g1 � g1,c and g2 � ḡ2,c(g1), and lastly
one red superradiant phase for couplings g1 < ḡ1,c(g2) and
g2 � g2,c2 . If both couplings are at criticality, g1 = g1,c and
g2 = g2,c2 , all three phases coexist (i.e., there is triple point
in the phase diagram). Here, ḡ1,c(g2) and ḡ2,c(g1) parametrize
the same curve, which represents the phase boundary between
the two superradiant phases (see Fig. 3). Both ḡ1,c(g2) and
ḡ2,c(g1) are given by the condition that the energies of the
blue [Eq. (24)] and the red [Eq. (27)] superradiant states
intersect [i.e., both can be obtained by setting the Eqs. (24)
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FIG. 3. (Color online) Phase diagram for � > δ > 0 showing
the three different phases: the normal and the blue and the red
superradiant phase. The (symmetric) normal phase is defined by

2 = 
3 = ϕ1 = ϕ2 = 0. In the (symmetry-broken) blue superra-
diant phase 
2 = 0,
3 �= 0,ϕ1 �= 0, and ϕ2 = 0. Finally, in the
(symmetry-broken) red superradiant phase 
2 �= 0,
3 �= 0,ϕ1 = 0,
and ϕ2 �= 0 holds. The phase transition from the normal to the blue
superradiant phase is of second order (dashed line), whereas the phase
transition from the normal to the red superradiant phase and between
the two superradiant phases is of first order (solid line). The normal
state is metastable in the region of the red superradiant phase as long
as g1 < g1,c.

and (27) equal]. For ḡ1,c(g2) we obtain after several algebraic
transformations

ḡ2
1,c(g2) = g2

2
1

2

ω1

ω2

{
1 +

(
g2,c1

g2

)4

− δ ω2

2 g2
2

+
[

1 +
(

g2,c1

g2

)2]√[
1 −

(
g2,c1

g2

)2]2

− δ ω2

g2
2

}
.

(33)

In the limit δ → 0, the phase boundary flattens to a straight
line, limδ→0 ḡ1,c(g2) = √

ω1/ω2 g2.
The order of a phase transition is defined by the nonanalytic

behavior of a thermodynamic potential [19]. In the case
of zero temperature, the ground-state energy represents a
thermodynamic potential and hence its derivatives give the
order of the phase transition. The ground-state energy of
the normal state is E1 irrespective of the couplings g1 and
g2. Hence, all derivatives with respect to g1 and g2 vanish.
Comparing this result with the first and second derivatives
of the ground-state energy of the blue [Eq. (24)] and the red
[Eq. (27)] superradiant states, we see that the phase transition
from the normal phase to the blue (red) superradiant phase is
of second (first) order. The ground-state energy is shown in
Fig. 4.

In addition, the parameters 
r (r = 2,3) and ϕn (n = 1,2)
also give evidence for the phase transition and can be inter-
preted as order parameters. An order parameter is continuous
for second-order phase transitions and discontinuous for first-
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FIG. 4. (Color online) Ground-state energy ĥ(0), ground-state
occupation ϕ2

n of the first (n = 1) and the second (n = 2) bosonic
mode, and the ground-state occupation 
2

n of the single-particle
energy levels (n = 1,2,3). Numerical values: � = ω1 = 1, δ = 0.75,
ω2 = 0.25 (on resonance).

order phase transitions [19]. This behavior is visible in Fig. 4.
The order parameters are zero in the symmetric (normal)
phase and are finite in the symmetry-broken (superradiant)
phase. The corresponding symmetry is the parity symmetry
(see Sec. II). In the blue (red) superradiant phase the parity
symmetry corresponding to the parity operator �̂1 (�̂2) [see
Eq. (3)] is broken, since, for example, in the blue superradiant
phase for finite ϕ1 the operator ĉ

†
1 ĉ1 in the Hamiltonian of

Eq. (18) is not invariant under the symmetry transformation
�̂1: �̂1 ĉ

†
1 ĉ1 �̂

†
1 = ĉ

†
1 ĉ1 + √

N ϕ1(ĉ†1 + ĉ1) + N ϕ2
1 .

