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Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system
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We present a diagrammatic method for complete characterization of multiphoton processes in three-level
atomic systems. By considering the interaction routes of the coupling and probe photons for a ladder-type,
three-level, noncycling (or cycling) atomic system, we are able to completely discriminate between the pure
one-photon and the pure two-photon resonance effects, and the effect of their combination in electromagnetically
induced transparency (EIT) using our diagrammatic method. We show that the proposed diagrammatic method
is very useful for the analysis of multiphoton processes in ladder-type EIT.
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Quantum interference is a ubiquitous phenomenon in
physics. In particular, electromagnetically induced trans-
parency (EIT) in an atomic system is a quantum interference
phenomenon of two pathways between two dipole-forbidden
atomic states [1,2]. After the first proposal [3] and experi-
mental realization [4], EIT has drawn considerable interest
in the atomic and optical physics fields. This is because it
can be applied to many valuable researches such as quantum
information [5], light storage [6], and precision magnetometer
[7]. EIT was investigated for many atomic species such as Rb,
Na, or Cs [8–14] and for a variety of laser configuration [�, V,
and ladder (or cascade) system] [1]. Of these configurations,
ladder scheme has drawn much interest recently owing to
its applications such as coherent control of polarization [15],
study of Rydberg states [16], and multiwave mixing [17].

The effect of quantum interference in EIT has been investi-
gated considerably from the first proposal report [3]. It should
be noted that the underlying mechanism of EIT is closely
related to Fano-interference phenomenon in atomic systems
[18]. In reality, the effect of the probe beam is considered
only in the first order the Rabi frequency of the probe beam,
whereas that of the coupling beam is considered in all orders
of the coupling beam Rabi frequency [9]. Furthermore, up
to the second order in the Rabi frequency of the coupling
beam, the line shape of EIT can be accurately understood by
considering only two paths: one is direct way (one-photon
coherence) and the other is indirect way via an intermediate
state (three-photon coherence) [10]. However, when the probe
beam intensity is comparable to the coupling beam intensity,
the line shape in EIT shows a variety of variation and there
occur many multiphoton processes. The line shape of EIT in
this regime was studied in several papers [10,19,20]. Although
the EIT spectrum in the strong probe regime was investigated
previously, an accurate calculation and characterization of the
multiphoton processes in three-level atomic system has not
been reported.

Recently, theoretical studies on three-level ladder-type
atoms [21,22] and experimental works for Na [13] and Rb
[23,24] were reported. In particular we discriminated the EIT
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spectrum in terms of one-photon and two-photon coherence
effects [22]. Although we could explain the spectrum success-
fully, the one-photon resonance effect comprises two-photon
resonance effects simultaneously, and vice versa. In this paper
we report an accurate discrimination of multiphoton processes
existing in the EIT by employing an open ladder-type three-
level atomic system. We could discriminate the EIT spectrum
(background subtracted) into three parts: one is two-step
excitation contribution (one-photon resonance term) [25], the
next is two-photon resonance term, the last one is the mixed
term of one-photon and two-photon resonances.

Figure 1(a) shows the energy level diagram for a ladder-type
atomic system with noncycling transitions. The probe laser of
wavelength λ1 is tuned to the transition line between the ground
(|1〉) and the intermediate (|2〉) states, whereas the coupling
laser of wavelength λ2 is tuned between the intermediate
and the excited (|3〉) states. We also make assumptions
about the branching ratios b1 and b2. In the calculation we
assume that λ1 = 780 nm and λ2 = 775.8 nm, which are the
resonance wavelengths for the transitions 5S1/2–5P3/2 and
5P3/2–5D5/2,3/2 of rubidium, respectively. Also the decay rates
are γ1 = 2π × 6 MHz [26] and γ2 = 2π × 0.97 MHz [9].

