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Atom-mediated effective interactions between modes of a bimodal cavity
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We show a procedure for engineering effective interactions between two modes in a bimodal cavity. Our
system consists of one or more two-level atoms, excited by a classical field, interacting with both modes. The
two effective Hamiltonians have forms similar to beam-splitter and quadratic beam-splitter interactions. We also
demonstrate that the nonlinear Hamiltonian can be used to prepare an entangled coherent state, also known as a
multidimensional entangled coherent state, which has been pointed out as an important entanglement resource.
We show that the nonlinear interaction parameter can be enhanced considering N independent atoms trapped
inside a high-finesse optical cavity.
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I. INTRODUCTION

Cavity quantum electrodynamics (CQED) is an ideal sce-
nario for research on the fundamentals of quantum theory and
quantum information. Achievements on both the construction
of high-quality cavities and control of atom-field interactions
are associated with the use of entanglement properties for
the successful generation of quantum states of light, such as
Einstein-Podolski-Rosen (EPR), Schrödinger cat, and Fock
states [1]. An important consequence of the high experimental
control in CQED was the successful reconstruction of quantum
states of light prepared inside a high-quality cavity [2,3]. This
procedure allows, for example, the observation of decoherence
process of a Schrödinger cat-like state, through the analysis of
snapshots of the Wigner function [4,5]. The same setup was
also used to reconstruct the Wigner function of Fock states with
more than one photon [3]. Recently, CQED setups have been
used to study three-photon correlations [6], the apparition of
electromagnetically induced transparency using rubidium [7]
and cesium [8] single atoms and quantum jumps [9,10].

A particular CQED experimental setup could include a
bimodal cavity. In this kind of device, two bosonic modes with
different polarizations are prepared inside the cavity [11]. In
the context of quantum-information theory, a bimodal cavity is
interesting because the additional mode acts as a third photonic
qubit (besides the atom and the first cavity mode qubits),
opening new possibilities for implementation of quantum-
information protocols [12]. Potential applications of bimodal
cavities have been analyzed in some recent works. Those
include the implementation of quantum logic gates [13] and
generation of entangled states [14,15]. Entanglement between
the two modes of a superconducting cavity was experimentally
demonstrated [11,16], where a maximally entangled state was
created.

Schrödinger cat states can be generated by interaction
between atoms and the electromagnetic field confined in a
high-quality cavity. CQED schemes are used to prepare a
superposition of two packages, as the experiment reported by
Deléglise et al. [3]. A different approach to producing those
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states is to use a nonlinear Hamiltonian [17–21]. This method
involves Kerr-like Hamiltonians, and the superposition states
are created from the evolution of initial coherent states. The
“size” of the superpositions is limited by the value of the
nonlinear parameter, which could be low [22].

One feature of CQED is the ability to manipulate physical
parameters in order to sculpt an effective interaction.
From the theoretical point of view, this ability can be
explored by following the procedure proposed by James and
co-workers [23–25]. This well-established method is used to
obtain effective Hamiltonians, which govern the dynamics of
the system for a specific choice of physical parameters on the
exact Hamiltonian. Recent applications of this method include
the proposal of robust preparation of atomic W states [26],
the generation of NOON states in cavities connected by an
optical fiber [27], and the implementation of entangling gates
for two logical qubits in decoherence-free subspaces [28].

In this work, based on our experience [29,30], we use the
method of Refs. [23–25] to engineer two effective Hamiltoni-
ans using the interaction of a two-level atom with a bimodal
cavity and laser fields. One is a CQED version of a beam
splitter, the other is a quadratic beam-splitter Hamiltonian.
The generation of the proposed effective interactions opens
interesting possibilities such as interferometry using CQED,
similar to the atomic linear and nonlinear interferometry devel-
oped with Bose-Einstein condensates [31], and new schemes of
quantum-state engineering and quantum-information process-
ing. Concerning quantum-state engineering, we demonstrate
that one of the potential applications of the effective quadratic
beam-splitter is to produce entangled generalized coherent
states [32]. The entangled coherent state (ECS), also known
as a multidimensional entangled coherent state, was first
discussed by Tombesi and Mecozzi [33] and Sanders [34].
More recently, van Enk proposed its generation using a Kerr
medium and analyzed the dynamics of entanglement [35].
Other theoretical proposals consider its creation by using
ions [36] and CQED [37] experimental setups. Finally, we also
show that the nonlinear interaction parameter can be amplified
by considering N independent neutral atoms interacting with
the cavity modes.