Both, the phase transition and the order of the phase
transition can also be deduced from the excitation energies.
The excitation energies from Eqs. (30) and (31) are shown in
Fig. 5. At the phase transition at least one of the excitation
energies either tends to zero or is discontinuous. The first case
corresponds to a second-order, the latter case to a first-order
phase transition. The second-order phase transition can be read
off the excitation energy ε1,− which is zero for g1 = g1,c and
g2 < g2,c2 .

Finally, we note that the phase transition from the nor-
mal to the blue superradiant phase is in accordance with
the superradiant phase transition in the Dicke model [15]
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FIG. 5. (Color online) Excitation energies εn,σ from Eqs. (30)
and (31). Numerical values: � = ω1 = 1, δ = 0.75, ω2 = 0.25
(on resonance).

(i.e., it is of second order and one (atomic) branch of the
excitation energies tends to zero at the phase transition). The
discontinuity of the order parameters and the first derivative
of the ground-state energy at the phase transition between
the normal and the red superradiant phase scales with

√
δ.

Thus, this first-order phase transition becomes continuous in
the limit δ → 0. However, the phase boundary between the two
superradiant phases persists to be a first-order phase transition
in this degenerate limit. This is also the case in the limit of
large couplings, g1/g1,c,g2/g2,c2 → ∞.

B. Dark state

Due to the interaction of a quantum system with its
environment, decay processes within the quantum system
occur. Eigenstates of the Hamiltonian that are unaffected by
these decay processes are called dark states. In our model,
a dark state is a many-body state that does not radiate (i.e.,
a state where the occupation in either of the bosonic modes
is zero). This condition is satisfied if the two parameters ϕn

are zero. From Eqs. (20) we see that the normal state, with

2 = 
3 = 0, is a trivial dark state. In general, it suffices
to set 
3 = 0 for a dark state. Applying this condition
to Eq. (21), we can identify a dark state for δ = 0 only
(i.e., for two energetically degenerate ground states). In the
thermodynamic limit the coherence of this dark state is given
by 〈Â 2

1 〉 = N ψ1 
2, and is therefore finite apart from the two
trivial cases ψ1 = 0 or 
2 = 0. The energy of the dark state is
simply ĥ

(0)
Dark = E1.

We obtain the excitation energies for the dark state
by diagonalizing ĥ

(2)
m=1 from Eq. (18). For any given 
2,

these energies can be computed from the characteristic

equation

det

⎛
⎜⎝

�2 − ε2 2 g1 ψ1
√

ω1 � 2 g2 
2
√

ω2 �

2 g1 ψ1
√

ω1 � ω2
1 − ε2 0

2 g2 
2
√

ω2 � 0 ω2
2 − ε2

⎞
⎟⎠ = 0,

(34)

where det M is the determinant of the matrix M . The
characteristic equation is readily solved in the case of
two-photon resonance (ω1 = ω2 = � ≡ ω), yielding the
energies

ε0 = 0, ε1 = ω, (35)

ε2,± =
√

ω2 ± 2 ω

√
g2

1

(
1 − 
2

2

) + g2
2 
2

2 , (36)

where the additional zeroth mode ε0 stems from the limit
δ → 0.

The parameter 
2 is arbitrary and can range from zero to
one. For a given 
2, we find by analysis of the Hessian matrix
of ĥ

(0)
m=1, that this dark state is metastable if the inequality

(g1/g1,c)2
(
1 − 
2

2

)
� 1 − (g2/g2,c)2 
2

2 (37)

is satisfied. Otherwise this dark-state solution is unstable. In
Eq. (37) we have introduced the critical coupling strength
g2,c ≡ √

�ω2 /2.
We emphasize that the dark state exists for δ = 0 only. By

inspection of the inequality [Eq. (37)], we make the following
statements: First, the dark state is stable for g1 < g1,c or g2 <

g2,c only. Furthermore, if both coupling strengths fulfill gn <

gn,c (i.e., in the normal phase) both ψ1 and 
2 can range from
zero to one. On the other hand, if g2 > g2,c and g1 < g1,c,
then 
2 is restricted to the interval [0,
2,max], where 
2,max >

