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Multispace quantum interference in a 57Fe synchrotron Mössbauer source

G. V. Smirnov,1,* A. I. Chumakov,2,1 V. B. Potapkin,1,2,3 R. Rüffer,2 and S. L. Popov1
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A physical picture for coherent emission of γ rays by a nuclear array excited with synchrotron radiation is
given. The particular case of a pure nuclear Bragg reflection from the 57FeBO3 crystal is analyzed. During free
de-excitation of the nuclei, a nuclear exciton polariton is developing inside the crystal and generates at the exit
of the crystal a coherent γ -ray beam. In the crystal the nuclear levels of 57Fe are split because of a combined
magnetic and electric interaction. The rich picture of γ -ray interference is described, which involves geometrical
space, energy, and spin domains. In the vicinity of the Néel temperature of the crystal the magnetic splitting of
nuclear levels nearly collapses. These conditions lead to drastic changes in the angular, energy, and temporal
properties of the emitted radiation. The emission angular function, which in the approximation of a plane incident
wave represents the emission intensity for different angular settings of the crystal near Bragg angle, strongly
broadens and transforms to a double-hump structure with a central dip between the peaks. The energy and
temporal distributions of the emitted radiation crucially depend upon the crystal angular setting. Beyond the
central dip, the energy distribution of nuclear scattering acquires a complicated form with several satellites at
various energies. In contrast, at the exact angular position of the central dip, the energy spectrum exhibits a single
line shape with the line width close to the natural width of the nuclear resonance. The obtained results constitute
the theoretical basis for the understanding and for the further elaboration of the 57Fe synchrotron Mössbauer
source—the device that provides a collimated beam of intense and polarized γ radiation in an energy bandwidth
of nanoelectronvolts, the nuclear resonance natural level width.
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I. INTRODUCTION

Hard x rays, generated by modern synchrotron radia-
tion (SR) sources, can effectively excite low-lying nuclear
metastable states. The short pulses of the x-ray photons
provide an almost instantaneous, compared to the lifetime of
nuclear state, knockwise excitation. Under these conditions,
the processes of photon absorption and photon emission are
two sequential, temporally decoupled, events. At the stage
of free de-excitation, nuclei of a target generate recoilless
γ radiation. This process can serve as an advantageous
alternative to a conventional Mössbauer source. The physical
nature of these two kinds of sources is, however, absolutely
different.

Although in both the radioisotope and the SR-based source
the same metastable states are excited and the de-excitation
of them occurs spontaneously, the excited states are quite
different in character and their decay modes differ drastically.
In the radioisotope source only one single nucleus is excited
at the time and thereafter emits radiation. In contrast, the
excitation of nuclei by a SR pulse and the subsequent nuclear
de-excitation are not localized at a single nucleus but spread out
over a nuclear ensemble. In fact, each nucleus of the ensemble
appears to be excited with a certain probability amplitude. In
other words, the excitation is shared by all those nuclei. Such
a state is referred to as nuclear exciton and can be perceived as
a nuclear polarization wave. The initial phase distribution in a
nuclear exciton is fully determined by the coherent properties
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of the transmitted radiation pulse. Typically, it is close to the
phase distribution existing in a plane wave.

During de-excitation, each nucleus emits a partial γ -ray
wavelet. Since all the wavelets are correlated in phase, their
interference leads to the creation of the common coherent
wave field. Inside a crystal, the nuclear polarization wave
and the radiation field are tightly coupled and form together
a self-consistent dynamical system, called nuclear exciton
polariton or nuclear polariton [1–3]. As the nuclear polariton
is developing, a γ -ray photon can be reabsorbed and re-emitted
by nuclei several times. At the exit of the crystal, the nuclear
polariton generates a γ -ray beam. The distribution of the
emitted γ quanta in time and in space is dictated by the
temporal and spatial development of the nuclear polariton,
which can exist inside the target in forms of either running
or standing wave. The running wave mode is realized in the
processes of the forward scattering, while the standing-wave
pattern is formed for nuclear Bragg reflections. The intensity
of γ radiation emitted after each SR pulse is decaying in
time. In space, the radiation usually forms the low-divergent
beams both in the forward scattering and in Bragg reflection
directions [4].

The delayed resonant γ radiation is, however, preceded by
a high-intense x-ray pulse contributing a huge nonresonant
background in the direction of the primary beam. Even
after extreme monochromatization of the incident radiation
(e.g., down to ∼10−3 eV) the signal-to-noise ratio is still
10−5–10−6(with the natural width of nuclear resonance
�0 ∼ 5 neV). As for Bragg reflection, an x-ray photon can
be reflected by a crystal through either nuclear resonant or
Rayleigh electronic scattering processes. It is the electronic
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scattering that brings the large background in the Bragg
direction on top of the nuclear resonant signal.

Fortunately, the nature of nuclear Bragg reflections offers
a way out of this disappointing situation. The solution of
the problem can be found using electronically forbidden
but nuclear-allowed Bragg reflections, which exist owing to
an unusual polarization dependence of nuclear resonance
scattering in the presence of hyperfine interaction. Such
pure nuclear reflections were predicted for antiferromagnetic
crystals [5,6] as well as for the crystals with electric field
ordering [7], and observed in Refs. [8,9]. It was a pure
nuclear reflection that was applied in the experiment where
nuclear resonance excitation by synchrotron radiation was
unequivocally observed [10].

Since the pure nuclear reflectivity is intimately related
to magnetic or electric hyperfine interaction, the nuclear
array in a crystal behaves as a multiline radiator due to
hyperfine splitting of nuclear levels. This is, of course, an
inconvenient characteristic of a Mössbauer source, which
can not be accepted. Luckily, a particular case of hyperfine
interaction, which is well matched to the idea of the generation
of a single-line Mössbauer radiation, does exist. Pure nuclear
reflectivity within an energy band of about the natural line
width of the 57Fe nuclear excited level has been obtained
when an iron borate 57FeBO3 single crystal was heated close to
Néel temperature TN [11]. Temporal properties of pure nuclear
diffraction in the vicinity of TN were studied in Ref. [12] using
the pulsed structure of SR.

Approaching the transition to the paramagnetic state at
Néel temperature (for 57FeBO3 TN is ∼348 K), the hyperfine
structure of the Mössbauer diffraction spectrum for 57FeBO3

collapses and the reflection normally disappears above TN due
to destructive spatial interference. However, an application of
an external weak magnetic field to the crystal results in a drastic
transformation of the interference conditions. According to
the quantum mechanical principle of superposition of states,
after absorption of a SR x-ray photon every nucleus of
the nuclear ensemble can be found on one of the four
allowed sublevels of the excited state. Furthermore, due to
mixing the nuclear spin states, each of these four sublevels
is characterized by two allowed spin projections. Thus,
the emission of a delayed gamma-ray photon is described
by the multispace interference of the relevant probability
waves, where geometrical, energy, and spin domains are
intrinsically involved. The combined multipath interference in
space, energy, and spin domains results in a pseudosingle-line
resonance structure, which provides a basis for the creation of
a single-line synchrotron Mössbauer (SM) source. An analysis
of the hyperfine structure under these conditions is given
in Ref. [13].

