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Interaction and motion of solitons in passively-mode-locked fiber lasers

Xueming Liu*

State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics,
Chinese Academy of Sciences, Xi’an 710119, China

(Received 19 August 2011; published 14 November 2011)

Interaction and motion of multiple solitons in passively-mode-locked (PML) fiber lasers are investigated
numerically. Three types of relative motions of two solitons are found in PML fiber lasers. The numerical results
show that the relative motion of solitons attributes to the phase shift, which corresponds to the instantaneous
frequency at pulse peak to be nonzero. Different from the classical dynamics of billiard balls, the interaction
of solitons is similar to the Feynman diagram which is a pictorial way to represent the interaction of particles.
After solitons interact with one another, their shapes do not change, but their phases shift and relative motions
change. The theoretical results demonstrate that the separation of neighboring solitons in the laser cavity is about
several hundred picoseconds to several nanoseconds. The theoretical predictions are in good agreement with the
experimental results.
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I. INTRODUCTION

Passively mode-locked (PML) fiber lasers can provide
simple and economic ultrashort-pulse sources [1–4]. They
constitute an ideal platform for exploring new areas of non-
linear dynamics [5]. Multiple soliton operation in PML fiber
lasers, which has been investigated extensively [2–6], is the
typical result of the conjunction of a relatively strong pumping
power. Solitons observed in fiber lasers exhibit special features
such as soliton bounding, soliton bunching, and quasiharmonic
and harmonic mode locking. Bound solitary pulses, so-called
soliton molecules [2,7], have attracted a great deal of interest
due to their important potential applications. Bound states of
solitons can be predicted in the coupled nonlinear Schrödinger
equations (NLSEs) [7,8] and the quintic complex Ginzburg-
Landau equation [9]. Investigations of the interaction between
the bound solitons show that the bound pulses always behave
as a unit. Usually, the peak-to-peak (PP) separation of bound
solitons is less than several-pulse duration [2,7–9].

Different from the bound states of solitons, the PP sepa-
ration of soliton bunching can be over ten times larger than
the pulse width. Pulse bunching is a special behavior that
corresponds to the ability of several identical soliton pulses to
cluster themselves in a packet.

The formation and evolution of multiple solitons have
been studied numerically and experimentally by many authors
[3,8,10,11]. Various features such as the pump power hystere-
sis, multisoliton generation, and various modes of multisoliton
operation were observed experimentally and investigated
theoretically. Tang et al. proved that the soliton shaping of
the dispersive waves or the continuous-wave (cw) components
plays a key role on the generation of additional solitons [8]. In
our previous reports, it is proved that the mechanism of pulse
splitting determines the dual- and multisoliton generation in
the net-anomalous-dispersion fiber lasers [12], whereas two
pulses are gradually formed at the cost of dropping off a pulse
in the net-normal-dispersion fiber lasers [7]. Theoretical and
experimental results show that the PML fiber lasers alternately
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evolve on the stable and unstable mode-locking states as a
function of the pump strength [3].

An important characteristic of the multisoliton operation
of the laser is that solitons always have erratic motions. A
typical experimental result is demonstrated in Fig. 1. The
experimental setup and parameters are shown in our previous
paper [12]. The experimental observations show that solitons
in the cavity have erratic relative motions. It is import to have
a clear understanding of the physical mechanism responsible
for the relative motion of solitons in the PML fiber lasers.

Although some numerical and experimental investigations
for multisoliton operation were reported [3,8,13,14], the inves-
tigations for a physical mechanism describing the multisoliton
behavior are scarce. In our previous paper [12], although the
multisoliton formation and evolution were studied numeri-
cally and experimentally in PML fiber lasers, the physical
mechanism is ignored. How many types of relative motions
of intracavity solitons are there in PML fiber lasers? What
is the inherent mechanism that causes the intracavity solitons
to have erratic relative motions and stabilize themselves at
more or less random relative positions? This paper answers
these questions: Three types of relative motions of solitons
are found. The numerical simulations show that solitons have
exactly the same pulse properties when they are at the steady
state. It is found that the phase shift determines what and how
solitons move. Soliton collision in PML fiber lasers is similar
to the Feynman diagram, rather than the billiard ball collision.

