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Cooling of a mirror in cavity optomechanics with a chirped pulse
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We investigate the response of a harmonically confined mirror to an optical pulse in cavity optomechanics. We
show that when the pulsed coupling strength takes the form of a chirped pulse, thermal fluctuations of the mirror
can be significantly transferred to the cavity field. In addition, the frequency modulation of the pulse could enable
a better cooling performance by suppressing the sensitivity of the dependence of detuning and pulse areas. Using
numerical investigations, we find that the pulsed cooling is mainly limited by the cavity-field decay rate.
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I. INTRODUCTION

In cavity optomechanical systems [1–4], the cooling of a
mechanical resonator is important to study the mechanical
effects of light in the quantum domain [5–22]. In addition,
the reduction of thermal noise generally is a requirement
to implement various applications in quantum information
relying on optomechanical couplings [23–26]. With the recent
progress of cooling in cavity optomechanical systems [27–36],
it is becoming possible to access quantum ground states. The
cooling techniques, such as the resolved sideband cooling
[27–29,34–36], generally make use of a continuous light field
that drives a mechanical resonator into a steady state of lower
temperature. Recently, several authors have begun to explore
the possibilities of cooling and manipulating the states of
mirrors with optical pulses [37–40].

Motivated by the fact that chirped pulses can lead to an
efficient population transfer in two-level systems [41–46],
we examine how a chirped-pulse interaction can transfer
thermal fluctuations from the mirror to the cavity field. As we
shall discuss below, the correspondence between a two-level
system and optomechanical systems [defined in Eq. (1)] can
be established via the Heisenberg equations of motion of the
linearized system under a rotating wave approximation (RWA).
Therefore, analytical solutions known in two-level systems
driven by chirped pulses can be applied here [46]. Owing to the
frequency modulation in chirped pulses, population transfer
can be made without the need for a high-precision control of
detuning and pulse areas.

In this paper, we will first provide a formulation of the
linearized quantum system driven by a general pulse. Then we
will indicate how the mirror-field coupling can be shaped into a
chirped form by using a proper time dependence of an external
driving field. Specifically, we will study a class of chirped
pulses proposed by Allen and Eberly for two-level systems
[46]. Such a class of chirped pulses has analytic solutions
for nondissipative systems, and depending on the chirped
parameters, they describe both adiabatic and nonadiabatic
transitions. Using numerical calculations, we include counter-
rotating terms and dissipation effects, and we demonstrate that
cooling can be achieved with the chirped-pulse coupling. In
the case where the mechanical damping rate of the mirror is
sufficiently small, the cooling performance is mainly limited
by the cavity-field decay rate.

II. MODEL

Our model consists of a Fabry-Perot cavity formed by a
fixed end mirror and a moving end mirror connected with a
spring (Fig. 1). We consider a single cavity-field mode with
a resonance frequency ωc and creation (annihilation) operator
a† (a). The moving mirror is treated as a quantum harmonic
oscillator with a frequency ωm and creation (annihilation)
operator b† (b). Assuming the cavity is driven by an external
field with a carrier frequency ωL and a time-varying amplitude
�(t), the Hamiltonian of the system (in a rotating frame with
the frequency ωL) is given by

HS = h̄�ca
†a + h̄ωmb†b − h̄ga†a(b† + b)

+ h̄�(t)a† + h̄�∗(t)a, (1)

where �c = ωc − ωL is the detuning and g is the radiation-
pressure coupling strength.

To treat the damping and noise in our model, we consider the
system linearly coupled to oscillator baths. Under the Marko-
vian approximation and neglecting counter-rotating terms in
system-bath coupling, the quantum Langevin equations for the
operators a and b are given by

ȧ = −i�ca + iga(b† + b) − i�(t) − γc

2
a + ain, (2a)

ḃ = −iωmb + iga†a − γm

2
b + bin, (2b)

where γc (γm) is the cavity-field (mirror-motion) decay rate, ain

is the vacuum radiation noise operator for the cavity, and bin is
the mechanical noise operator for the mirror. Both ain and bin

have zero mean values and they are characterized by the corre-
lation functions 〈ain(t)a†

in(t ′)〉 = γcδ(t − t ′), 〈a†
in(t)ain(t ′)〉 =

0, 〈bin(t)b†in(t ′)〉 = γm(n̄m + 1)δ(t − t ′), and 〈b†in(t)bin(t ′)〉 =
γmn̄mδ(t − t ′), where n̄m = [exp(h̄ωm/kBTm) − 1]−1 is the
average thermal excitation number of the mirror at temperature
Tm. In this paper, we will investigate the regime with ωm � γm.
This is a regime where the Markovian approximation for the
mirror noise can be justified [18].