We organized this paper as follows. In Sec. II we obtain both
effective Hamiltonians in the context of CQED by considering
a single atom interacting with classical and quantum fields
of light. The generation of ECS is presented in Sec. III. In
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Sec. IV, we show how to amplify the effective nonlinear
coupling between the cavity modes using a system composed
of N neutral atoms trapped in an optical cavity. A discussion
about experimental feasibility is contained at Sec. V. In Sec. VI
we present our conclusions and perspectives.

II. ENGINEERING THE EFFECTIVE HAMILTONIANS

In this section, we show how to generate effective two-
mode Hamiltonians of the CQED system. We consider two
cavity modes (modes A and B) with orthogonal polarizations
[11,38,39] interacting with an atom prepared in an excited
state. We consider a two-level atom with transition frequency
ω0 between the ground (|g〉) and excited (|e〉) states. The
parameters λa,b describe the interaction between atom and
cavity modes A and B with frequencies ωa,b, respectively. The
two-level atom also interacts with a resonant classical field
with Rabi frequency �. The full Hamiltonian can be written
as (h̄ = 1)

H = H0 + HI, (1)

where

H0 = ωaa
†a + ωbb

†b + ω0

2
σz,

HI = (λaa + λbb + �e−iω0t )σeg + H.c.

Here, H0 describes a noninteracting system, where the orthog-
onal polarization modes A and B of the cavity are associated
with the annihilation operators a and b, respectively, and the
atomic operator is given by σz = |e〉〈e| − |g〉〈g|. The term HI

describes the atom-cavity and atom-classical field interactions.
The atomic operator σeg = |e〉〈g| describes the promotion
from ground to excited state.

As follows, we assume a cavity with degenerate modes
(ω = ωa = ωb) with equal coupling parameter to the atomic
transition (λ = λa = λb). Both conditions can be satisfied with
a well-designed cavity, and, in this way, the Hamiltonian can
be written in the interaction picture as

Hint = Hcav + Hcef, (2)

with

Hcav = λ(a + b)ei�tσeg + H.c.,

Hcef = �σeg + H.c.,

where � = ω0 − ω is the detuning of the cavity modes from
the atomic transition frequency. Assuming large detunings, so
that � � |�| and |�| � √

ni |λ| (i = a,b), where ni is the
mean number of photons in the ith cavity mode, Hcav presents
fast oscillating time dependence, which allows us to apply the
effective Hamiltonian approach proposed in Refs. [23–25].
From the high harmonic disturbance of Hcav, we can deter-
mine the dynamical evolution by considering an averaged
density matrix in a time resolution which eliminates the
high-frequency feature explicitly. This averaging procedure
preserves all relevant information about the quantum system
by inferring an effective Hamiltonian, and its validity was
discussed in detail in Ref. [25].

Applying such a procedure to the Hamiltonian (2) we obtain

Hint � Hcef + χ (a†a + b†b + a†b + ab†)σz + 2χσee, (3)

where χ ≡ λ2

�
. Notice that the second term in Hamiltonian (3)

can be interpreted as a dispersive interaction between the atom
and cavity [40], because the detuning � is large enough to
avoid direct atomic transitions. If the classical field is turned
off (� = 0) and the system is prepared as

|�(0)〉 = |e〉|ψfield(0)〉,
the evolution of cavity states will be governed by the effective
Hamiltonian written as

HBS = χ (a†a + b†b + a†b + ab†), (4)

with, in this case, χ ≡ λ2

ω
. This effective Hamiltonian is similar

to those obtained in Ref. [29]: because the lack of a phase
factor multiplying the terms a†b and ab†, it is interesting to
notice that the form of the above effective Hamiltonian has
the same effect of a 50/50 beam splitter Hamiltonian over
the cavity states. The action of a beam-splitter interaction is
well known: it entangles nonclassical field states, such as Fock
and squeezed states, while coherent and thermal states are not
entangled [41].