0 is given by the inequality [Eq. (37)]. Correspondingly ψ1

is restricted to the interval [ψ1,min,1], with ψ1,min given by√
1−
2

2,max . An analog argument can be given for the case g1 >

g1,c and g2 < g2,c, where ψ1 and 
2 are interchanged.
For couplings g1 � g1,c and g2 < g2,c, inequality [Eq. (37)]

restricts the order parameters to ψ1 ≈ 0 and 
2 ≈ 1 (i.e., only
the second single-particle level is macroscopically occupied).
On the other hand, for couplings g2 � g2,c and g1 < g1,c

only the first single-particle level is macroscopically occupied
(i.e. ψ1 ≈ 1 and 
2 ≈ 0). This counterintuitive behavior is
reminiscent of the STIRAP scheme [14]. In contrast to the
STIRAP scheme, the actual values of the populations ψ1 and

2 in this dark state are not defined by the coupling strengths
g1 and g2, but rather by the preparation of the system. Thus,
the system cannot be driven coherently from a state with all
particles occupying the first single-particle energy level |1〉 to
a state where all particles occupy the second single-particle
energy level |2〉 just by changing the couplings.

In addition, we note that in this dark state the mode ε0 = 0
in direction of 
2 of the energy surface ĥ(0)(
2,
3) is trivially
massless [cf. Eq. (35)]. Therefore, tiny fluctuations can easily
excite this dark state along the direction of 
2, making the
state eventually unstable. This instability is visualized in
Fig. 6.
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FIG. 6. (Color online) Phase diagram (a) as in Fig. 3 and
energy surfaces ĥ(0) (b)–(d) in the degenerate (δ → 0) limit. In (a),
the solid and the broken red lines denote first- and second-order
phase transitions, respectively. The red lines in (b)–(d) visualize the
inequality [Eq. (37)] (i.e., the line where the dark state with 
3 = 0
is stable). However, as the red line is flat, fluctuations along the 
2

direction transform stable states on the red line into unstable states
outside the red line. Eventually, these states decay to superradiant
states with 
3 �= 0.

V. CONCLUSION

We have analyzed an extension of the well-known Dicke
model from two- to three-level particles. By means of a
Holstein-Primakoff transformation we have identified three
stable states in the thermodynamic limit: a normal, a blue
superradiant, and a red superradiant state. At zero temperature
these states correspond to three thermodynamic phases, which
we have arranged in a phase diagram. The phase transition
between the normal and the blue superradiant phase is of

second order and all other phase transitions are of first order.
We have also shown that a state with both superradiant states
coexisting is not stable. A dark state with zero occupancy of
the third single-particle level exists for δ = 0 only. However,
this dark state is not stable.

As in the original Dicke model, the same experimental
difficulties arise in our extended Dicke model (i.e., reaching the
critical coupling strength is challenging as well). Hence, using
three-level atoms has no advantage over the use of two-level
atoms.

However, we expect that similarly to the Dicke model
and its realization in the experiments of Baumann et al. [11]
there should be experimental manageable systems, which can
theoretically be described by an effective Hamiltonian of the
form presented here. In the case of the experiments in Ref. [11],
this might be achieved by coupling a Bose-Einstein condensate
to an additional cavity mode. Furthermore, an even richer
phase diagram with additional superradiant phases could be
generated in such a system.

Considering a cold quantum gas in an optical lattice, a
characteristic feature of our extended Dicke model especially
in the degenerate limit, δ → 0, could appear. In this regard, we
have an extension of a system proposed by Silver et al. [20]
in mind. There, it was shown that a two-band zero-hopping
Bose-Hubbard model coupled to a cavity light field can be
written as an effective Dicke model. If one superposes a
superlattice of twice the wavelength of the original lattice,
and couples the superlattice to two independent cavity light
fields, this extended Bose-Hubbard model can be mapped to
our extended Dicke model with δ = 0. Since in experiment
one has extensive control over the parameters of cold quantum
gases, the observation of superradiant phases should be
feasible.
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