III. LINEARIZED SYSTEM AND FORMAL SOLUTION

By writing o = 〈o〉 + δo (o = a,b) and assuming the
fluctuations are small (|〈o〉|2 � 〈δo†δo〉) during the pulse
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interaction, we may linearize Eq. (2) and obtain the equations
of motion,

δȧ = −i�(t)δa + ig〈a〉(δb† + δb) − γc

2
δa + ain, (3a)

δḃ = −iωmδb + ig[〈a†〉δa + 〈a〉δa†] − γm

2
δb + bin, (3b)

with �(t) = �c − 2gRe[〈b(t)〉]. The 〈a(t)〉 and 〈b(t)〉 are
governed by

〈ȧ〉 = −i�(t)〈a〉 − i�(t) − γc

2
〈a〉, (4a)

〈ḃ〉 = −iωm〈b〉 + ig|〈a〉|2 − γm

2
〈b〉. (4b)

For the linear approximation made above, we have neglected
nonlinear terms igδa(δb + δb†) in Eq. (3a) and igδa†δa in
Eq. (3b) [47].

Equation (3) corresponds to a linear coupling described
by the Hamiltonian HI = −h̄g[〈a†(t)〉δa + 〈a(t)〉δa†](δb† +
δb). Here 〈a(t)〉 modulates the mirror-field coupling and its
time dependence can be controlled by the driving amplitude
�(t). We point out that any desirable 〈a(t)〉 as a function of
time can, in principle, be achieved by a corresponding �(t),
according to Eq. (4a). For convenience, we let

g〈a†(t)〉 ≡ χ (t)eiφ(t)e−2ig
∫ t

0 Re[〈b(τ )〉]dτ , (5)

where χ (t) and φ(t) are real functions, and the phase angle
−2g

∫ t

0 Re[〈b(τ )〉]dτ is introduced in order to compensate for
the phase shift induced by the dynamical cavity frequency shift
in �(t).

By defining operators δA(t) = δaei[φ(t)+∫ t

0 �(τ )dτ ] and
δB(t) = δbeiωmt , Eq. (3) can be concisely written as v̇(t) =
M(t)v(t) + N(t), where v(t) = [δA(t),δB(t),δA†(t),δB†(t)]T ,
and

M(t) =

⎡
⎢⎢⎢⎣

− γc

2 + iφ̇(t) iχ (t)ei(�c−ωm)t 0 iχ (t)ei(�c+ωm)t

iχ (t)e−i(�c−ωm)t − γm

2 iχ (t)ei(�c+ωm)t 0

0 −iχ (t)e−i(�c+ωm)t − γc

2 − iφ̇(t) −iχ (t)e−i(�c−ωm)t

−iχ (t)e−i(�c+ωm)t 0 −iχ (t)ei(�c−ωm)t − γm

2

⎤
⎥⎥⎥⎦ , (6)

and N(t) = [Ain(t),Bin(t),A†
in(t),B†

in(t)]T with Ain(t) =
aine

i[φ(t)+∫ t

0 �(τ )dτ ] and Bin(t) = bine
iωmt . The solution of v(t)

is

v(t) = G(t)v(0) + G(t)
∫ t

0
G−1(τ )N(τ )dτ, (7)

where G(t) is governed by

Ġ(t) = M(t)G(t), (8)

with G(0) = I being the identity matrix.
The state of the system can be conveniently described

by a covariance matrix R(t) whose elements are Rll′(t) =
〈vl(t)vl′(t)〉 (l,l′ = 1,2,3,4). Therefore, R31(t) = 〈δa†δa〉 and

b
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FIG. 1. (Color online) Schematic diagram of the cavity optome-
chanical system. A Fabry-Perot cavity, formed by a fixed end mirror
and a harmonically bound end mirror, is driven by a pulse.