As follows, we will show how to engineer a nonlinear
effective interaction. Using the unitary transformation U =
e−iHcef t , we can write the Hamiltonian (3) in the rotating frame
with Rabi frequency � as

Hrf = U †HintU − Hcef = χO(σ+−ei2�t + H.c.), (5)

where

O ≡ a†a + b†b + a†b + ab† + 1, (6)

and σ+− = |+〉〈−| is an atomic operator defined in the new
basis

|±〉 = |e〉 ± |g〉√
2

. (7)

Imposing that � � niχ,ni

√
nj + 1χ (i,j = a,b) and apply-

ing again the same approach of Refs. [23–25] for Hamiltonian
(5), we find the effective Hamiltonian

HNL = χ2

2�
O2(σ++ − σ−−), (8)

which is the nonlinear bosonic effective interaction between
cavity modes desired, except for those given by the term
(σ++ − σ−−)/2�. This last term can be easily eliminated
from the dynamics by carefully choosing the atomic initial
state. Notice for instance that |+〉 and |−〉 are eigenstates of
Hamiltonian (8). Those states can be experimentally created
by applying a π/2 pulse of a classical microwave field in an
atom initially in the ground state |g〉 [1]. Choosing the initial
state of the atom-cavity system after this atom state preparation
as

|�(0)〉 = |+〉|ψfield(0)〉, (9)

the evolution ruled by Eq. (8) is given by

|�(t)〉 = |+〉e−iμO2t |ψfield(0)〉, (10)

where μ = χ2

2�
= λ4

2�2�
is the nonlinear coupling. This result

shows that it is possible to build an effective interaction
between both cavity fields as long as the conditions for
dispersive interaction between the atom and cavity are fulfilled
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and the atom is prepared in one of the states |+〉 or |−〉. In this
case the effective quadratic beam-splitter (QBS) Hamiltonian,
with one atom, is then given by

HQBS � μO2. (11)

Here, as the operator O2 depends on the square of the
beam-splitter interaction, it will entangle a product of coherent
states. The generation of both effective interactions, Eqs. (4)
and (11), open interesting possibilities about interferometry
using CQED, similar to the atomic linear and nonlinear inter-
ferometry developed with Bose-Einstein condensates [31].

III. GENERATION OF ECS

In this section, we are particularly interested in the creation
of entangled superpositions of more than two coherent states
or ECS. In the context of CQED, Zou et al. [37] proposed
the creation of this kind of entangled state also considering
a bimodal cavity, following a probabilistic procedure which
implies that the field state is obtained after the measurement
of the atomic state. Also, it requires the passage of several
atoms in order to increase the number of products of coherent
states. In the following, we demonstrate how to produce ECS
following a deterministic procedure, exploiting the dispersive
effective interaction between atom and cavity. We also show
that only a passage of one atom is necessary, which can
be useful in order to control the effects of dephasing and
decoherence processes.

To produce the ECS, we consider that both cavity modes
are Glauber coherent states

|ψfield(0)〉 = |α,β〉.
These states are produced by the injection of two small
coherent fields oscillating in perpendicular directions with
classical amplitudes α (mode A) and β (mode B) [42]. Then,
we explore the dynamics of the bimodal cavity, ruled by the
QBS Hamiltonian (11). The evolved state of the field inside
the cavity is given by

|ψfield(t)〉 = e−iHQBSt |ψfield(0)〉. (12)

As shown in the Appendix, the evolved state at times tg =
π
2μ

r
s

= τμ
r
2s

is written as

|ψ(tg)〉 =
j−1∑
p=0

a(r,s)
p |αf (p)〉 ⊗ |βf (p)〉, (13)

where r and s are prime numbers, |αf (p)〉 and |βf (p)〉 are
coherent states, and

αf (p) = 2e
−i(μtg+π

p

j
)[α sin (θp) − β cos (θp)],

βf (p) = 2e
−i(μtg+π

p

j
)[α cos (θp) − β sin (θp)],

(14)

a(r,s)
p = 1

j

j−1∑
q=0

e
−iπ r

s
q2+2πi

p

j
q
,

θp = μtg + π
p

j
.

The expression above can be described as an entangled
superposition of coherent states. The number of terms on the
sum depends on j , which is fixed by the condition

j =
{

2s if r and s are odd,
s if r is even and s odd or vice versa. (15)

The nonlinear terms in the effective Hamiltonian (11) are the
mechanics behind the formation of the superpositions. We
also observe the exchange of the photon population, which is
connected with the oscillatory functions of the expression of
αf (p) and βf (p). A particular case of Eq. (13) is obtained by
considering the initial state

|ψfield(0)〉 = |α,0〉,
which represents a specific experimental condition when a
coherent state is produced in mode A, while mode B remains
empty. We can check that the evolved state at times tg is still a
superposition with the same form of Eq. (13) but with different
amplitudes αf (p) and βf (p), as can be verified with Eqs. (14).