The density-matrix equations are given by

ρ̇33 = −γ2ρ33 − �2Imρ32, (1a)

ρ̇22 = b2γ2ρ33 − γ1ρ22 + �2Imρ32 − �1Imρ21, (1b)

ρ̇11 = b1γ1ρ22 + �1Imρ21, (1c)

ρ̇32 = (i/2)[�2ρ32 + �1ρ31 + �2(ρ33 − ρ22)], (1d)

ρ̇31 = (i/2)[�0ρ31 + �1ρ32 − �2ρ21], (1e)

ρ̇21 = (i/2)[�1ρ21 − �2ρ31 + �1(ρ22 − ρ11)], (1f)

where ρij = ρ∗
ji (i �= j ). �1 = 2δ1 + iγ1, �2 = 2δ2 + i(γ1 +

γ2), and �0 = 2(δ1 + δ2) + iγ2, where δ1(2) and �1(2) are
the frequency detuning and the Rabi frequency of the probe
(coupling) beam, respectively. The absorption coefficient
of the probe beam, averaged over the Maxwell-Boltzmann
velocity distribution and various transit times, is given by

α = −Nat
3λ2

1

2π

γ1

�1

1

tav

∫ tav

0
dt

∫ ∞

−∞
dv

e−(v/u)2

√
πu

Imρ21, (2)

where δ1 = δp − (2π/λ1)v, δ2 = δc + (2π/λ2)v [δp(c): the
detuning of the probe (coupling) beam], u is the most probable
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FIG. 1. (Color online) (a) Energy level diagram for three-level ladder systems. (b) Diagram for matrix elements for the coupling and probe
Rabi frequencies. (c) Six possible routes for arriving at the element of �3

1�
2
2.

speed of the atom, and tav is the average transit time [22]. Since
the transmittance is given approximately by e−αl (l: the length
of the cell), it is approximately proportional to the averaged
Imρ21. Therefore, in what follows we discuss the transmittance
spectrum in terms of the averaged Imρ21.

Using Eq. (1f), Imρ21 can be decomposed into two parts:

Imρ21 = Im

[
�1

�1
(ρ11 − ρ22)

]
+ Im

[
�2

�1
ρ31

]
. (3)

Since the former and the latter terms on the right-hand side in
Eq. (3) are related to the population difference and two-photon
coherence, respectively, these two are roughly regarded as one-
photon and two-photon coherence terms, respectively [22].
However, although the latter term refers to the two-photon
coherence ρ31, it really possesses the contributions from both
one-photon and two-photon resonances. It is a similar case
for the population difference term. Here we separate the total
signal into three terms: one is a purely one-photon resonance
term, the second is a purely two-photon resonance term, the last
one is a mixed term of one-photon and two-photon resonances.

In order to understand and accurately discriminate between
the pure one-photon and two-photon resonance effects, we
plot the density matrix elements for different orders of the
Rabi frequencies of the probe and coupling lasers as shown in
Fig. 1(b). Figure 1(b) was obtained by expanding the density-
matrix elements in the orders of �1 and �2. In Fig. 1(b) i

denotes the populations ρ11 and ρ22, while j represents the
populations ρ11, ρ22, and ρ33. The meaning of Fig. 1(b) is very
clear. For instance, ρ11 has the components in the orders of
�0

1�
0
2, �2

1�
0
2, �2

1�
2
2, etc. Note that the lowest order term of ρ11

is 1, which is independent of the branching ratios of the system.
Since we measure the transmittance of the probe laser beam,

it is necessary to add all values of ρ21 in Fig. 1(b). Let us
concentrate on the term of ρ21 in the order of �3

1�
2
2. There

are many routes to arrive at this point from the lowest order of
ρ11. In Fig. 1(c) we show six possible routes. The three routes
(i), (ii), and (iii) take downward propagation in the last step,
which corresponds to population difference term in Eq. (3). In
contrast, three routes (iv), (v), and (vi) take the right direction
in the last step, which correspond to the coherence term in
Eq. (3). Among the three routes (i), (ii), and (iii), only route

(iii) does not pass the point of ρ31, which implies a two-photon
resonance process. Therefore, only route (iii) represents the
pure one-photon resonance effect, in other words, a two-step
excitation in the process [13]. We can also see that only path
(iv) does not pass the population term. Consequently, we see
that the path (iv) implies a pure two-photon process. The other
paths (i), (ii), (v), and (vi) represent the mixed effects of one-
photon and two-photon resonances. As an example we can
write ρ21 in the order of �2

1�
3
2 via the path (iv) as follows:

ρ
(iv)
21 =

(
�2

�1

) (−�1

�0

) (−�1

�2

) (
�2

�0

) (
�1

�1

)
1, (4)

where 1 implies the population ρ11 = 1 in the order of �0
1�

0
2,

and the five successive terms from the right represent the
interactions (1), (2), (3), (4), and (5) in Fig. 1(c), respectively.
We can write similar equations for other paths when the atomic
system is cycling.