The source of SR-based Mössbauer radiation has been
developed [14] in 1997 at the European Synchrotron Radiation
Facility. The source emits a directed beam of fully recoilless
and polarized radiation. These properties have been effectively
used in the application of the SM source for studying magnetic
field distribution in iron alloys [15]. Significant progress in
the further development of the SM source has recently been
achieved at SPring-8 [16].

The physics of SMS is a fascinating example of multispace
quantum interference (i.e., the interference of a gamma-

quantum in geometrical, energy, and spin spaces). This paper
is devoted to the detailed analysis of these coherent processes,
which determine the properties of the SM radiation. Namely,
the angular, energy, and time distributions of the SM radiation
are analyzed in order to define necessary conditions for an
optimal performance of the SM source. The remainder of
the paper is organized as follows. Section II gives a detailed
analysis of the process of the multispace interference of nuclear
resonant scattering of SR by the unit cell of 57FeBO3. In
Sec. III, properties of the nuclear polariton for the diffraction
process of γ radiation by the nuclear array are considered.
In Sec. IV, the angular, energy, and time distributions of
the 57Fe SM radiation are calculated. A summary is given
in Sec. V.

II. MULTISPACE INTERFERENCE OF γ -RAY PHOTON
IN THE UNIT CELL OF 57FeBO3 CRYSTAL

We consider the emission of a γ -ray photon by the two
57Fe nuclei belonging to the unit cell of 57FeBO3, iron borate
(IB), crystal. Let the nuclei be excited by a short pulse of
synchrotron radiation much shorter than the lifetime of the
excited nucleus. Then the processes of nuclear excitation and
de-excitation are two sequential, temporally well decoupled,
events. After the prompt absorption of a primary photon and
some dwelling in the intermediate excited state, the transition
back to the ground state occurs with emission of a secondary
photon. In accordance with the general principles of excitation,
both nuclei are excited in the intermediate state with equal
probability amplitudes, the phases of which in the case of
a plane synchrotron radiation wave are determined by the
scalar product kira , where ki is the wave vector of the
incident radiation and ra is the vector indicating the position
of a nucleus in the unit cell (a = 1,2). In order to calculate
the emission in the direction kf , one should add up the
amplitudes of the two γ -ray wavelets with the account of their
relative phase, which is determined by the difference in their
corresponding optical paths. The phase difference is then given
by the expression (kf − ki)(r2 − r1). Thus, in order to evaluate
the result of the interference in geometrical space, one has to
consider two paths. The phase difference of waves scattered
along the two paths plays a crucial role for the intensity of
emission.

Each of the two spatial paths is branched further into
separate paths within the energy domain. Due to magnetic
dipole interaction of the nuclear spin with the internal field,
the nuclear levels in the IB crystal are split into sublevels.
The level of the ground state having nuclear spin Ig = 1

2 splits
into two sublevels; and the level of the excited state having
spin Ie = 3

2 splits into four sublevels. The selection rules for
magnetic dipole transition (M1), relevant to our case, allow
one to observe six nuclear transitions between the ground
and excited states with the change of the magnetic quantum
number M = me − mg = 0,±1. Here me,mg are the magnetic
quantum numbers for the excited and ground nuclear states,
respectively.

The IB crystal is a canted antiferromagnet. The magnetic
and crystalline unit cells of the crystal are the same (as
for Fe2O3 hematite crystal, see Fig. 16 in Ref. [17]). The
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TABLE I. Nuclear transitions between the ground and excited states with magnetic quantum numbers me → mg for various transition
energies Etrans

n and various nuclei a in the unit cell of the IB crystal.

a Etrans
1 Etrans

2 Etrans
3 Etrans

4 Etrans
5 Etrans

6

1 − 1
2 → − 3

2 − 1
2 → − 1

2 − 1
2 → + 1

2 + 1
2 → − 1

2 + 1
2 → + 1

2 + 1
2 → + 3

2

2 + 1
2 → + 3

2 + 1
2 → + 1

2 + 1
2 → − 1

2 − 1
2 → + 1

2 − 1
2 → − 1

2 − 1
2 → − 3

2

magnetic fields acting upon nuclei in the unit cell are equal in
magnitude but almost opposite in direction. For this reason,
the sublevels of the excited and the ground states have the
same energies for both nuclei but the states appropriate to the
equivalent sublevels are characterized by the opposite signs of
the magnetic quantum numbers. Therefore, the transitions at
the first and second nuclei with the same resonant transition
energies (Etrans

n ) have the opposite signs in the change M of the
spin magnetic quantum numbers (see Table I). Here the spin
quantization axis z is chosen to be directed along the magnetic
field at the first nucleus.

For each arbitrary energy Etrans of the radiation spectral
component all six transitions will give their specific con-
tributions to the interference field depending on the energy
distance between Etrans and a resonant energy Etrans

n , where
n = 1,2, . . . ,6. Here one definitely faces a bright case of
inter-resonance nuclear interference. For the Lorentzian shape
of each resonance, the summary amplitude of scattering
is then proportional to

∑6
n=1

1
vn−i

, where vn = (Etrans −
Etrans

n )/(�0/2) stands for the energy deviation from the nth
resonance in the units of the resonance natural half-width
(for the sake of simplicity we have assumed so far that the
amplitudes of different transitions are equal to each other).
Thus, for the two nuclei in the unit cell the combined process of
γ -ray interference in geometrical and energy spaces involves
twelve contributions.

The arrangement of atoms in the IB crystal does not
only result in the formation of the internal magnetic field
at the iron sites but also in the creation of a nonuniform
crystalline electric field. The electric field gradient (EFG)
in the crystal exhibits axial symmetry. The principal axis
of the EFG tensor is orthogonal to the internal magnetic
field at both iron sites. The 57Fe nucleus in the first excited
state possesses both a magnetic and a quadrupole moment,
while in the ground state it has only a magnetic moment. So,
the nucleus experiences a pure magnetic dipole interaction
in the ground state and a combined magnetic dipole and
axially symmetric electric quadrupole interaction in the excited
state.