II. MODELING

In this paper, the nonlinear polarization evolution technique
contributes to the passive mode locking of the laser. The two
coupled NLSEs that involve a vector electric field can model
the light-wave propagation in the weakly birefringent fibers
accurately. The coupled equations are expressed by [3,15,16]
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FIG. 1. (Color online) A typical example for the experimentally
measured oscilloscope trace of the multisoliton operation of the PML
fiber laser. The separation of neighboring solitons is about several
hundred picoseconds to several nanoseconds. The output average
power is ∼1.2 mW.
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where u and v denote the envelopes of the optical pulses
along the two orthogonal polarization axes of the fiber.
They are complex functions that depend on T and z.
T and z represent the time and the propagation distance,
respectively. α, δ, β2, γ , and �g are the loss coefficient of the
fiber, the group velocity difference between the two polariza-
tion modes, the fiber dispersion, the cubic refractive nonlinear-
ity of the medium, and the bandwidth of the laser gain, respec-
tively. g is the net gain, which describes the gain function of
the doped fiber. It is expressed by g = g0 exp(−Ep/Es) [17],
where g0, Es , and Ep are the small-signal gain, the gain satu-
ration energy (it is pump-power dependent [3]), and the pulse
energy, respectively. When the soliton propagates through the
laser cavity, the intensity transmission Ti is expressed as

Ti = sin2(θ ) sin2(ϕ) + cos2(θ ) cos2(ϕ)

+ 0.5 sin(2θ ) sin(2ϕ) cos(φ1 + φ2), (2)

where φ1 is the phase delay caused by the polarization
controllers and φ2 is the phase delay resulting from the fiber,
including both the linear phase delay and the nonlinear phase
delay. The polarizer and analyzer have an orientation of angles
θ and ϕ with respect to the fast axis of the fiber, respectively [3].
The diagram for θ and ϕ is illustrated in Refs. [3,15] in detail.

The following parameters are employed for our simulations
for possibly matching the experimental conditions: α =
0.2 dB/km, g0 = 2 m−1, θ = π/3.5, ϕ = π/10, φ1 = 0.9 +
π/2, γ = 4.5 W−1 km−1 for erbium-doped fiber (EDF) and
1.3 W−1 km−1 for single-mode fiber (SMF), �g = 30 nm, and
β2 = 53.5 × 10−3 ps2/m for EDF and –21.7 × 10−3 ps2/m
for SMF. The lengths of EDF and SMF are 11 and 702 m,
respectively. The above parameters are from the data sheets of
fiber products. Obviously, the net dispersion of the laser cavity
is anomalous so that the laser can deliver the conventional
solitons. The schematic diagram of the experimental setup is
shown in Ref. [12].

III. SIMULATION RESULTS

A. Intracavity two-soliton and relative motion

To find the characteristics and behaviors of solitons in
the proposed laser, the simulation starts from a noise signal
and converges into a stable solution at different Es . Since the
saturation energy Es is proportional to the pumping strength,
the increase of Es in simulations corresponds to increasing
the pump power in the experiments [15]. Numerical results
show that the pulse number over a cavity round-trip time is
generated one by one with the increase of the pumping strength
Es . When Es is lower than ∼15 pJ, no soliton solution exists
in the proposed laser. When Es is from ∼15 to 50 pJ, only
one soliton exists in the laser cavity. However, there are two
solitons simultaneously in the laser cavity while Es is from
∼50 to 90 pJ.

Figure 2 shows the formation and evolution of two solitons
from a noise signal at Es = 70 pJ. In simulations, a noise
wave is assumed as an initial value. A soliton is formed first
and successively split into two solitons. The detailed process
is shown in Fig. 2(a). Figure 2(b), which is the planform of
Fig. 2(a), shows the soliton trajectory in round-trip number
N and time space. We can see from Figs. 2(a) and 2(d) that
there is chaos process when a soliton is split into two solitons.
From Figs. 2(a) and 2(b), one can see that the PP separation
of two solitons increases in the beginning of the round trips
and then it gradually approaches a fixed value of ∼1.9 ns.
Numerical results show that two solitons have exactly the same
physics properties (e.g., the same pulse duration and peak
power) throughout the evolution of solitons. It is found from
Fig. 2(d) that the peak power and pulse duration are oscillating
at N < 120 and successively they approach ∼20.9 W and
3.4 ps, respectively. In the steady state, the PP separation of
solitons is ∼560 times as large as the pulse duration.