We first consider the one-photon resonance effect. It is easy
to recognize that the pure one-photon resonance effect can be
obtained by setting ρ31 zero. This process is merely to set up
the rate equations, which are explicitly given by [22]

ρ̇
(0)
33 = −γ2ρ

(0)
33 − (γ1 + γ2)�2

2

4δ2
2 + (γ1 + γ2)2

(
ρ

(0)
33 − ρ

(0)
22

)
, (5a)

ρ̇
(0)
22 = b2γ2ρ

(0)
33 − γ1ρ

(0)
22 + (γ1 + γ2)�2

2

4δ2
2 + (γ1 + γ2)2

(
ρ

(0)
33 − ρ

(0)
22

)

− γ1�
2
1

4δ2
1 + γ 2

1

(
ρ

(0)
22 − ρ

(0)
11

)
, (5b)

ρ̇
(0)
11 = b1γ1ρ

(0)
22 + γ1�

2
1

4δ2
1 + γ 2

1

(
ρ

(0)
22 − ρ

(0)
11

)
, (5c)

where ρ
(0)
ii (i = 1, 2, 3) represents the populations in the

absence of the coherence ρ31. Thus the pure one-photon
resonance effect is given by

L1p = Im

[
�1

�1

(
ρ

(0)
11 − ρ

(0)
22

)]
, (6)

where L implies a “lower transition” for the probe beam. It
should be noted that this one-photon resonance term belongs
to the population term in Eq. (3) not to the coherence term.
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FIG. 2. (Color online) Three routes for pure two-photon reso-
nance to the element of �5

1�
4
2.

Therefore the other part, except for L1p, in Eq. (3) represents
the mixed term, which will be discussed later.

Now we consider the two-photon resonance term. The
multiplication factor such as �2/�1, shown in Fig. 2, acts as,
for example, ρ31(�2/�1) = ρ21, which can be derived easily
from Eqs. (1d)–(1f). When both the coupling and probe beams
are weak, the two-photon coherence term is ρ21 in the order
of �1�

2
2. In contrast, the two-photon coherence term in the

weak probe intensity limit, that is, up to the first order in �1,
is the sum of all ρ21 in the second row in Fig. 2. This is often
discussed in papers on ladder-type EIT [9]. However, when
the intensities of the coupling and probe beams are arbitrary, it
is necessary to sum over all ρ21 in Fig. 2 except for the values
in the first column, which constitute the background signal.

The calculation can be easily performed using the method
shown in deriving Eq. (4). In the case of term ρ21 in
the order of �1�

2
2, it can be immediately obtained as

(−�1/�2)(�2/�0)(�1/�1)1, because there is only one route
to this point. Let us consider the term in the order of �5

1�
4
2

marked as a rectangle in Fig. 2. As shown in Fig. 2 we
have three possible routes. Each route contributes equally
to the coherence term. Therefore we need to multiply by a
factor of 3 in the calculated result. We can easily see that the
number of possible routes to the term in the order of �m

1 �n
2 is

(m+n−3)/2C(m−1)/2. Therefore, using the variables m = 2μ + 1
and n = 2ν + 2 (μ,ν = 0, 1, 2, . . .), the result is given by