The splitting of nuclear states in an IB crystal under condi-
tions of the combined magnetic dipole and electric quadrupole

hyperfine interaction has been analyzed in Ref. [13]. The four
dimensionless energies ε of the hyperfine interaction in the
excited state are given by

ε1,3 = + 1
2ν ±

√
ν2 − 3ν + 9,

(1)
ε2,4 = − 1

2ν ±
√

ν2 + 3ν + 9,

where ν = ωB/ωE , h̄ωB = geμnB is the energy of interaction
of the magnetic moment of the nucleus in the excited state
with the internal magnetic field B (ge is the nuclear g

factor in the excited state, μn is the nuclear magneton) and
h̄ωE = 1

2eQ∂2Vel
∂y2

1
2Ie(2Ie−1) is the energy of interaction of the

nuclear electric quadrupole moment Q with the electric field
gradient (Vel is the electric field potential at the nucleus, e is
the charge of proton); εi are given in the units of the quadrupole
interaction energy h̄ωE . Since in the excited state of 57Fe
the g factor is negative, the sublevel energies are ordered
in the following way: ε1 � ε2 �ε3 � ε4. Concerning the
value of the internal magnetic field, it is a function not only
of temperature but also of the applied magnetic field. The
application of the external field plays a significant role in
the near vicinity of Néel temperature where antiferromagnetic
ordering of the atomic spins can be induced in the crystal [18].

For pure magnetic interaction pure spin states (i.e., the
states with a defined spin projection m) can exist. But
under conditions of combined magnetic and electric hyperfine
interaction the excited nuclear states may be mixed over the
spin projections. In the particular case of the axially symmetric
EFG with the main axis orthogonal to the magnetic field and z

axis directed along the magnetic field, each nuclear excited
state is mixed over two spin projections. In this case the
Hamiltonian eigenvalues given by Eq. (1) are appropriate for
the eigenfunctions of the excited states represented in Table II.

The excited nuclear states with energies ε1, ε3 are mixed
over spin projections + 1

2 , − 3
2 , whereas the states with

energies ε2, ε4 are mixed over spin projections − 1
2 , + 3

2 .

Table II shows that only four amplitudes α1,α2,α3,α4 are
required to describe the eigenfunctions of all excited states
for both nuclei. Following the analysis presented in Ref. [13],

TABLE II. The mixed-spin eigenfunctions for various excited nuclear states with the eigen energies εi and for various nuclei a in the unit
cell of the IB crystal.

a ε1 ε2 ε3 ε4

1 α1|− 3
2 〉 + α2|+ 1

2 〉 α3|− 1
2 〉 + α4|+ 3

2 〉 α1|+ 1
2 〉 + α2|− 3

2 〉 α3|+ 3
2 〉 + α4|− 1

2 〉
2 α1|+ 3

2 〉 + α2|− 1
2 〉 α3|+ 1

2 〉 + α4|− 3
2 〉 α1|− 1

2 〉 + α2|+ 3
2 〉 α3|− 3

2 〉 + α4|+ 1
2 〉

053851-3
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FIG. 1. Amplitudes α1−4 of contributions of
the pure spin states |± 1

2 〉, |± 3
2 〉 into the mixed

spin states for different energy sublevels ε1−4 of
the excited nuclear state of different nuclei in
the unit cell of the IB crystal (see Table II). For
parameter ν see explanation to Eq. (1).

these amplitudes can be obtained in an explicit form

α1 = 1√
A2

1

/
27 + 1

, A1 = 2ν − 3 − 2
√

ν2 − 3ν + 9,

α2 = 1√
A2

2

/
27 + 1

, A2 = 2ν − 3 + 2
√

ν2 − 3ν + 9,

α3 = 1√
A2

3

/
27 + 1

, A3 = 2ν + 3 − 2
√

ν2 + 3ν + 9,

α4 = 1√
A2

4

/
27 + 1

, A4 = 2ν + 3 + 2
√

ν2 + 3ν + 9.

(2)

They are defined by a single parameter ν = ωB/ωE . The
magnetic hyperfine field in the IB crystal is a function of
temperature. Approaching the transition to the paramagnetic
state at Néel temperature TN , the field magnitude B rapidly
decreases. At room temperature, the magnetic interaction
dominates over the electric one, parameter ν � 90, and the
excited nuclear states are nearly pure spin states with α1 �
α3 � 1 and α2 � α4 � 0. In contrast, in the range of ν <

10 the excited states are already significantly mixed over
spin projections. The evolution of the mixed-spin states is
illustrated in Fig. 1. The dependencies of the pure spin state
contributions α1−4 into the mixed states are shown within
the range of ν < 5, where the magnetic dipole and electric
quadrupole hyperfine interactions are becoming comparable.
Figure 1 clearly shows that in approaching Néel temperature
(ν → 0), the excited states are getting strongly mixed over
spin projections. Because the two spin projections are mixed
in each excited substate the resonance scattering via a separate
nuclear transition in every nucleus branches out further into
the four paths.

For elastic scattering, the process considered here, the initial
and final states are the same. Therefore, if measurements do not

permit to establish which intermediate spin state was involved
in the scattering, the scattering paths related to all intermediate
states should interfere. Here one meets an interesting case
of intraresonance nuclear interference in the spin domain.
Figure 2 shows an example of the scattering paths via the
nuclear transition with the lowest transition energy Etrans

1 for
the first nucleus. As it is seen from the figure, in order to
build up the interference field for a given transition in a single
nucleus, four wavelets of the same frequency but different in
polarization states and scattering amplitudes should be added.

FIG. 2. Scattering paths via the pure spin states of the excited
nuclear substate having energy ε1 in the first nucleus of the IB crystal
unit cell. On the upper panel the transitions, up and down, between
the ground and the excited states are displayed. On the lower panel
four possible paths are shown, where changes of spin projections in
different paths are indicated. M = me − mg = ±1 are the changes
of magnetic quantum number in separate transitions; me,mg are the
magnetic quantum numbers for the excited and ground nuclear states
respectively.
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The amplitude of a wavelet for nth nuclear transition in ath
nucleus contains the complex Ga

n factor given by the following
general expression:

Ga
n(m′

e,m
′′
e ) = 〈

1
2 ,mg; 1,M

∣∣ 3
2 ,m′

e

〉 〈
1
2 ,mg; 1,M ′∣∣ 3

2 ,m′′
e

〉
c
m′

e

j c
m′′

e

j

× (
hs

dua
−M

)(
hs ′

d ′ua
−M ′

)∗
, (3)

where 〈 1
2 ,mg; 1,M| 3

2 ,me〉 designates a Clebsch–Gordan coef-
ficient, which is a probability factor for the transition between
sublevels of the ground and excited states taking into account
the angular momentum transfer for the (nucleus + photon)
system; it also depends on the spins of the ground and the
excited states and on their z projections. In this manuscript we
are considering diffraction with (M1) multipolarity (magnetic
dipole transition) and have chosen the magnetic basis for
the polarization vector. (hs

dua
−M ) is the scalar product of the

magnetic polarization vector hs
d of the wave propagating in the

direction d = 0,1 (0 stands for the direction along the incident
wave, 1 for the direction along the exit wave), with polarization
s = π,σ (vectors hσ