Wigner functions are quasiprobability functions associ-
ated with the symmetric ordering of operators, which are
equivalent to the density matrix and are used to represent
both quantum superpositions and statistical mixtures [4,5].
The Wigner function can be obtained experimentally by
performing measurements which permit the reconstruction
of the density matrix coefficients associated with a specific
physical situation. In the context of QCED, methods for the
measurement of the Wigner function of the electromagnetic
field in a cavity was first proposed theoretically [43] and then
used to check the actual state of the electromagnetic field inside
the cavity [44]. Recently, the complete reconstruction of Fock
and Schrödinger cat-like states was reported, so it becomes
possible to obtain snapshots of the decoherence process [3].

To illustrate the form of the ECSs produced by the QBS
Hamiltonian, we compute the Wigner function associated with
one of the cavity modes. To obtain the Wigner function of mode
A, we write the general density matrix of the evolved state at
time tg as

ρ = |ψfield(tg)〉〈ψfield(tg)|.
Then, by tracing over the variables associated with mode B,
we obtain the reduced density operator ρa

ρa =
j−1∑

p,p′=0

a(r,s)
p a

∗(r,s)
p′ e− 1

2 [|βf (p)|2+|βf (p′)|2−2βf (p)β∗
f (p′)]

× |αf (p)〉〈αf (p′)|. (16)

At this point, we use the definition of the Wigner function [5]

W (γ ) = 1

π

∫
d2ξeξγ ∗−ξ∗γ Tr(e−ξa†+ξ∗aρa), (17)

where γ ≡ qa + ipa , with (qa,pa) the canonical variables of
position and momentum related to mode A.

Figures 1 and 2 show the density plots of the Wigner
function for ρa . We are able to control the number of packages,
defined by condition (15), which is shown in Fig. 1. The
separation between the packages depends on the initial mean
value of photons inside the cavity, given by |α|2 + |β|2. We
can also use our analytical solution, Eq. (16), in order to follow
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FIG. 1. (Color online) Wigner function for ECSs obtained for
the initial state with α = 3 and β = 2 considering evolution times
tg = τμ

r

2s
with r = 2. (a) tg = τμ/3 (s = 3), (b) tg = τμ/5 (s = 5),

(c) tg = τμ/7 (s = 7), and (d) tg = τμ/11 (s = 11), where qa and pa

are defined as dimensionless quantities.

the dynamics at short times. In Fig. 2, we plot snapshots of
the Wigner function considering α = 3, β = 0, and r = 2 and
decreasing values of s, i.e., increasing values of evolution time
tg , which are expressed as fractions of the time scale τμ = π/μ

parameter. We can see that an initial coherent state at point
(qa,pa) = (3,0) starts to spread in phase [Figs. 2(a)–2(c)] until
the “head” meets the tail of the Wigner function. After that
time, the state starts to interfere with itself and it is possible to
resolve different packages of superposition.

IV. AMPLIFYING THE NONLINEAR COUPLING

In this section, we demonstrate how to amplify the nonlinear
coupling on Hamiltonian (11) by using an ensemble of N

identical neutral atoms. We consider all atoms with the same
transition frequency ω0 + ε between ground |g〉 and excited
|e〉 states. Each atom couples with both the classical field with
Rabi frequency � and the polarization modes in the cavity,
with frequencies ωa and ωb. A sufficiently large interatomic
separation is considered so that the dipole-dipole interactions
can be neglected. In this case, we can describe the internal state
of the atomic assembly by the collective pseudospin operators
written as

J+ =
N∑

i=1

|ei〉〈gi |, J− =
N∑

i=1

|gi〉〈ei |,
(18)

Jz =
N∑

i=1

(|ei〉〈ei | − |gi〉〈gi |),

FIG. 2. (Color online) Snapshots showing the evolution of the
Wigner function associated with cavity mode A for |ψfield(0)〉 = |3,0〉
and r = 2. Defining tμ ≡ π/μ, we have (a) t = tμ/107, (b) t = tμ/61,
(c) t = tμ/37, (d) t = tμ/17, (e) t = tμ/11, (f) t = tμ/7, (g) t = tμ/5,

and (h) t = tμ/3, where qa and pa are defined as dimensionless
quantities.

which satisfy the angular momentum algebra. The Hamilto-
nian for N atoms reads (λa = λb = λ)