�2

�1

⎡
⎣ ∞∑

ν=0

∞∑
μ=0

μ+νCμxμyν

⎤
⎦ (

�2

�0

)(
�1

�1

)
1, (7)

where x = �2
1/(�0�2) and y = �2

2/(�0�1). Since∑∞
μ=0

∑∞
ν=0 μ+ν Cμ xμ yν = ∑∞

ζ=0

∑ζ

μ=0 ζ Cμ xμ yζ−μ =∑∞
ζ=0 yζ [1 + (x/y)]ζ = 1/(1 − x − y) in Eq. (7), the final

result is given by

L2p = Im

[
�2�1�

2
2

�1
(
�0�1�2 − �1�

2
1 − �2�

2
2

)
]

. (8)

The result in Eq. (8) can be also obtained by expressing the
coherence term in Eq. (3) in terms of the populations as

follows:

Im

[
�1(ρ33 − ρ22) − �2(ρ22 − ρ11)

�1
(
�0�1�2 − �1�

2
1 − �2�

2
2

)�1�
2
2

]
. (9)

where Eqs. (1d)–(1f) have been used to calculate the coher-
ence. Setting ρ11 = 1 and ρ22 = ρ33 = 0 in Eq. (9), we can
obtain the same results as in Eq. (8). Therefore we can interpret
the terms in the various orders of �1 and �2 by means of the
corresponding many interaction pathways from the point �0

1�
0
2

to the considered point.
The other contributions in Imρ21 except for the one-photon

resonance term in Eq. (6) and two-photon resonance term in
Eq. (8) constitute the mixed term Lmix. Since the mixed term
is very dependent on the populations, this can explain the dip
and peak signals for various branching ratios, as discussed in
Ref. [22].

Here we present a brief description of the results for the case
where the upper transition is used as a probe line. In this case
the measured signal is proportional to the following equation:

Imρ32 = Im

[
�2

�2
(ρ22 − ρ33)

]
+ Im

[−�1

�2
ρ31

]
. (10)

Also the one-photon and two-photon contributions are given
by

U1p = Im

[
�2

�2

(
ρ

(0)
22 − ρ

(0)
33

)]
, (11)

U2p = Im

[ −�2
1�2

�0�1�2 − �1�
2
1 − �2�

2
2

]
, (12)

respectively, where U implies the “upper transition” for the
probe beam, and Eq. (12) was obtained by replacing �2/�1

in Eq. (7) with −�1/�2.
Figure 3(a) [3(b)] shows typical calculated results when

b1 = 1 and b2 = 0.75 [b1 = 0.5 and b2 = 0.5]. In Fig. 3, δc =
0, whereas δp is scanned. The Rabi frequencies are �1 = 0.2γ1

and �2 = 5.0γ2. In Fig. 3, (i) shows the total, one-photon
resonance, and the background signals. (ii) shows a detailed
plot near the frequency origin. (iii) shows the two-photon
resonance term and the mixed term. The background signal
was obtained at the condition of �2 = 0. The one-photon
resonance signal is very broad and weak compared to the
other signals. In Fig. 3 we can see that the broad peak or
dip signal results mostly from the mixed term. In contrast,
a narrow transmittance signal results from the two-photon
resonance term. Since the mixed term contains the effect of
the populations, it can be broadened due to the ac Stark shift
and depends heavily on the branching ratios. Thus the optical
pumping affects the signals via the mixed term. Because the
two-photon resonance term does not contain the populations,
it does not depend on the branching ratios.

In this article we present a simple diagrammatic method for
the accurate characterization of multiphoton processes which
occur in EIT for three-level ladder systems at arbitrary intensi-
ties of the probe and the coupling beam and with arbitrary
branching ratios. The line shape can be decomposed into
three components: the pure one-photon resonance, the pure
two-photon resonance, and the mixed contribution of both. We
explained each process by means of a diagrammatic method,
which facilitates the clear understanding of the interaction
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FIG. 3. (Color online) Typical calculated EIT spectra when (a) b1 = 1 and b2 = 0.75 and (b) b1 = 0.5 and b2 = 0.5.

between atoms and lights. We found that the two-photon reso-
nance signal maintains line shape regardless of the branching
ratios, whereas the mixed term, which is strongly dependent
on the branching ratios, determines overall line shape in the
spectrum. The diagrammatic method described in this letter
can be generally applied to calculation of line shapes in other
geometries such as �-, V-type, N-type, or even real atoms.
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