0,1 lie in the scattering plane, while vectors
hπ

0,1 are perpendicular to it) and the spherical unit vector ua
−M

in the coordinate system related to the hyperfine fields at the
ath nucleus in the unit cell. ua

0 = ua
z , ua

±1 = ∓ 1√
2
(ua

x ± iua
y),

where ux,y,z are mutually orthogonal unit vectors related to
the hyperfine fields in the unit cell, uz is directed along vector
B (see Fig. 3). Finally, c

me

j are the amplitudes of spin states
in the j th sublevel of the excited nuclear state. Below the c

me

j

amplitudes are related to the defined above α amplitudes.

c
− 3

2
1 = c

+ 3
2

1 = c
+ 1

2
3 = c

− 1
2

3 = α1,

c
+ 1

2
1 = c

− 1
2

1 = c
− 3

2
3 = c

+ 3
2

3 = α2,
(4)

c
− 1

2
2 = c

+ 1
2

2 = c
+ 3

2
4 = c

− 3
2

4 = α3,

c
+ 3

2
2 = c

− 3
2

2 = c
− 1

2
4 = c

+ 1
2

4 = α4.

In the example, depicted in Fig. 2, the interference in spin
space leads to the following expression of the G1

1 factor:

G1
1 = 1

2
α2

1

(
hs

du1
+1

)(
us ′

d ′u1
+1

)∗ + 1

2
√

12
α1α2

(
hs

du1
+1

)(
hs ′

d ′u1
−1

)∗

+ 1

2
√

12
α2α1

(
hs

du1
−1

)(
hs ′

d ′u1
+1

)∗

+ 1

12
α2

2

(
hs

du1
−1

)(
hs ′

d ′u1
−1

)∗
. (5)

This example explicitly shows that the result of interference
in spin space is strongly dependent on the amplitudes αj

of the pure spin substates in the mixed state, which are
functions of the crystal temperature. In order to derive the
intensity of the emitted radiation, one needs to calculate the
nuclear susceptibility amplitude η taking into account all
the mentioned interference paths according to the following
expression:

ηss ′
dd ′ = − 3

KV0
σ0βfLM

∑
a

exp {i (kd ′ − kd ) ra}

×
∑

n

1

vn − i

∑
m′

e,m
′′
e

Ga
n(m′

e,m
′′
e ). (6)

The outermost summation here represents the internuclear
interference of scattering by different nuclei in the unit cell,
the medium summation represents the inter-resonance nuclear
interference of scattering via the transitions between the
various sublevels of the ground and the excited states, and the
innermost summation represents the intraresonance nuclear
interference in the transitions via the various spin states of a
particular excited nuclear substate.

In Eq. (6) K = 2π/λ stands for the radiation wave number
in vacuum; V0 is the volume of the crystal unit cell; σ0 is the
resonance cross section; β is the resonant isotope abundance;
fLM is the recoilless scattering factor, which is the product of
square roots of the Lamb-Mössbauer factors in the directions
d,d ′; kd and kd ′ are the wave vectors of the incident and
exit waves, respectively. In general the nuclear susceptibility
amplitudes form a matrix with dimensions (4 × 4). Altogether,

Y

Z

X

hπ
0,1

hσ
1

hσ
0

k 0

k 1

θ

θ

θ
θ

uy
1

ux
1 u 1

1

u1
1

u0
1 uz

1

u0
2 uz

2

u 1
2

u1
2

uy
2

ux
2

B1

B2

FIG. 3. Scattering geometry of syn-
chrotron radiation from two nuclei in the
IB crystal unit cell; k0,1 and hπ,σ

0,1 are the
wave vectors and the magnetic polariza-
tion vectors of the incident and scattered
waves respectively, θ is incidence angle
(symmetric scattering geometry is con-
sidered); B1,2 are the magnetic fields at
the nuclei in the unit cell; u1,2

0,1,−1 are the
spherical unit vectors related to hyperfine
fields at the first and second nuclei in the
IB crystal unit cell (see text for definition).
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the combined γ -ray interference process in the geometrical,
energy, and spin spaces should involve 48 contributions.

In the IB crystal pure nuclear diffraction occurs for the
reflections with an odd sum of the Miller indexes, in particular,
for reflections (111), (333) etc. These are symmetric reflections
because IB crystals grow as platelets with surface planes
parallel to the (111) crystallographic plane. We consider the
horizontal scattering geometry. That is illustrated in Fig. 3,
where the polarization and wave vectors of the incident and
scattered waves and the sets of the spherical unit vectors at
each nucleus in the unit cell are depicted. The magnetic fields
at the nuclei lie in the scattering plane.

Synchrotron radiation is linearly polarized. The magnetic
polarization vector hπ

0 is perpendicular to the scattering
plane. The internal magnetic fields B1,2 are orthogonal to
the magnetic polarization vector. In the chosen geometry, the
susceptibility amplitudes matrix is reduced to a matrix of
second rank. For the π -polarized incident radiation, it takes
the following form:

ηss ′
dd ′ =

∣∣∣∣∣
ηππ

00 ηπσ
01

ησπ
10 ησσ

11

∣∣∣∣∣ . (7)

In the presence of hyperfine interaction a nuclear array may
act as an optically active medium for incident γ radiation. In
particular, because of the antiferromagnetic arrangement of
the fields at the nuclei in the unit cell of the IB crystal, the
polarization plane under conditions of pure nuclear diffraction
is turned through angle π/2, so that the exit wave is σ

polarized. In the next section we consider the coherent
scattering of the γ -ray by the whole nuclear array in the crystal.

III. NUCLEAR EXCITON POLARITON
UNDER DIFFRACTION CONDITIONS

A nuclear array in a crystal represents for Mössbauer
radiation a resonating three-dimensional grating, which gives
rise to resonant Bragg diffraction of γ -rays. If regularity of
the grating persists over a large volume of the crystal, the
multiple scattering of radiation occurs. Mutual interference
of the propagating and Bragg reflected waves produces a
resultant wave field the structure of which is of a standing-wave
type. In this way the standing-wave mode of nuclear exciton
polariton is realized under conditions of Bragg diffraction.
At the exit of the crystal a coherent beam of resonant γ

radiation is formed. In general, the Bragg diffraction in
large perfect crystals is described by the dynamical theory
accounting for the multiple scattering of radiation by atoms.
The dynamical theory for nuclear resonant scattering was
developed by different groups using different approaches. A
detailed account of the dynamical diffraction theory of nuclear
resonant diffraction is given by Kagan, Trammell, and Hannon
in their reviews [19,20]. We shortly summarize the theory
based on the solution of the Maxwell equations and apply it to
our case.

The existence of the nuclear exciton provides the physical
basis for the use of a macroscopic polarization, which is given
by the Maxwell equations to treat the radiative effects of the
nuclei. The induced nuclear current density represents then
a quantum mechanical average over the nuclear ensemble.