Figures 2(c) shows the relationship between the instanta-
neous frequency of the soliton at pulse peak, FP , and round-trip
number N . We can observe that, for N < 11, there is only one
soliton [Fig. 2(b)] and FP is equal to zero. Successively, a
soliton is split into two solitons. When N is from ∼13 to 400,
two solitons separate from each other gradually [Figs. 2(a)
and 2(b)] whereas FP gradually approaches zero [Fig. 2(c)].
For N > 600, two solitons reach the steady state with a
fixed separation of ∼1.9 ns and FP is approximately equal to
zero.

When Es is from ∼75 to 82 pJ, the relative motion of
the two solitons is different from Fig. 2 where each soliton
approaches a certain position. An example for the evolution
of two solitons at Es = 81 pJ is shown in Fig. 3. One can
see from Fig. 3(a) that one of the solitons evolves to a fixed
position whereas the other soliton oscillates with a amplitude
of ∼100 ps and a period of 118 round trips. The PP separation
of the two solitons periodically oscillates from ∼360 to 460 ps
for N > 400. It is found that FP of the oscillating soliton also
periodically oscillates along N [Fig. 3(b)], while FP ≈ 0 for
the fixed soliton.

When Es is from ∼82 to 90 pJ, both FP and two solitons
oscillate along N . Figure 4 demonstrates the evolution of two
solitons at Es = 85 pJ. Figure 4(a) shows that two solitons
oscillate with an amplitude of ∼117 ps and the period of
119 round trips. Two solitons attract and repel each other
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FIG. 2. (Color online) (a) Formation and evolution of solitons
from a noise wave. (b) Soliton trajectory in round-trip number N and
time space. (c) Instantaneous frequency at pulse peak, FP , versus N .
(d) Peak power and pulse duration versus N . (b) is the planform of
(a). Es = 70 pJ.

FIG. 3. (Color online) Evolution of two solitons at Es = 81 pJ.
(a) Soliton trajectory in round-trip number N and time space.
(b) Instantaneous frequency at pulse peak, FP , versus N .

periodically along N . The PP separation of solitons period-
ically oscillates from ∼415 to 690 ps for N >150 [Fig. 4(a)].

Obviously, there are three types of relative motions for
two solitons in the laser cavity. They evolve with the fixed
trajectory (Fig. 2) and the oscillating trajectory for both of two
solitons (Fig. 4), as well as the fixed trajectory for one soliton
and the oscillating trajectory for another soliton (Fig. 3).
The instantaneous frequency at pulse peak, FP , governs the
relative motion of solitons. Solitons evolve to the steady state
when FP approaches zero, whereas they oscillate in the cavity
for FP �= 0. For example, as shown in Fig. 2, two solitons

FIG. 4. (Color online) Evolution of two solitons at Es = 85 pJ.
(a) Soliton trajectory in round-trip number N and time space.
(b) Instantaneous frequency at pulse peak, FP , versus N .
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have the same pulse properties (e.g., the same pulse duration,
pulse energy, and phase) with a fixed separation. In this case,
the unit of two solitons is very similar to the bound-state
solitons except that they have different PP separations. This
type of soliton pair can be regarded as a static soliton pair.
When the relative motion of one or two solitons is oscillating
(e.g., Figs. 3 and 4), this kind of soliton pair can be regarded
as a dynamic soliton pair. The theoretical results explain why
the intracavity multisolitons can have erratic relative motions
in the experimental observations.

B. Intracavity multisoliton and collision

When Es is from ∼90 to 125 pJ, three solitons with the same
physical properties coexist in the cavity. An example for Es =
96.2 pJ is shown in Fig. 5. One can see that, for N > 900, FP

per soliton is approximately equal to zero [Fig. 5(c)] and each
soliton evolves to the steady state [Fig. 5(a)]. The three solitons
have the same pulse profile, pulse duration, and peak power.
From Figs. 5(a) and 5(b), we can find a strange phenomenon
when N is from ∼475 to 500. At this stage, two solitons repel
each other and never merge. The inset of Fig. 5(b) shows that
the minimum separation of neighboring solitons is ∼35 ps.