HN = ωaa
†a + ωbb

†b + ω0

2
Jz + εJ+J−

+ λ[(a + b)J+ + H.c.] + �[e−iω0t J+ + eiω0t J−],

(19)

where we consider the N atoms within a region of space whose
linear dimensions are smaller than the wavelength of cavity
modes. Here, the first four terms represent the free energy of
the system, while the fifth describes the interaction between
the collection of atoms with the cavity modes with coupling
parameter given by λ. We also consider the effect of a classical
driving field on the two-level atoms, described by the sixth
term in Eq. (19). It is worth noting that the usual zero-point
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energy reference of the two-level atoms was changed with the
introduction of the ε parameter.

Following the same sequence of steps for obtaining the
effective Hamiltonian (11), we first go to the interaction
picture. The Hamiltonian (19) becomes

HN
int = HN

cav + HN
cef, (20)

with

HN
cav = λ[(a + b)e−i�tJ+ + H.c.] + εJ+J−,

HN
cef = �J+ + �J−,

so that � = �a ≡ ωa − ω0 = �b ≡ ωb − ω0, i.e., the two
modes are degenerate. The first term of HN

cav is the well-
known Dicke Hamiltonian in the interaction picture. Again,
we consider that the frequencies of the cavity modes are far
from resonance with the atomic transition frequency so that
the dispersive condition |�| � √

niλ is satisfied. Then, using
the same procedure of Refs. [23–25] we obtain the effective
Hamiltonian

HN
eff � −2χ (a†a + b†b + ab† + a†b)Jz + HN

cef, (21)

where χ is the dispersive coupling defined previously and
we are using the condition ε = 2χ , just to remove the
effective shifts in all atomic excited states. The validity of
the effective Hamiltonian requires that �(∼ √

niλ) � |�|/N .
This condition enables us to disregard the influence of the
classical driving field on the bimodal dispersive interaction in
accordance with the numerical simulations from Hamiltonian
(19).

Now we go to the rotating frame, by using the unitary
transformation U (t) = e−i(J++J−)�t , obtaining

HN
rf � U †HN

effU − U̇ †U

= −χ (a†a + b†b + ab† + a†b)(J̃+(t) + J̃−(t)), (22)

where we have defined new collective atomic operators

J̃+(t) =
N∑

i=1

|+i〉〈−i | exp(i2�t),

J̃−(t) =
N∑

i=1

|−i〉〈+i | exp(−i2�t), (23)

J̃z =
N∑

i=1

(|+i〉〈+i | − |−i〉〈−i |),

with |±i〉 = 1√
2
(|ei〉 ± |gi〉). Using again the effective Hamil-

tonian approach, we obtain the effective interaction of many
atoms with the cavity and the classical field

Hma � μO2J̃z, (24)

where

O ≡ a†a + b†b + ab† + a†b. (25)

Consider that all atoms are prepared in the superposition state
|+i〉 so the collective atomic state is

∏N
i=1 |+i〉. By using the

eigenvalue relation

J̃z

N∏
i=1

|+i〉 = N

N∏
i=1

|+i〉,

the evolved state associated with Hamiltonian (24) is given by

|�(t)〉 = exp(−iμO2J̃zt)
N∏

i=1

|+i〉|ψfield(0)〉

= exp(−iNμO2t)|ψfield(0)〉
N∏

i=1

|+i〉, (26)

which means that the dynamics of the modes inside the cavity
depends on the amplified quadratic beam-splitter (AQBS)
Hamiltonian written as

HAQBS � NμO2. (27)

We can conclude that the coupling strength of the bimodal
Hamiltonian can be amplified by the factor N , when compared
with the one-atom case, Eq. (11).

To check the validity of this amplification, we perform a
numerical calculation of linear entropy considering the exact
Hamiltonian (20) considering N = 1 to 5. The linear entropy
is a useful quantity which gives information about the purity
of the system. We are interested in the linear entropy for the
cavity mode described by operator â (mode A) defined as

ξ (t) = 1 − Tra{[ρa(t)]2}, (28)

where ρa(t) is the reduced density matrix of cavity mode A
at time t . If ξ = 0, the subsystem is pure and the state of the
system can be written as a direct product. To perform the sim-
ulation, we consider the initial state as

∏N
i=1 |+i〉|ψfield(0)〉 =∏N

i=1 |+i〉|α,β〉 with α = (q,p) = (1,0) and β = (0,1). The
Hamiltonian parameters are � = 12.5λ, � = λ and we use
the value λ = 3 × 105 Hz from Ref. [1]. Figure 3 shows

FIG. 3. (Color online) Linear entropy for mode A as a function
of time (in μs) considering the evolution of the initial state given by∏N

i=1 |+i〉|α,β〉 with α = (q,p) = (1,0) and β = (0,1) and different
values of N. The Hamiltonian parameters are � = 12.5λ and � = λ,
with λ = 3 × 105 Hz [1].