For a space and time Fourier component of the electric-field
vector E (k,ω), which represents the amplitude of a plane
monochromatic γ -ray wave having the wave vector k and
frequency ω, the Maxwell wave equation can be written in the
following form:

[k2 − K2]E(k,ω) − k[k · E(k,ω)] = 4πiω

c2
j(k,ω), (8)

where K and k are the radiation wave numbers in vacuum
and inside the crystal, respectively, j(k,ω) is the Fourier
component of the induced current density. It has contributions
from both the electric and nuclear subsystems. But our interest
is focused on the pure nuclear reflections. In this case the
interference field is created only by nuclear currents and
the above equation is in fact the equation for a space-
time Fourier component of the nuclear polariton where the
radiation field and nuclear excitation are related. In the linear
in-field approximation the excited nuclear current j(k,ω) ∝
η · E(k,ω) is proportional to the nuclear susceptibility ampli-
tude. Employing this relationship one can arrive at the Maxwell
equation for the field amplitude only. For the two-waves
diffraction case the Maxwell wave equation splits into a set of
two equations and in the conditions described in the previous
section the equations set acquires the form

(
k 2

0

K2
− 1

)
Eπ

0 = η̃ππ
00 Eπ

0 + ηπσ
01 Eσ

1 ,

(9)(
k 2

1

K2
− 1

)
Eσ

1 = ησπ
10 Eπ

0 + η̃σσ
11 Eσ

1 ,

where Es
d is the scalar electric field amplitude of a definite

wave polarization and propagation direction, k0 and k1 are the
complex wave numbers describing the coherent waves inside
the crystal, and ηss ′

dd ′ (ω) are the nuclear susceptibility ampli-
tudes considered above (radiation frequency ω = Etrans/h̄), the
amplitudes labeled by tilde include the electronic susceptibility
amplitudes. Electrons add their contribution only into 00 and
11 scattering channels. The complex wave numbers k0,1 differ
from the absolute value of the wave vector in vacuum K by
only small complex corrections

k0 = K(1 + ε0), k1 = K(1 + ε1). (10)

In the vicinity of the Bragg angle ε1 = α/2 + ε0/β, where
α = −2 sin 2θB�θ is the angular parameter proportional to
the deviation �θ from the Bragg angle θB and β is asymmetry
parameter, β = −1 in the case of symmetric Bragg diffraction.
With the account of the relations Eq. (10) we arrive at the
following equations set (neglecting the small order values):

2ε0E0 = η̃00E0 + η01E1,
(11)

(−2ε0 + α)E1 = η10E0 + η̃11E1,

where polarization indexes are omitted. The equations (11)
have a solution for the scalar field amplitudes only if the
determinant formed by their coefficients vanishes

[
η̃00 − 2ε0 η01

η10 η̃11 + 2ε0 − α

]
= 0. (12)
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FIG. 4. (Color online) Evolution of the γ -ray emission landscape. The internal magnetic field at 57Fe nuclei positions is: (a) 330 KOe,
(b) 50 kOe, (c) 2 kOe.

Eq. (12) determines the dispersion of the electromagnetic
waves in the crystal, giving the complex value ε0 as a function
of the radiation frequency ω and of the angular deviation α

from the exact Bragg position. There are two roots of the
Eq. (12)

ε
(1,2)
0 = 1

4 {(η̃00 − η̃11 + α)}∓
√

(η̃00 + η̃11 − α)2 − 4η10η01.

(13)

Thus one should consider the two standing-wave solutions for
the interference wave fields WF1 and WF2, each corresponds
to a particular dispersion correction ε

(1)
0 or ε

(2)
0 . Substituting

ε0 from Eq. (13) into Eq. (11) one can find solutions for
the relevant pairs of the scalar amplitudes. Since Eqs. (11)
are homogeneous one has to use in addition the boundary
conditions for the scalar amplitudes. Finally one arrives at the
solutions for the WF amplitudes where the latter are modulated
in the direction perpendicular to the reflecting planes in such
a way that WF1 experiences an anomalously weak nuclear
absorption, while WF2 on the contrary experiences an anoma-
lously strong absorption. In the limit of a semi-infinite crystal
only the WF1 survives. A strong suppression of inelastic
scattering channels for this wave field is favoring an enhanced
γ -ray emission nearly without the internal conversion (see
Refs. [21,22]). The solution for the emitted radiation in this
case is as follows:

E(α,ω) = η10

2ε
(1)
0 − η̃00

ESR, (14)

where ESR = √
ISR/�ω is the scalar amplitude of the SR with

ISR as the intensity of SR within the frequency range �ω

selected by the monochromator system.
For nuclear resonant Bragg reflections the emission from a

crystal containing a nuclear array exhibits a combined angular
and energy dependence.

A three-dimensional landscape of a Bragg reflection in
the vicinity of the nuclear resonance and of the Bragg
angle is formed. In the case of the IB crystal the landscape
undergoes dramatic changes while heating the crystal from
room to Néel temperature. The transformation of the energy-
angular landscape is seen from Fig. 4. The emission intensity
functions I (α,ω) = |E (α,ω)|2 are displayed there for the
actual scattering geometry (see Fig. 3) in the case of the
pure nuclear reflection (333) for three different values of
the internal magnetic field: 330 kOe (ν ≈ 87) in Fig. 4(a),
50 kOe (ν ≈ 13) in Fig. 4(b), and 2 KOe (ν ≈ 0.5) in
Fig. 4(c). The energy scales cover the range of characteristic
hyperfine interaction in 57FeBO3 and the angular scales cover
the characteristic range of nuclear Bragg reflection (333) in
the iron borate single crystal. The four well-separated crests,
extended along the angular coordinate are seen in Fig. 4(a),
each belongs to one of the allowed transitions with M =
±1 at the relevant transition energies Etrans

1,3,4,6 (see Table I).
The angular scale is centered at the Bragg angle. Far
from the Bragg angle the four isolated resonance peaks
(i.e., resonance lines) are formed. In approaching the Bragg
angle the resonances exhibit an impressive broadening: the
resonance lines with widths of several tenths of �0 are
getting overlapped in this angular range. This is an exciting
result of a strong coherent enhancement of the radiative
channel [23,24]. Because of the resonance broadening the
inter-resonance interference starts playing the essential role
even at room temperature. On the overlapping slopes of
the first and the thrid lines, as well as of the fourth
and the sixth lines the deep and sharp valleys (i.e., minima
of the scattered intensity) are observed, which are due to the
resonance absorption of γ radiation at the energies Etrans

2,5 . For
the transitions M = 0 the nuclear diffraction is cancelled due to
destructive interference of the constituting waves in geometric
space.
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When due to the crystal heating the internal field decreases
down to 50 kOe, the role of the inter-resonance interference
rises significantly, Fig. 4(b). The effect of the interference is
seen in a much broader angular range. The interference causes
a strong asymmetry in both energy and angular distribution
of the emitted radiation. Beyond the Bragg angle range the
energy spectrum contains only three peaks at the lower angles:
The third line is suppressed there, while at the higher angles
the four lines are present but with the strongly weakened inner
ones. Within the Bragg angle range a complicated interference
pattern is observed where one can still distinguish the four
lines of about equal strength. On the energy scale, off the
resonance range far extended wings attract attention. They
are also present on the former figure. The wings represent
an axial symmetric configuration. Such a symmetry is due to
varying conditions of the interference of the waves scattered
by nuclei and is related to the fact that the real part of the
nuclear amplitude is uneven function of the energy deviation
from resonance.

