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Bright spatial solitons in defocusing Kerr media with PT -symmetric potentials
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We show that defocusing Kerr media with parity-time-symmetric potentials can support one- and two-
dimensional bright spatial solitons. These solitons are found to be stable over the wide range where they
exist. More importantly, we discover an exact one-dimensional solution and a closed two-dimensional solution
in the structure.
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I. INTRODUCTION

It is well known that bright spatial solitons can only
exist for focusing nonlinearity in the planar waveguide [1].
Defocusing Kerr nonlinearity usually induces an enhanced
beam broadening so that it does not support any localized
structure other than vortices and dark solitons, which require
a background beam [1,2]. However, the bright solitons can
exist in periodic photonic lattices or waveguide arrays with
defocusing nonlinearity [3–5]. This means that transverse
periodic refractive index potentials can be strong enough not
only to suppress the beam broadening that is due to diffraction,
but also to overcome the broadening effect of the defocusing
Kerr nonlinearity [1].

Recently, parity-time (PT )-symmetric potentials were
introduced into optical field [6–17]. The definitions of PT
potentials and their properties have been discussed in the past
few years [18–22]. The real part of PT -symmetric potentials
must be a symmetric function of position, while the imaginary
component should be antisymmetric. In optics, such complex
PT -symmetric structures can be designed by introducing a
complex refractive-index distribution n(x) = nR(x) + inI (x)
into the wave-guided system, where nR(x) = nR(−x), nI (x) =
−nI (−x), and x is the normalized transverse coordinate
[6,9,10,15]. In the nonlinear domain, a novel class of nonlinear
self-trapped modes was found, and the interplay between the
Kerr nonlinearity and the PT threshold was analyzed for the
first time [6]. The analytical periodic solutions to a class of
nonlinear Schrödinger equations with PT -like potentials [7]
and the stable dissipative defect modes in both focusing
and defocusing media with strong two-photon absorption [8]
were also stated. We also numerically study the existence
and stability of gap solitons in PT complex periodic optical
lattices with the real part of superlattices and the gray solitons
in PT -symmetric potentials [23,24]. However, thus far all
studies have focused on bright solitons in self-focusing optical
PT -symmetric media, and bright spatial solitons in Kerr
self-defocusing media with a single PT complex potential
are never reported.

In this paper, we investigate a class of one- and two-
dimensional stable bright spatial solitons in Kerr self-
defocusing media with PT -symmetric potentials. We show
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that the existing and stable ranges of these solitons are the
same. Importantly, an exact one-dimensional solution and a
closed two-dimensional solution are found. This indicates
that the single PT complex potential can be strong enough
to suppress the beam broadening caused by diffraction and
defocusing Kerr nonlinearity.

II. ANALYTICAL AND NUMERICAL
SOLITON SOLUTIONS

In a Kerr self-defocusing medium with PT -symmetric
potentials, the one-dimensional optical beam evolution is
governed by the following normalized nonlinear Schrödinger-
like equation for the dimensionless light field amplitude q

[6–17],

i
∂q

∂z
+ ∂2q

∂x2
+ Rq − |q|2q = 0, (1)

where z is the propagation distance, R = V (x) + iW (x), and
V (x) and W (x) are the real and imaginary components of
the complex PT -symmetric potential, respectively. V (x) is an
even function and W (x) is odd. Physically, V (x) is associated
with index guiding while W (x) represents the gain or loss
distribution of the optical potential. We are going to search
for a stationary soliton solution of Eq. (1) in the form of
q(x,z) = u(x)eibz, where u is a complex function and b is
the propagation constant of spatial solitons. In this case, u

satisfies

∂2u

∂x2
+ [V (x) + iW (x)]u − |u|2u − bu = 0. (2)

Here, we assume a Scarff II potential shown in Fig. 1(a)
where V (x) = V0sech2(x) and W (x) = W0sech(x)tanh(x),
with V0 and W0 being the amplitudes of the real and imaginary
parts [6,7,21]. Although the PT -symmetric potential has
crossed the phase transition point, the solitons still exist
because the amplitude of the refractive-index distribution can
be altered by the beam itself through the optical nonlinearity.
The PT symmetric will remain broken if it cannot be
nonlinearly restored [6,7,9,10].