R42(t) = 〈δb†δb〉 are mean displaced particle numbers mea-
suring the fluctuations. By Eq. (7), R(t) reads

R(t) = G(t)R(0)GT (t) + G(t)Z(t)GT (t), (9)

with

Z(t) =
∫ t

0

∫ t

0
G−1(τ )C(τ,τ ′)[G−1(τ ′)]T dτdτ ′. (10)

The matrix R(0) is determined by the initial condition
of the system, and C(τ,τ ′) is the two-time correlation
function of noise operators, which is defined by the el-
ements Cl,l′ (τ,τ ′) = 〈Nl(τ )Nl′(τ ′)〉 (l,l′ = 1,2,3,4). Assum-
ing that initially the cavity is in vacuum and the mirror
is in a thermal equilibrium at the same temperature Tm

as its bath, i.e., ρ(0) = |0〉c〈0|c ⊗ ρth(Tm) with ρth(Tm) =
exp(−h̄ωmb†b/kBTm)/Tr[exp(−h̄ωmb†b/kBTm)], then the
matrix R(0) has three nonzero elements: R13(0) = 1, R24(0) =
n̄m + 1, and R42(0) = n̄m. In addition, the Markovian baths
imply C(τ,τ ′) = Cδ(τ − τ ′), where C is a constant matrix
with three nonzero elements: C13 = γc, C24 = γm(n̄m + 1),
and C42 = γmn̄m.

IV. COOLING OF THE MIRROR

We will employ the expectation value of displaced phonon
number 〈δb†δb〉 as an indicator of cooling. This means that
the idea of cooling in our scheme should be understood as
a process of reducing excitations with respect to the mean
amplitude 〈b〉 of the mirror.
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A. Chirped-pulse coupling

We now ask what �(t) is suitable for cooling the mirror.
Guided by the fact that a chirped-pulse driving can efficiently
realize population transfer in two-level systems [41–46], we
consider the coupling strength in Eq. (5) taking the chirped
form [46],

χ (t) = χ0sech[α(t − t0)], (11a)

θ (t) = φ̇(t) = β tanh[α(t − t0)]. (11b)

Here t0 determines the time of the pulse peak entering
the cavity, α−1 measures the pulse duration, β controls the
magnitude of the frequency modulation, and χ0 is the strength
of the pulse coupling.

The required driving amplitude �(t) for generating the
above χ (t) and φ(t) can be found using Eqs. (4), (5), and
(11) as

�(t) = i〈ȧ(t)〉 −
[
�(t) − i

γc

2

]
〈a(t)〉, (12)

with

〈a(t)〉 = χ0

g
sech[α(t − t0)]e−i[φ(t)−2g

∫ t

0 Re[〈b(τ )〉]dτ ], (13a)

〈b(t)〉 = i
χ2

0

g

∫ t

0
sech2[α(τ − t0)]e−( γm

2 +iωm)(t−τ )dτ, (13b)

φ(t) = β

α
ln

{
cosh[α(t − t0)]

cosh(αt0)

}
. (13c)

An example illustrating the chirped-pulse coupling and the
corresponding �(t) is given in Fig. 2.

B. Ideal case

To find the optimal relation for χ0, α, and β in Eq. (11)
such that efficient cooling can be achieved, we first in-
vestigate the nondissipative case (γc = 0 and γm = 0) as a
guide. Specifically, we consider the resonance case �c =
ωm. Under the condition (�c + ωm) � χ0, we discard the
terms ±iχ (t)e±i(�c+ωm)t in Eq. (6) by RWA, then by letting
u(t) = 〈δA†δB〉 + 〈δB†δA〉, v(t) = i(〈δB†δA〉 − 〈δA†δB〉),
and w(t) = 〈δA†δA〉 − 〈δB†δB〉, we can obtain the Bloch

FIG. 2. (Color online) Plot of (a) the chirped pulse given in
Eq. (11) and (b) the original driving amplitude �(t) vs the scaled time
ωmt . The parameters are α/ωm = 0.14, β/ωm = 0.04, ωmt0 = 40, and
χ0 = 1

2

√
α2 + β2.

equations

u̇(t) = φ̇(t)v(t), (14a)

v̇(t) = −φ̇(t)u(t) + 2χ (t)w(t), (14b)

ẇ(t) = −2χ (t)v(t). (14c)

Under the initial condition ui = 0, vi = 0, and wi = −n̄m,
we find that when

χ0 = 1
2

√
α2 + β2, (15)

the solution of the Bloch equations is [46]

u(t) = −β

α
v(t) = n̄mβ

2χ0
sech[α(t − t0)], (16a)

w(t) = n̄m tanh[α(t − t0)]. (16b)