053839-5



F. O. PRADO et al. PHYSICAL REVIEW A 84, 053839 (2011)

our results for linear entropy of mode A as function of time
considering N = 1 to 5 atoms. At the initial time the linear
entropy is zero, in agreement with the fact that the initial state
is a direct product (|α〉 ⊗ |β〉 ⊗ ∏N

i=1 |+i〉). The dynamics
of linear entropy shows that the state of the atom-cavity
system could not be written as a direct product except at
the purification time, t1 ∼ π/μ. As we increase the number
of atoms, the purification time decreases following the rule
tN = t1/N . This is directly related to the effective coupling
which goes from μ (for one atom) to Nμ (for N atoms).

V. EXPERIMENTAL FEASIBILITY

In this section, we discuss some aspects about the current
experimental feasibility of our proposal considering different
experimental setups of CQED [1,6]. In the experimental setup
of Haroche et al. [1,3,11,45], Rydberg atoms (rubidium) are
coupled to a microwave high-quality superconductivity cavity.
By considering the typical values of the atom-cavity interaction
being λ = 2π × 47 kHz for experiments with 87Rb and setting
the detuning as � = 2π × 235 kHz, we estimate the value of
effective frequency as χ = 2π × 9.4 kHz. In that context, it is
possible to perform a π -pulse operation using Hamiltonian (4)
at the time scale given by τχ � π/χ � 0.05 ms. Concerning
the nonlinear Hamiltonian (11) the coupling parameter is
given by μ = 2π × 0.94 kHz (� ∼ λ), which means that
the time required for a π pulse is τμ � 0.5 ms. Entangled
coherent states are created at lower times: to create the ECSs
shown in Fig. 1, the time scale is given by tg = τμ/11 �
0.045 ms to τμ/3 � 0.17 ms. These times are smaller than the
typical Rydberg atom decay time (∼ 30 ms) and significatively
smaller than the decoherence time associated with cavity
modes (∼ 0.13 s) [1,3,11]. In these experiments, the time of
interaction between atom and cavity depends on the velocity
of the atom (100–600 ms−1) and varies between 100 ns and
0.3 ms [1]. The required times for the achievement of a
beam-splitter Hamiltonian and the creation of an ECS are both
in this time range but the realization of a complete π pulse due
to the nonlinear Hamiltonian is not.

The second experimental setup, used by Rempe et al. [6],
consists of trapped two-level 85Rb atoms (with atomic decay
time ∼ 0.66 μs) introduced in a small ultra-high-finesse
optical cavity. The atom-mode coupling is stronger than the
one mentioned above, being λ = 2π × 16 MHz. The detuning
between atomic transition and the cavity can be controlled
by an auxiliary laser. For � = 2π × 80 MHz, we estimate
the effective beam-splitter coupling as χ = 2π × 3.2 MHz
with τχ � 0.16 μs and the value of nonlinear parameter
is μ = 2π × 0.32 MHz which gives τμ � 1.6 μs (� ∼ λ).
Thus, the necessary evolution times tg in order to create
ECS as shown in Figs. 1(b) and 1(d) are 0.32 and 0.14 μs,
respectively. The decoherence time scale of the optical cavity
used in this setup is given by 0.33 μs, which favors both the
implementation of the π pulse with beam-splitter interaction
and the creation of ECSs but limits the implementation of π

pulses with the nonlinear Hamiltonian.
In conclusion, the comparison between both experimental

setups points out that microwave cavity is a promising
candidate for the implementation of the one-atom scheme.
Modifications on atomic source or an auxiliary technique for

slowing the atoms can be used to explore all the advantages
of the nonlinear effective Hamiltonian. Another possibility
is to use a continuous beam of atoms, as those used in
Ref. [45], so the nonlinear interaction could be stabilized for
the time required by the operation. Nevertheless, although
simultaneous interaction between cavity and two atoms were
reported [46], the N -atom amplification could be difficult in
this particular experimental setup. Optical cavities, in contrast,
are a promising system for the implementation of our proposed
amplification because neutral atoms can be quasipermanently
trapped and the number of trapped atoms can be increased
one by one [7]. Another advantage is that the atom-cavity
interaction is a parameter that could be easily controlled. The
main problem in this setup is the decoherence of the cavity
field, which we expect will be solved in the near future.