According to soliton theory, when solitons interact with
other solitons, their shapes do not change, but their phase
shifts. Actually, the phenomenon of “phase shift” is a standard
feature of soliton interactions. The change of phase leads to
the variation of FP . Note that the instantaneous frequency is
the first derivative of phase [18]. Obviously, the numerical
simulations here are in excellent agreement with the results in
the traditional soliton theory. The theoretical prediction in this
paper is very similar to the Korteweg-de Vries (KdV) soliton
in Ref. [19]. Moreover, Fig. 5(c) shows that FP at the soliton
collision (N ≈ 475–500) has a strong fluctuation and a strong
phase shift occurs.

When Es is from ∼125 to 155, 155 to 185, and 185 to 205 pJ,
numerical results shows that four, five, and six solitons coexist
in the laser cavity, respectively. Figures 6(a), 6(b), and 6(c)
demonstrate three examples at Es = 130, 165, and 200 pJ,
respectively. In the simulation, the phase shifts are imposed
on some solitons initially. The simulation results exhibit that
the solitons imposed by the initial phase shift have relative
motion in the beginning of round trips. After enough round
trips, all solitons approach the steady state and FP of each
soliton is near zero. In simulating Fig. 6(c), only one soliton is
initially imposed on the phase shift, but the soliton collisions
occur four times. Figures 5 and 6 illustrate that the separation
of neighboring solitons is nonuniform and the numerical
predictions agree well with the experimental observations as
shown in Fig. 1. From Figs. 2–6, one can see that the PP
separation of neighboring solitons is about several hundred
picoseconds to several nanoseconds. The experimental results
(e.g., Fig. 1) confirm the theoretical predictions.

We can see from Figs. 5 and 6 that, as two solitons get close,
they never pass through each other and the transfers of energy
and information of solitons are transited by a virtual soliton.
Obviously, Figs. 5 and 6 show that the soliton collision in PML
fiber lasers is not similar to the billiard ball collision. Rather
than the classical dynamics of billiard balls, the interaction of
solitons can similarly be interpreted by the Feynman diagram,

FIG. 5. (Color online) (a) Interaction and evolution of three
solitons at Es = 96.2 pJ. (b) Soliton trajectory in round-trip number
N and time space. (c) Instantaneous frequency at pulse peak, FP ,
versus N . In (b), inset is the local view of the soliton collision. In
(c), FP at N ≈ 475–500 has a strong fluctuation and a strong phase
shift is incurred.
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FIG. 6. (Color online) Soliton trajectory in round-trip number N

and time space at (a) Es = 130 pJ, (b) Es = 165 pJ, and (c) Es =
200 pJ. Four, five, and six solitons coexist in the laser cavity for (a),
(b), and (c), respectively. Although some neighboring solitons get
close and collide, they never pass through each other. In (c), only a
soliton is initially imposed on a phase shift, but the soliton collisions
occur four times.

in which during their interaction, two electrons exchange a
(virtual) photon and then repel one other [20]. In fact, the
particlelike behavior of solitons is discovered in the KdV
two-soliton collision, where a virtual “transfer” soliton steals
energy from the faster one in the rear and passes it to the
soliton in front [19,21]. As a result, solitons are waves that act
like particles and even the particlelike behavior of solitons can
help us to better understand real particles.

IV. MECHANISM OF MOTION OF SOLITONS

When the separation of solitons is over tens times larger
than the pulse duration, the interaction between solitons is very
weak. What is the key role that governs the motion of solitons?
From Figs. 2–6, the relative motion of solitons originates from
the phase shift.