Therefore, the average quasiphonon number evolves as

〈δb†δb〉 = 〈δB†δB〉 = n̄m

2
{1 − tanh[α(t − t0)]}. (17)

When α(t − t0) � 1, we have 〈δb†δb〉 ≈ 0 (for example,
tanh 5 = 0.999909), which implies that thermal noise in
the mirror can be extracted almost completely. Thus, χ0 =
1
2

√
α2 + β2 is a relation to implement efficient cooling of the

mirror in the absence of dissipation.
It is useful to note that for the constant-pulse coupling case

[i.e., χ (t) is a constant], one can also extract energy from the
mirror, but the corresponding solution is oscillatory at a Rabi
frequency, i.e., the phonon number in the mirror is a cosine
function of time. In this case, the timing of the constant pulse is
crucial in order to locate the instant when the phonon number
is minimum. However, our scheme does not have such a timing
control issue because the solution (17) indicates that after the
pulse duration (about 2t0), the residual quasiphonon number
of the mirror changes slowly in time by the behavior of the
tanh[α(t − t0)] function.

As a remark, we indicate that χ0 should be much smaller
than the mirror frequency ωm in order to meet the condition of
RWA. The violation of RWA would mean that the parametric
interaction of the form δa†δb† + H.c. becomes important,
which generally leads to heating of the system. Therefore,
by Eq. (15), the pulse duration characterized by α−1 cannot
be arbitrarily short, i.e., α < 2χ0 
 4ωm. Our numerical
calculations (without RWA) indicate that the parameters used
in Fig. 3 are quite sufficient for RWA to be valid.

C. Dissipative case

In realistic experiments, the interactions with environments
will inevitably lead to dissipation of the system. In addition,
the counter-rotating terms (δa†δb† + H.c.) ignored in RWA
may modify the dynamic process. In what follows, we
numerically study the cooling process in the dissipative
case beyond RWA. We consider the realistically experimen-
tal parameters for the system [34]: ωm ≈ 2π × 73.5 MHz,
γm ≈ 2π × 1.3 kHz, γc ≈ 2π × 3.2 MHz, and g ≈ 2π ×
843.1 Hz. Namely, γm/ωm ≈ 1.768 × 10−5, γc/ωm ≈ 0.0435,
and g/ωm ≈ 1.147 × 10−5. With these parameters and the
chirped pulse given in Fig. 2, we solve Eq. (9) numerically.
In Fig. 3(a), we plot the time evolution of the mean displaced
particle numbers. We see that the 〈δb†δb〉 decreases rapidly
from its initial value (n̄m = 1000) to a relatively small number
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FIG. 3. (Color online) (a) Time evolution of the displaced phonon
number 〈δb†δb〉 and displaced photon number 〈δa†δa〉 in the chirped-
pulse coupling case for two different values for the γc. The solid and
short dashed curves are for the case of γc/ωm = 0.0435, while the
dashed and dash-dotted curves are for the case of γc/ωm = 0.00435.
(b) Plot of the real and imaginal parts of 〈b(t)〉 vs the scaled time
ωmt . Here �c = ωm.

(about 34) when the chirped pulse is applied. At the same
time, 〈δa†δa〉 in the cavity increases rapidly from zero to a
peak value and then decreases to zero gradually through the
cavity decay channel. We note that the residual fluctuations of
the mirror are limited by the noise of the system, mainly of
the cavity-field damping. Our numerical investigations show
that when the cavity-field decay rate is γc/ωm ≈ 0.00435, the
residual 〈δb†δb〉 can further be reduced to 1.08 [the dash line
in Fig. 3(a)]. In addition, numerical calculations indicate the
correction from the counter-rotating terms is negligible with
these parameters.

We remark that during the pulse interaction, the mirror
attains a nonzero coherent amplitude (i.e., 〈b(t)〉 �= 0) ac-
cording to Eq. (13b). But such a coherent motion should
not be confused with the fluctuations we aim to reduce in
this paper. For the present parameters used in Fig. 3(a), we
plot the time evolution of 〈b(t)〉 in Fig. 3(b). We see that
there is a small amplitude |〈b(2t0)〉| ≈ 2 near the end of the
pulse interaction. Actually, when the thermal fluctuation of
the mirror is completely transferred to the cavity, the mirror
in the displaced representation will be in its ground state.
Therefore, in the original representation, the mirror is prepared
in a coherent state of the mechanical motion.