VI. CONCLUSIONS AND PERSPECTIVES

In this work, we use the effective Hamiltonian approach
[23–25] to obtain two effective interactions between the modes
of a bimodal cavity, Hamiltonians (4) and (11). By starting
the system state in a product of Glauber coherent states and
for specific times tg = π

2μ
r
s
, the nonlinear Hamiltonian drags

the system to an ECS. We are able to control the number
of packages manipulating either the time of evolution or
effective interaction parameter between quantum and classical
fields with the atomic system. Amplification of the nonlinear
effective coupling between the two-mode field, described by
Hamiltonian (27), can be obtained by considering a system
composed of N two-level atoms trapped inside a bimodal
high-finesse optical cavity. We also discuss the experimental
feasibility of our proposal by checking the current value
of atom-cavity interaction considering both microwave and
optical cavities. We estimate the values of effective coupling
strengths, χ and μ, and the time scales associated with both
the application of π pulses, tχ and tμ, and the generation
of entangled coherent states (tECS). The π pulse with beam-
splitter Hamiltonian and the generation of ECSs are possible
in both scenarios. The implementation of a π pulse with
nonlinear Hamiltonian (27) requires a slightly slower atom
in the microwave scheme and a longer time of decoherence in
the optical setup. Future work in this application includes the
study of entanglement properties associated with the nonlinear
Hamiltonian and the effects of decoherence on the entangled
coherent states.
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APPENDIX: DYNAMICS ON CAVITY MODES

Here, we briefly explain how to obtain the evolved state
associated with the QBS Hamiltonian (11). We can rewrite
Eq. (12) using the unitary transformation V = e

π
4 (a†b−ab†)

defining the propagator U (t) as

U (t) = e−iHoat = V e−iμ(2b†b+1)2tV †, (A1)
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so the evolved state takes the form

|ψfield(t)〉 = U (t)|ψfield(0)〉. (A2)

We are interested in the dynamics when the initial state is a
direct product of coherent states

|ψfield(0)〉 = |α,β〉 = D(α)D(β)|0,0〉,

where D(γ ) [γ = (α,β)] is the displacement operator: when
working with unitary transformation V and the product
D(α)D(β), we can use the identities

V †D(α)D(β)V = D

(
α − β√

2

)
D

(
α + β√

2

)
,

(A3)

V D(α)D(β)V † = D

(
β + α√

2

)
D

(
β − α√

2

)
.

These expressions were used to obtain Eq. (13). After the
application of operator V † over the initial state, we obtain

|ψfield(t)〉 = V̂ e− i
h̄
μ(2b†b+1)2tV †|α,β〉

= V̂

∣∣∣∣β + α√
2

〉
⊗ e− i

h̄
μ(2b†b+1)2t |βv〉,

with βv = β−α√
2

. Expanding the coherent state |βv〉 in the Fock

basis on operator n̂b = b†b, it is straightforward to act with the
second term of the propagator (A1) on |βv〉, obtaining

e− i
h̄
μ(2b†b+1)2t |βv〉 = e− |βv |2

2 e−i
μt

h̄

∑
m

(
βve

− −4iμt

h̄

)m

√
m!

× e− 4iμm2 t

h̄ |m〉. (A4)

This kind of superposition of the Fock state is known as the
generalized coherent state (GCS), which was introduced by
Titulaer and Glauber [47]. At times given by tg = π

2μ
r
s
, it

is possible to rewrite the GCS state given by Eq. (A4) as a
superposition of coherent states [48]

e− i
h̄
μ(2b†b+1)2t |βv〉 =

l−1∑
p=0

a(r,s)
p |βp〉,

with βp = βve
−2iθp and θp = 2μ

h̄
+ π

p

l
. Using the last result,

we write the evolved state as

|ψfield(t)〉 =
l−1∑
p=0

a(r,s)
p V̂

∣∣∣∣β + α√
2

〉∣∣∣∣e−2iθp
β − α√

2

〉
.