Equation (2) admits an exact solution of the form u(x) =
u0sech(x) exp{iρ tan−1[sinh(x)]}, where ρ = W0/3, b = 1,
and u0 =

√
V 0 − (w2

0/9) − 2. In order to validate the exact
solution, we numerically solve Eq. (2) using the spectral
renormalization method [25]. As is shown in Fig. 1(b), the
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FIG. 1. (Color online) (a) The real (dashed black curve) and
imaginary (dash-dotted pink curve) of the Scarff II potential at b = 1.
(b) |u(x)|2 (cyan circle curve), the real (blue diamond curve) and
imaginary components (green square curve) of the exact solution and
|u(x)|2 (solid black curve), the real (dashed red curve) and imaginary
components (dash-dotted pink curve) of the numerical solution at
b = 1. (c) The real (dotted red curve), imaginary components (dash-
dotted pink curve), and |u(x)|2 (dashed black curve) of the bright
soliton gained numerically at b = 0.31. The potential parameters are
V0 = 2.91 and W0 = 0.3 in (a), (b), and (c).

intensity |u(x)|2, the real and imaginary components of the
numerical and exact solutions, are coincident. The other
nonlinear mode of the potential with V0 = 2.91 and W0 = 0.3
at b = 0.31 is depicted in Fig. 1(c). Evidently, the change of b

can influence the solutions.
For all types of solutions, the power P = ∫ ∞

−∞ |u(x)|2dx is
a monotonically decreasing function of b at V0 = 2.91 and
W0 = 0.3 [Fig. 2(a)]. Evidently, the existing range of the
solitons is from the lower cutoff blow (≈0.31) to the upper
cutoff bupp (≈1.63). To check the stability of the solitons with
the method of linear stability analysis, we assume q(x) =
u(x)eibz + ε[F (x)eiδz + G∗(x)e−iδ∗z]eibz, where ε � 1, F

and G are the perturbation eigenfunctions, and δ is the growth
rate of the perturbation. By linearizing Eq. (1), we gain [6]

δF =
(

∂2

∂x2
+ V (x) + iW (x) − 2|u|2 − b

)
F + u2G, (3)

δG =
(

− ∂2

∂x2
−V (x)+iW (x) + 2|u|2 + b

)
G−u∗2F. (4)

The bright spatial soltions are linearly unstable when δ has an
imaginary component. On the contrary, they are stable when
δ is real. In Fig. 2(a), Im(δ), the imaginary component of δ, is
zero, so the solitons are always stable. Importantly, the stability
range of solitons is coincident with their existing range. To
examine linear stability results, we simulate the stable
propagation of beams with the initial input q|z=0 = u(1 + ρ1)
under different conditions, as is presented in Figs. 2(b)– 2(d),
where ρ1 is a broadband random perturbation.
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FIG. 2. (Color online) (a) P (black, upper curve) and Im(δ) (red,
lower curve) and vs b at V0 = 2.91 and W0 = 0.3. Point marked
with circle corresponds to the blow and bupp, respectively. (b) and (c)
Simulated propagation of the numerical and exact solitons in Fig. 1(b),
with 3% random noise. (d) Simulated propagation of the soliton in
Fig. 1(c), with 3% random noise.