Finally, we come near to the Néel point with the magnetic
field of only 2 kOe [Fig. 4(c)]. The multiline spectrum of the
emitted radiation has significantly collapsed here. In the vicin-
ity of the Bragg angle a pseudosingle-line resonance structure
is observed, which is created by the destructive internuclear
interference (in geometrical space) as well as by a strong
inter-resonance (in energy domain) and intraresonance (in spin
domain) interference of radiation components discussed in the
preceding section.

As seen in Fig. 4 emission occurs over a range of settings
of the crystal around the Bragg angle. To reveal the details
of the interference pattern in the following section we have
analyzed the angular function of the coherent emission and
determined the angular breadth of strong emission for different
magnitudes of the internal magnetic field. In addition the
spectral composition and the time distribution of γ -ray photons
radiated by the nuclear array in the SM source were examined.

IV. ANGULAR, ENERGY, AND TIME DISTRIBUTIONS
OF 57Fe SM RADIATION

Initially we discuss the geometrical properties of the
interference pattern. First of all we wish to know how the
intensity of the γ radiation emitted by the crystal depends on its
angular setting in the vicinity of the Bragg angle. To estimate
the theoretical angular width of the emission function for a
perfect crystal we can neglect the angular width of the incident
beam, assuming a plane wave is incident on the crystal. To
find in this way the emission angular function we have to
integrate the two-dimensional emission function I (α,ω) [for its
definition, see text after Eq. (14)] over frequency, assuming SR
intensity to be a frequency-independent value ISR(ω) = const
over the whole range of the nuclear resonance. The emission
angular function is then given by the following integral:

I (x) =
∫ +∞

−∞
dvI (x,v) , (15)

where in the intensity function the angular and frequency
variables are replaced adequately: x = �θ ∝ α and v = h̄ω/

(�0/2). One should underline that the expression of Eq. (15)
gives the emission angular dependence integrated over the
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FIG. 5. The emission angular dependence of γ radiation from
the IB crystal integrated over the whole resonance range. The angular
setting of the IB crystal is changed in the vicinity of Bragg angle
for pure nuclear reflection (333). The angular functions are displayed
for different values of the internal magnetic field decreasing from the
bottom to the top in approaching Néel temperature.

whole resonance range. The emission angular functions
for different magnitudes of the internal magnetic field are
displayed in Fig. 5. The curve on the bottom panel of Fig. 5
having a symmetric shape represents the angular dependence
of emission at room temperature. The center of angular range
of pronounced emission is shifted with respect to the angle
given by the original Bragg reflection law by 15.5 μrad. This
shift is due to refraction of the incident beam at the entrance
into the crystal. The width of the reflectivity curve is very
small, 5 μrad.

When heating the crystal toward Néel temperature the
breadth and shape of the emission angular function is dras-
tically changed. Three main features can be recognized [25]:

(a) significant decrease of the emitted intensity,
(b) strong broadening of the angular range of emission,
(c) creation of the double-hump structure of the angular

curves with the dip exactly at the Bragg angle corrected for
refraction.

At the lowest field (i.e., the highest temperature of the
crystal) the emission intensity is only of the order of 10−2 of the
intensity at room temperature. Such diminution of the coherent
emission near Néel temperature was expected because of the
destructive nature of interference at this temperature.
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Along with the decrease of the coherent emission the
angular range of emission is being significantly enlarged:
from ∼5 μrad at the field of 330 kOe (the bottom panel
in Fig. 5) up to ∼60 μrad at the field of 2 kOe (the
upper panel in Fig. 5). This happens because the strong
off-resonance wings of nuclear scattering (located mainly in
the narrow angular interval around the exact Bragg position,
i.e., around the peak of the rocking curve) [see Figs. 4(a) and
4(b)] become heavily suppressed by destructive interference
when temperature approaches Tn [Fig. 4(c)]. In contrast, the
wider angular distribution of the on-resonance scattering is
less affected by destructive interference [Fig. 4(c)]. Thus, it
provides the wider rocking curve around Tn. It is of interest
to note that a further decrease of the field and of the related
emission intensity is not accompanied any longer by a change
of the shape and the width of the angular curve. A kind of
saturation is reached in the breadth of the angular range of
emission of γ rays over the entire resonance region near the
Néel point.

Figure 4(c) shows that the outer wings of the landscape
fall abruptly in the narrow angular interval near the Bragg
angle. Computer analysis of the emission function shows that
the wings are shifted out of the immediate Bragg range more
and more as the collapse of the hyperfine structure occurs.
They start therefore to give their contributions to the emitted
radiation only when the angle of incidence is shifted from the
central zone to the sides. This is the reason for the formation
of the double-hump structure and the appearance of the dip in
the emission angular function.

The angular distribution of the emitted γ radiation is
determined both by the emission angular function and by
the instrumental function (i.e., by the angular distribution of
synchrotron radiation in the incident beam). When the angular
divergence of the exciting radiation is large in comparison with
the angular width of the range of emission, the emission occurs
throughout the whole allowed range. If the SR intensity is a
constant value in this range, the angular distributions of the
emitted γ radiation just repeat those depicted in Fig. 5. In the
opposite case of very small divergence of the exciting radiation
in comparison with the angular width of emission, the angular
distribution of γ radiation reproduces the instrumentation
function form. To get the angular distribution of the emitted
radiation in an intermediate case one must find the product
of the emission angular function I (x) and of the instrumental
function at an arbitrary angle of incidence xp of the exciting
synchrotron radiation. An example of the angular distribution
of the emitted radiation is shown in Fig. 6, assuming the
instrumental function to be of Gaussian form F (x,xp) =

1
σ
√

2π
exp{− (x−xp)2

2σ 2 }. The nuclei are excited by SR exactly at
the dip of the emission angular function, xp = 15.5 μrad and
2σ = 10 μrad. The angular distribution of γ radiation emitted
in the vicinity of Néel temperature for the internal magnetic
field of 2 kOe is compared with the instrumental angular
function. As seen in the figure, under the considered real
conditions, the angular breadth of the emitted radiation exceeds
slightly the angular width of the instrumental function. The top
of the distribution is slightly modulated by the emission
angular function.
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FIG. 6. Angular distribution of the emitted γ radiation (solid
line); angular distribution of the exciting synchrotron radiation (dots)
(see text). The first distribution is scaled in intensity for comparison
with the second one. The crystal is set at the position of angular dip
(top panel in Fig. 5).