We also point out that although there are residual cavity
photons after the pulse duration (around 2t0), the heating due
to such photons is found to be negligible because of the weak
coupling strength g. We can estimate that for a residual cavity
photon number nr at time 2t0, the mirror can be excited to have
phonon number (gnr/ωm)2, which is of the order of 0.001 with
the parameters used in Fig. 3 (γc/ωm = 0.0435). Therefore,
the heating is mainly due to the heat bath of the mirror. For
example, we find that the heat bath of the mirror would increase
the phonon number from 34 to 38 when the time evolves from
ωmt = 80 to 300.

D. Effects of the β parameter

The frequency modulation characterized by the parameter
β is a main feature of the chirped coupling. In the case
of β = 0, the coupling corresponds to a π pulse because∫ ∞
−∞ αsech[α(t − t0)]dt = π is the pulse area. However, such

FIG. 4. (Color online) (a) Plot of the final mean displaced phonon
number 〈δb†δb〉f vs the phase modulation amplitude β for various
detunings �c/ωm = 1 and 1.02. (b) Plot of 〈δb†δb〉f vs β for various
parameters δ = −0.1, 0, and 0.1.

a simple π pulse generally does not bring an optimal cooling
when dissipation and counter-rotating terms are included. The
parameter β therefore provides a way to adjust the pulse
for a better cooling performance. In Fig. 4, we demonstrate
this feature numerically by plotting the final mean displaced
phonon number of the mirror (defined at time t = 2t0) as a
function of β. There are two situations [Figs. 4(a) and 4(b)]
that we will discuss below, but in both figures, it is apparent that
nonzero values of β can better reduce the displaced phonon
number of the mirror.

We point out that the final displaced phonon number can
become less sensitive to the detuning �c when |β| is increased.
This is shown in Fig. 4(a), where we can compare the sideband
resonance case �c = ωm with a slightly off-resonance case.
We see that although cooling with an off-resonance �c is
less effective, the dependence on �c becomes weaker as |β|
increases. For the parameters used in Fig. 4(a), the final
displaced phonon numbers are essentially the same when
|β| > 0.2ωm. This shares a similar feature in two-level systems
as a chirped pulse can make efficient population transfer in the
presence of inhomogeneous broadening.

In Fig. 4(b), we illustrate the effect of β on cooling when
there are uncertainties in controlling the pulse area. Such an
error, for example, may come from an inaccurate value of the
coupling strength g. Let us express χ (t) as

χ (t) = (1 + δ)χ0sech[α(t − t0)], (18)

with δ describing the deviation. At β = 0, Fig. 4(b) shows that
a modest change of δ can affect the final displaced phonon
number quite significantly. In fact, we notice that the case
δ = 0.1 in the figure actually corresponds to a better cooling.
This indicates that χ0 in Eq. (15) is no longer optimal for
cooling because of dissipative effects. The search for optimal
pulse parameters relies on numerical work, but Fig. 4(b)
suggests that the frequency modulation with a suitable range of
β may ease the sensitivity of δ and hence improve the cooling
performance, even though the pulse parameters are not exactly
optimal.

V. CONCLUSION AND REMARKS

To conclude, we have proposed a method to cool a
moving mirror in cavity optomechanics by a chirped pulse.
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Within the linearization framework, we have shown how a
chirped-pulse coupling can be achieved by an external driving
field, and numerically we have demonstrated that thermal
fluctuations in the mirror can be significantly transferred to the
cavity after the pulse. In particular, the frequency modulation
plays a positive role in the cooling process, especially when
there are uncertainties in controlling the detuning and pulse
areas.

Finally, we remark that it would be difficult to present
a general comparison of the cooling efficiency between our
scheme and the resolved sideband cooling. This is because
Eq. (8) has no analytic solution and so the residual phonon
number can only be calculated numerically. Nevertheless, we
notice that by decreasing the cavity decay rate, the residual
phonon number can be lowered. As a specific example, with
γc/ωm = 0.001 and the same other parameters as in Fig. 3, the

residual phonon number can reach 0.64. Therefore, the system
under such parameters may effectively be considered as the
ground state, although this residual phonon number is higher
than the resolved sideband cooling limit (γc/4ωm)2 [28]. The
main purpose of this paper is to provide an alternative method
of cooling based on pulsed interaction, which is a transient
solution rather than a steady-state one. In other words, the
process can occur in a finite duration of time, and this could
be a useful feature for manipulating quantum states of the
mirror.
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