Our laser is mode locked using the nonlinear phase rotation
(NPR) technique. The laser cavity can be simplified to a
setup as shown in Fig. 7 [3,8]. The intensity transmission
Ti from input to output, as shown in Fig. 7, can be achieved by
numerically solving Eqs. (1) and (2). When no phase shift is
imposed on solitons (corresponding to FP = 0), the intensity
transmission Ti is symmetrical with respect to the relative time
[Fig. 8(a)]. As a result, no relative motion occurs except that

FIG. 7. (Color online) An equivalent setup to NPR element for
determining the cavity transmission.

the soliton intensity is attenuated [Fig. 8(b)]. However, when
the phase shift is imposed on the soliton (corresponding to
FP �= 0), Ti is asymmetrical with respect to the relative time
[dashed curve in Fig. 8(a)] and then the soliton has the relative
motion shown as the dashed curve in Fig. 8(b).

Figure 9 shows the soliton trajectory in the intracavity
position and time space. In simulations, the phase shift is
imposed on soliton 1, but not on soliton 2. It is easily found
from Fig. 9 that there is no relative motion for a soliton
without the phase shift, whereas another soliton with the phase
shift has the relative motion along the intracavity position. In
our previous paper, the chirped solitons are narrowed in the
beginning of the propagation distance and successively they
are broadened due to the dispersive effect (Figs. 8 and 9 in
Ref. [12]). But, no relative motion occurs for them, similar to
soliton 2 in Fig. 9. Besides the dispersion-induced narrowing
and broadening of pulses, the relative motion occurs for the
solitons imposed by the phase shift (soliton 1 in Fig. 9 shows an
example). Therefore, the dispersion-induced phase shift plays
a key role in the relative motion of solitons in the laser cavity.

In practice, many parameters of lasers are fluctuant, such
as pump power, environmental temperature, refractive index
of fiber, and polarization state. These fluctuations will perturb

FIG. 8. (Color online) (a) Intensity transmission at FP = 0 and
FP �= 0. (b) Power spectra of solitons before and after NPR element.
The solid curve in (a) is symmetric with respect to the relative time,
but the dashed curve is asymmetric.
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FIG. 9. (Color online) Soliton trajectory in intracavity position
and time space. The phase shift is imposed on soliton 1, but not on
soliton 2. There is and is not the relative motion for soliton 1 and
soliton 2 along the intracavity position, respectively.

the laser system and may contribute to the phase shift of the
solitons. Additionally, the soliton collision can induce a strong
phase shift, as shown in Fig. 5(c). Figure 6(c) shows that
the soliton collision induces the relative motions of multiple
solitons along N . Therefore, intracavity solitons are easily im-
posed by the phase shift in a practical environment so that they
often have erratic relative motions and stabilize themselves at
more or less random relative positions. The theoretical results
are consistent with the experimental observations.

V. CONCLUSIONS

In this paper, we have numerically investigated the evo-
lution and interaction of two and multiple solitons and their
relative motions in PML fiber lasers with the net anomalous
dispersion. Three types of relative motions of solitons are
found by solving the coupled complex NLSEs. When the
pumping strength Es is lower (e.g., Es = 70 pJ), two solitons
always have exactly the same physics properties throughout

their evolution and their separation approaches a fixed value
(e.g., 1.9 ns). In this case, two solitons behave as a unit and
are regarded as a static soliton pair. Contrarily, one of two
solitons or both oscillate with approximately fixed amplitude
of relative motions and a periodic round-trip number by
appropriately enhancing Es (e.g., Es = 81 or 85 pJ). Two
solitons periodically attract and repel each other with respect
to the round-trip number N . In this case, two solitons are
regarded as a dynamic soliton pair. The PP separation of static
and dynamic soliton pairs is over two orders of magnitude
larger than the pulse duration (Figs. 2–4).

The numerical simulations show that the relative motion
of solitons attributes to the phase shift, which corresponds
to the instantaneous frequency at pulse peak to be nonzero.
When two solitons collide, they never pass through each other
and the transfers of energy and information of solitons are
transited by a virtual soliton. After the collision between two
solitons, their shapes do not change, but their phases shift and
relative motions change. The theoretical results demonstrate
that the separation of neighboring solitons in laser cavity is
about several hundred picoseconds to several nanoseconds.
The theoretical predictions are in good agreement with
the experimental results. Our theoretical results successfully
interpret why the intracavity solitons have erratic relative
motions and stabilize themselves at more or less random
relative positions. In addition, the particlelike behavior of
solitons can help us to better understand real particles.
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