We turn now to the energy distribution of the emitted γ

radiation for a fixed angle of incidence of the exciting SR beam.
At the beginning we consider a simple model of the destructive
inter-resonance interference. As shown in Ref. [13], due to the
combined multispace interference only two resonance lines
survive close to Néel temperature. They belong to the third
and sixth resonances in the original hyperfine structure in
the 57FeBO3. The energies of the relevant transitions nearly
coincide and the strengths of the lines are almost equal. Thus
the spectrum in our model can be presented by the sum of two
Lorentzians, each renders a single line radiation emitted at a
separate resonance transition,

L (v,v1 − v2) =
∑
k=1,2

∣∣∣∣Ak

1

(v − vk) − i

∣∣∣∣
2

with A1 = −A2.

(16)
As v2 → v1, which corresponds to a collapse of the hyperfine
structure, the emission intensity [as the integrand in Eq. (15)]
vanishes. Under these conditions the double-peak structure is
being transformed into a pseudosingle line, whose shape is
given approximately by the following expression:

L(v,δ) = δ2

[(v − v1)2 + 1]2
, (17)

where δ = v1 − v2. Thus the energy distribution is presented
in our model by a Lorentzian-squared function. The line width
in this case is less than �0, namely ∼0.64�0. One should note
that the interference is constructive at the energies lying in
between the resonance ones v1 and v2, while, in contrast, it
is destructive on both left and right outer sides of resonance
region [the amplitudes in Eq. (16) tend to cancel each other
there]. Whence, γ -ray emission completely disappears when
δ → 0 (above Néel temperature). However, in the real case
the application of a small external magnetic field restores the
antiferromagnet structure of the crystal and γ -ray coherent
emission resumes [11]. Due to coherent effects the real width
of the energy distribution �coh can be larger than �0.

To obtain the energy distribution of the emitted γ radiation
at the angle of incidence of xp one should calculate the
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FIG. 7. Energy distributions of the emitted
γ radiation at different angles of incidence of
the exciting SR in the vicinity of the dip zone
of the emission angular function for the (333)
reflection and for the internal magnetic field of
2 kOe. The dip zone (taken from Fig. 5) is shown
on the upper panel. The energy distributions on
the lower panels refer to the left and the right
sides of the dip zone, L and R respectively,
as shown on the upper panel. The energy
distribution at the exact dip position is displayed
on both L and R panels (bold line curves). Each
next distribution corresponds to an angular shift
of the crystal from the dip position by 5 μrad.
For better visualization the energy spectra are
equally spaced along the vertical axis.

following integral:

Ĩxp
(v) =

∫ +∞

−∞
dxF (x,xp) · I (x,v). (18)

All the values entering into Eq. (18) are defined above.
Several energy distributions of γ radiation emitted near Néel
temperature at different angles of incidence of the SR are
displayed in Fig. 7. The central part of the emission angular
function around xp = 15.5 μrad is shown on the upper panel
in Fig. 7, where the considered angular interval is limited by
the L and R bars. It is mostly the region in between the two
humps of the angular curve. The divergence of the exciting SR
beam is taken as 5 μrad.

The step in change of the angle of incidence is of the same
value. The energy distributions of the emitted γ radiation are
shown on the lower panels. The distributions corresponding
to the shifts toward the lower hump of the emission angular
function (to the left of the dip zone) are denoted by L and
those toward the higher hump (to the right of the dip zone) are
denoted by R. The energy distribution of the emitted γ rays
in the case of excitation of the nuclear array at the exact dip
position is represented by the bold line curve on both L and R
graphs.

The nature of the double-hump structure in the emission
angular function prompts the idea to select just the dip zone
for obtaining a single-line SM radiation spectrum. Indeed,
as seen from the figure, in this range it is predominantly a
single line having a width close to �0 (horizontal bar on the
half-height). A strongly suppressed satellite is noticed on the
left-hand side of the main peak. When moving off the center
of the angular curve to its left hump a broader line is being
formed in the range of the lower energies of the radiation
spectrum. Its relative contribution is rising as the angular shift
is increasing. When moving off the center of the angular curve
toward its right hump the changes of the radiation spectrum
are mostly the same but now a broader line appears at the
right-hand side of the central maximum and the small satellite
is not smoothing out as in the L distributions. Appearance of
the side broad lines in both L and R spectra is due to excitation
of the nuclear array at the angles of incidence at which the
wings the emission landscape in Fig. 4(c) are already touched.

Finally we come to the angular resolved time distributions
of the emitted γ radiation. They were calculated by performing
the following integration

Ĩxp
(t) =

∫ +∞

−∞
dxF (x,xp)

∣∣∣∣
∫ +∞

−∞
dvE(x,v) exp{ivt/2t0}

∣∣∣∣
2

,

(19)

where t is real time and t0 = h̄/�0 is the natural lifetime of
the excited nuclear state. The inner integral represents the
inverse Fourier transform of the energy distributions of the
emitted radiation amplitudes. The obtained time distributions
are displayed in Fig. 8. This figure is delineated in the same way
as the former one. All time dependencies there correspond to
the energy distributions shown in Fig. 7. The time dependence
of the emitted γ radiation in the case of excitation of the
nuclear array at the exact dip is marked by the bold lines
on both L and R graphs. The nonexponential shape of this
dependence reveals the true nature of a single-line spectrum
obtained nearby the Néel point. In fact it is a pseudosingle
line formed in the process of the combined interference of
radiation paths in the geometric space, and in energy and spin
domains. In particular, the γ -ray waves emitted by nuclei in
the unit cell right upon excitation cancel each other, because
these waves are of equal amplitudes and opposite in sign
due to the phase shift between them of π at the zero time.
The relative phase between the waves is changing due to a
difference in their carrier frequencies with time toward their
constructive interference, therefore a quantum beat pattern
could be observed. However, at the same time the coherent
decay of the excited state is proceeding, so that the quantum
beat and decay processes are overlapped in time. In our model
of interference of the two Lorentzian lines, see Eq. (16), using
the inverse Fourier transform, we can obtain the following time
dependence:

I (t) = 2 [1 − cos (ω1 − ω2) t] exp (−t/t0) , (20)

where quantum beating and decay are presented by the
pre-exponential factor and the exponential one, respectively.
Quantum beat period here is T = 2πt0/(ω1 − ω2). The re-
sultant pattern depends strongly on the relation between the
characteristic times of the two processes, the beat period T and
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FIG. 8. Time distributions of the emitted γ

radiation at different angles of incidence of the
exciting SR in the vicinity of the dip zone
of the emission angular function for the (333)
reflection and for the internal magnetic field of
2 kOe. The dip zone (taken from Fig. 5) is shown
on the upper panel. The time distributions on the
lower panels refer to the left and the right sides
of the dip zone, L and R respectively, as shown
on the upper panel. The time distribution at the
exact dip position is displayed on both L and R
panels (bold line curves). Each next distribution
corresponds to an angular shift of the crystal
from the dip position by 5 μrad. For better
visualization the time distributions are equally
spaced along the vertical axis.

the natural decay time t0. In the case where the beat period and
decay time are of the same order the two processes compete.