Finally, using the relations (A3), we arrive at Eq. (13).
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Nature 464, 1165 (2010).
[32] Z. Bialynicka-Birula, Phys. Rev. 173, 1207 (1968).
[33] P. Tombesi and A. Mecozzi, J. Opt. Soc. Am. B 4, 1700

(1986).
[34] B. C. Sanders, Phys. Rev. A 45, 6811 (1992).

053839-7

http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/PhysRevLett.89.200402
http://dx.doi.org/10.1103/PhysRevLett.89.200402
http://dx.doi.org/10.1038/nature07288
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1016/0370-1573(84)90160-1
http://dx.doi.org/10.1103/PhysRevLett.107.023601
http://dx.doi.org/10.1103/PhysRevLett.107.023601
http://dx.doi.org/10.1038/nature09093
http://dx.doi.org/10.1038/nature09093
http://dx.doi.org/10.1103/PhysRevLett.105.153603
http://dx.doi.org/10.1103/PhysRevLett.105.153603
http://dx.doi.org/10.1364/JOSAB.27.00A152
http://dx.doi.org/10.1364/JOSAB.27.00A152
http://dx.doi.org/10.1103/PhysRevLett.103.123006
http://dx.doi.org/10.1103/PhysRevLett.103.123006
http://dx.doi.org/10.1103/PhysRevA.64.050301
http://dx.doi.org/10.1103/PhysRevA.64.050301
http://dx.doi.org/10.1080/09500340308234530
http://dx.doi.org/10.1080/09500340308234530
http://dx.doi.org/10.1080/09500340903003339
http://dx.doi.org/10.1080/09500340903003339
http://dx.doi.org/10.1103/PhysRevA.79.062319
http://dx.doi.org/10.1103/PhysRevA.79.062319
http://dx.doi.org/10.1103/PhysRevA.77.062312
http://dx.doi.org/10.1103/PhysRevA.77.062312
http://dx.doi.org/10.1140/epjd/e2010-00188-2
http://dx.doi.org/10.1103/PhysRevLett.57.13
http://dx.doi.org/10.1103/PhysRevA.66.013804
http://dx.doi.org/10.1103/PhysRevA.66.013804
http://dx.doi.org/10.1103/PhysRevA.59.4095
http://dx.doi.org/10.1103/PhysRevA.56.2249
http://dx.doi.org/10.1103/PhysRevA.56.2249
http://dx.doi.org/10.1103/PhysRevA.57.3880
http://dx.doi.org/10.1364/JOSAB.25.000712
http://dx.doi.org/10.1364/JOSAB.25.000712
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11 ignorespaces
< ignorespaces 823::AID-PROP823 ignorespaces > ignorespaces 3.0.CO;2-M
http://dx.doi.org/10.1139/P07-060
http://dx.doi.org/10.1103/PhysRevA.82.052106
http://dx.doi.org/10.1016/j.optcom.2011.02.054
http://dx.doi.org/10.1088/1674-1056/20/6/060302
http://dx.doi.org/10.1088/1674-1056/20/6/060302
http://dx.doi.org/10.1103/PhysRevLett.103.200501
http://dx.doi.org/10.1103/PhysRevLett.103.200501
http://dx.doi.org/10.1103/PhysRevA.73.043803
http://dx.doi.org/10.1103/PhysRevA.78.033820
http://dx.doi.org/10.1103/PhysRevA.78.033820
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1103/PhysRev.173.1207
http://dx.doi.org/10.1364/JOSAB.4.001700
http://dx.doi.org/10.1364/JOSAB.4.001700
http://dx.doi.org/10.1103/PhysRevA.45.6811


F. O. PRADO et al. PHYSICAL REVIEW A 84, 053839 (2011)

[35] S. J. van Enk, Phys. Rev. Lett. 91, 017902 (2003).
[36] E. Solano, R. L. de Matos Filho, and N. Zagury, Phys. Rev. Lett.

87, 060402 (2001).
[37] X. B. Zou, K. Pahlke, and W. Mathis, Eur. Phys. J. D 33, 297

(2005).
[38] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J.

Kimble, Phys. Rev. Lett. 75, 4710 (1995).
[39] L.-M. Duan and H. J. Kimble, Phys. Rev. Lett. 92, 127902

(2004).
[40] C. M. Savage, S. L. Braunstein, and D. F. Walls, Opt. Lett. 15,

628 (1990).
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