Finally, we discuss the formation of PT bright spatial
solitons in two-dimensional symmetric geometries. In this
case, Eq. (1) takes the form

i
∂q

∂z
+ ∇2

⊥q + Rq − |q|2q = 0, (5)

FIG. 3. (Color online) (a) The real and (b) the imaginary of the
two-dimensional complex potential. (c) |u(x,0)|2 (cyan circle curve),
the real (blue diamond curve) and imaginary components (green
square curve) of the exact solution and |u(x,0)|2 (solid black curve),
the real (dashed red curve) and imaginary components (dash-dotted
pink curve) of the numerical solution in y = 0 plane. (d) The
eigenfunction u(x,y), (e) the phase θ , and (f) the intensity |u(x,y)|2
of the soliton. Parameters are b = 2, V0 = 3.01, and W0 = 0.3.
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FIG. 4. (Color online) (a) P (black, upper curve) and Im(δ)
(red, lower curve) and vs b at V0 = 3.01 and W0 = 0.3. The
points marked with circles correspond to blow and bupp, respectively.
(b) |u(x,y)|2 of the soliton at b = 2.45, V0 = 3.01, and W0 = 0.3.
(c) and (d) Simulated propagation of the solitons with 1% random
noise corresponding to Fig. 3(f) and Fig. 4(b), respectively.

where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2, R = V (x,y) + iW (x,y),

and again the potentials V and W obey the PT-symmetric
requirement, V (−x,−y) = V (x,y) and W (−x,−y) =
−W (x,y). Figures 3(a) and 3(b), respectively, show the
potentials V (x,y) = (2 + W 2

0 /9)[sech2(x) + sech2(y)] +
(V 2

0 − 2 − W 2
0 /9)sech2(x)sech2(y) and W (x,y) =

W0[tanh(x)sech(x) + tanh(y)sech(y)] [7] with V0 = 3.01
and W0 = 0.3. Then, a bound state nonlinear solution to
Eq. (5) that satisfies the condition u → 0 as (x,y) → ±∞
is sought in the form q(x,y,z) = u(x,y) exp[ibz + iθ (x,y)],
where u(x,y) =

√
V 2

0 − 2 − (W 2
0 /9) sech(x) sech(y) and

θ (x,y) = (W0/3){arctan[sinh(x)] + arctan[sinh(y)]} with the
propagation constant b = 2. To validate the closed-form
solutions, we also numerically solve Eq. (5) with
q(x,y,z) = u(x,y) exp(ibz) using the spectral renormalization
method. As is shown in Fig. 3(c), the intensity |u(x,0)|2, the
real and imaginary components of the numerical and exact
solutions in y = 0 plane are coincident. In Figs. 3(d), 3(e)
and 3(f), we depict a typical profile of the eigenfunction u, the
phase θ , and the intensity |u|2 for V0 = 3.01 and W0 = 0.3,
respectively.

The power P = ∫ ∞
−∞

∫ ∞
−∞ |u(x,y)|2dxdy is a monotoni-

cally decreasing function of b at V0 = 3.01 and W0 = 0.3.
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FIG. 5. (Color online) (a)–(e) Simulated propagation of the
solitons corresponding to Fig. 1(b), Fig. 1(c), Fig. 3(f), and Fig. 4(b),
respectively. In all cases 3% random noise was added to the input
field and potential distributions.

To check the stability of the solitons, we also make the
linear stability analysis and show that Im(δ) = 0, and thus
the solitons are always stable. Similarly, the stability range
of the solitons is the same as their existing range, which is
from the lower cutoff blow (≈0.65) to the upper cutoff bupp

(≈2.45) [Fig. 4(a)]. To support the linear stability results, we
simulate the stable propagation of beams with the initial input
q|z=0 = u(1 + ρ1) under different conditions, as is presented
in Figs. 4(c) and 4(d).

It is important that the potential is perturbed from a
practical viewpoint, so we do the direct numerical simulations
of Eqs. (1) and (5) with input conditions q|z=0 = u(1 + ρ1)
and R = R(1 + ρ2), where ρ2 is also a broadband random
perturbation. The results shown in Fig. 5 confirm the stability
of solitons.

III. CONCLUSIONS

In conclusion, we investigate a novel class of one-
and two-dimensional stable bright spatial solitons in Kerr
self-defocusing media with PT -symmetric potentials. These
solitons are shown to be stable over a wide range which is
the same as their existing range. Importantly, we discover an
exact one-dimensional solution and a closed two-dimensional
solution in the structure.
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