In the real case one should consider the relation between
the beat period and the characteristic time of the coherent
emission tcoh. In the vicinity of Néel temperature the beat
period T can be several times larger than tcoh, since in this
temperature range the hyperfine splitting is already a fraction
of the breadth of the coherent resonance line. The transition
from destructive to constructive interference proceeds here
slower than the decay. In this approximation the following time
dependence is valid: I (t) ≈ t2exp(t/tcoh). The form of the time
dependencies in Fig. 8 is still determined by the competing
processes. Increase of the intensity due to positive-going
inter-resonance interference is compensated by the speeded up
coherent emission. This competition results in the formation
of the emission maximum in the time dependencies. When
approaching the times of fully constructive interference most
of the stored energy is released already through the incoherent
channels [12].

When moving from the central angular zone toward the
humps the time distributions are determined in addition to
the discussed reasons by the interference of the narrow central
component with the broader lines at the sides in L and R graphs
of Fig. 7.

V. SUMMARY

Electronically forbidden but nuclear-allowed Bragg reflec-
tions can be employed to generate the recoilless γ radiation
by exciting a nuclear array to its isomer level with the help
of the synchrotron radiation. Pure nuclear reflections exist
owing to a strong spin dependence of nuclear scattering in
the presence of hyperfine fields in crystals. This way a source
of Mössbauer radiation alternative to the radioisotope sources
can be realized. The coherent excitation of the nuclear array
leads to the creation of nuclear exciton polariton states, which
generate at the exit of the crystal the coherent γ radiation free
of a nonresonant contribution.

A particular case of pure nuclear reflection is considered
where a single line 57Fe Mössbauer radiation is generated.
It is accomplished in an antiferromagnet 57FeBO3 crystal

[iron borate (IB) crystal] heated up to the vicinity of its Néel
temperature.

When considering the interference of radiation while nuclei
in the unit cell of the IB crystal de-excite one can find 48
contributions into the interference amplitude. Two contribu-
tions come from the de-excitation of the two nuclei present in
the unit cell. Each of them contains six contributions in the
energy domain where nuclear levels are split due to combined
magnetic and electric hyperfine interaction in the IB crystal.
Finally near Néel point where the magnetic dipole and electric
quadrupole interactions in the IB crystal are of comparable
strength the nuclear sublevels in the excited state become
strongly mixed in spin projections. The two projections of
nuclear spin are allowed at each sublevel. Therefore each of
the six contributions in the energy domain involves in addition
the four contributions in the spin domain. Thus the combined
multipath interference in geometric space, in energy, and
spin domains results in the formation of a pseudosingle-line
resonance structure which provides a basis for performing a
single-line synchrotron Mössbauer (SM) source.

Mutual interference of the propagating and Bragg reflected
waves inside the crystal produce a resultant wave field (WF)
with standing-wave-type structure. In this way the standing-
wave mode of the nuclear exciton polariton is realized under
conditions of Bragg diffraction. One obtains two solutions
for the WF amplitudes. Both are modulated in the direction
perpendicular to the reflecting planes in such a way that the
WF1 experiences an anomalously weak nuclear absorption,
while the WF2, on the contrary, experiences an anomalously
strong absorption. In the limit of a semi-infinite crystal only
the WF1 survives. A strong suppression of inelastic scattering
channels for this wave field is favoring an enhanced γ -ray
emission nearly without internal conversion. At the exit of the
crystal a coherent beam of resonant γ radiation is formed.

For nuclear resonant Bragg reflections the emission from a
crystal containing a nuclear array exhibits a combined angular
and energy dependence. In the case of the IB crystal the
dependence undergoes a dramatic change in heating the crystal
from room to Néel temperature. Near Néel point its shape
is transformed significantly both in energy and in angular
dimensions. The multiline spectrum of the emitted radiation
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collapses while the angular range of emission extends. In
the vicinity of Bragg angle a pseudosingle-line resonance
structure is formed, which is created by the internuclear
interference (in geometrical space) as well as by a strong
inter-resonance (in energy domain) and intraresonance (in spin
domain) interference of radiation components.

The emission angular function, which represents the emis-
sion intensity for different angular settings of the crystal
near Bragg angle in the approximation of a plane incident
wave, strongly broadens and transforms to a double-hump
structure with a central dip in between of the peaks. The
breadth of the angular distribution increases by more than
one order of magnitude in heating the crystal from room
to Néel temperature. However, in the very vicinity of Néel
temperature the saturation in angular breadth sets in. Most
interesting is the double-hump shape of the angular distribution
in this range. The two emission branches originate due to the
Lorentzian form of the scattering amplitude. Off resonance, the
nuclear scattering amplitude is approximately real. The latter,
being an uneven function of energy deviation off resonance,
is responsible for the existence of the two wings for the
emission function on the angular-energy plane in Fig. 4
(see also Ref. [23]). There is a gap in the vicinity of the
Bragg angle where the wings are negligibly weak. Just in this

angular range the spectrum of the emitted radiation consists
predominantly of a single line having a width of about the
natural resonance line width �0.

The time distribution reveals the true structure of the
single-line spectrum of the emitted radiation. In fact
the single line consists of two unresolved lines of the hyperfine
structure in the vicinity of Néel temperature. Due to the
transition from the destructive mode of interference between
the hyperfine components to the constructive one an initial
rise of intensity is observed. However, competing process of
nuclear de-excitation prevents reaching the conditions of the
entirely constructive interference. Finally, when the times of
the constructive interference come, most of the energy stored
by nuclei turn out to be released already through the incoherent
channels [12]. For this reason the time distributions exhibit a
broad maximum of low intensity.

The analysis of the coherent emission of γ rays from a
crystal of iron borate, and namely, of the emission angular
function, the energy and time distributions of the emitted
radiation, is necessary for further elaboration of the 57Fe
Synchrotron Mössbauer Source—the device which provides
a collimated beam of intense and polarized γ radiation in an
energy bandwidth of nano-electronvolts, the nuclear resonance
natural level width.

[1] G. V. Smirnov, U. van Bürck, W. Potzel, P. Schindelmann, S. L.
Popov, E. Gerdau, Y. V. Shvydko, H. D. Rüter, and O. Leupold,
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