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Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a
single dual-periodically-poled crystal
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We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a
dual-periodically-poled crystal. Compared with the usual forward-wave-type source, this source, in the backward-
wave way, has a much narrower bandwidth. With a 2-cm-long bulk crystal, the bandwidths of the example sources
are estimated to be 3.6 GHz, and the spectral brightnesses are more than 100 pairs/(s GHz mW). Two concurrent
quasi-phase-matched spontaneous parametric down-conversion processes in a single crystal enable our source
to be compact and stable. This scheme does not rely on any state projection and applies to both degenerate and
nondegenerate cases, facilitating applications of the entangled photons.
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I. INTRODUCTION

Polarization-entangled photons play a key role not only in
testing the foundations of quantum mechanics [1] but also in
various photonic quantum technologies [2]. A compact, robust,
and high-brightness source of polarization-entangled photons
is therefore desirable for practical implementation of a variety
of entanglement-based applications.

Spontaneous parametric down-conversion (SPDC) in
nonlinear crystals is a successful technique to generate
polarization-entangled photon pairs. A typical method in-
volves using the type-II birefringence phase-matching (BPM)
in a nonlinear crystal [3], such as beta barium borate (BBO).
However, only a small fraction of the total emitted photons,
the intersecting locations of two nonoverlapping cones, are
polarization-entangled, and therefore such a source is ineffi-
cient. A more efficient source consists of two type-I nonlinear
crystals via BPM [4,5], from which polarization-entangled
photons are emitted in a cone. However, generally only a small
fraction of the cone is collected for use, and thus such a source
is again less efficient.

One way to solve the inefficiency problem in the conelike
sources is by means of quasi-phase-matching (QPM) [6,7] in
periodically poled (PP) crystals [8], such as periodically poled
lithium niobate (PPLN) and periodically poled potassium
titanyl phosphate (PPKTP). QPM has advantages over BPM
due to its higher efficiency and the fact that it enables flexible
frequency-tunable processes. In particular, QPM enables the
collinear and beamlike configuration of the photon pairs.
Consequently, it is possible to make a much bigger fraction
of the created photons polarization-entangled rather than
conelike sources, thus leading to more efficient sources.
However, a new problem arises, namely the need to spatially
separate the collinear photon pairs.

A simple method to solve this problem is by using dichroic
mirrors when the photon pairs are generated at substantially
different frequencies. In this way, several nondegenerate
polarization entanglement sources have been designed by
coherently combining two SPDC sources at a polarizing beam
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splitter [9–15], by manipulating polarization ququarts [16],
by overlapping two cascaded PP crystals [17,18], or by two
cascaded [19] or concurrent [20,21] SPDC processes in a
single PP crystal. These nondegenerate sources have various
applications, such as, for instance, in quantum communication
[22]. However, in many entanglement-based applications, such
as, for example, in quantum computation [23], frequency-
degenerate polarization-entangled photons are required. A
straightforward way to build degenerate entangled sources
based on PP crystals is by separating collinear orthogonally
polarized photon pairs with a beam splitter followed by twofold
coincidence measurement as a postselection [24]. However,
this method suffers a 50% loss. A postselection-free method
employs interferometers to combine two pairs of orthogonally
polarized photons [25,26], but such interferometric sources
(also the nondegenerate sources in Refs. [9–15]) require
stringent phase control and stabilization.

Another problem of SPDC sources lies in the broad band-
width determined by the phase-matching condition, which is
usually on the order of several THz or hundreds of GHz. The
broadband SPDC source becomes very dim in many appli-
cations requiring narrow-band photons, such as long-distance
fiber optical quantum communication (∼GHz [27]), strong
interaction of the photons with atoms and molecules(∼MHz
[28], and recently relaxed to several GHz [29,30]), and
interference of independent sources without time synchro-
nization (∼GHz [31]). Passive filtering is a straightforward
way to obtain narrow-band sources [27,31], but it will greatly
reduce the generation rate. Cavity-enhanced SPDC can provide
high-brightness narrow-band photon paris [32–34]. However,
additional spectral filtering is required to obtain single-mode
output due to the broad gain bandwidth.

In this paper, we succeed in solving all the above prob-
lems by building a compact and narrow-band polarization-
entanglement source based on the backward-wave-type SPDC
in a dual-periodically-poled crystal. The backward-wave-type
SPDC [35–37] has a much narrower bandwidth than the
forward-wave interaction. The counterpropagating photon pair
generation has also been extensively studied in waveguide
structures [38–41]. Moreover, it not only has the same
advantage as the usual collinear, beamlike output SPDC on
photon collection and overlapping for possible polarization
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entanglement, but it also does not suffer from the problem
of spatial separation. Our scheme relies on the coherence
of two concurrent backward-wave-type SPDC processes in
a single PP crystal, rather than any interferometer and post-
selection. Furthermore, this scheme can work in frequency-
degenerate and -nondegenerate cases, for which we design
two experimentally feasible structures, respectively. With a
2-cm-long bulk crystal, the bandwidths of the two sources are
estimated to be 3.6 GHz, with spectral brightnesses of 115 and
154 pairs/(s GHz mW), respectively.

The rest of this paper is organized as follows. In the next
section, we give a description of the dual-periodically-poled
crystal and design the structures required in our scheme.
In Sec. III, we introduce our scheme and make detailed
calculations on the sources we propose. Section IV contains
our conclusions.

II. DESCRIPTION OF A DUAL-PERIODICALLY-POLED
CRYSTAL

QPM originates from modulation of the second-order
nonlinear susceptibility χ (2). It has been advanced to a variety
of domain structures that allow multiple and flexible nonlinear
processes in a single crystal, leading to compact and integrated
devices. A dual-periodic structure is one of the QPM structures
that permits two coupled optical parametric interactions
[42,43]. Here, taking the potassium titanyl phosphate (KTP)
crystal as an example, we design a dual-periodic structure
to satisfy two concurrent SPDC processes, Hp → Hs + Vi

and Hp → Vs + Hi , where p, s, and i represent the pump,
signal, and idler fields, respectively, with H (V ) denoting the
horizontal (vertical) polarization.

The schematic of a dual-periodically-poled KTP (DPPKTP)
crystal is shown in Fig. 1, in which inverted domains (with
−χ (2)) distribute on a +χ (2) background as a dual-periodic
structure. It is formed by twice-periodic modulation of χ (2).
Suppose g1(x) and g2(x) are two periodic functions as the
sign of nonlinearity χ (2). Then their Fourier expansions can be
written as

g1(x) =
∑
m

Gme−iGmx, (1)

g2(x) =
∑

n

Gne
−iGnx, (2)

FIG. 1. Schematic of a dual-periodically-poled potassium titanyl
phosphate crystal. Gray and blank areas are inverted (−χ (2)) and
background positive (χ (2)) domains, respectively.

respectively, where the reciprocals are

Gm = 2mπ

�1
, Gn = 2nπ

�2
, (3)

and the Fourier coefficients

Gm = 2

mπ
sin(mD1π ), Gn = 2

nπ
sin(nD2π ), (4)

with �1 and �2 (�1 < �2) denoting the two modulation
periods, D1 and D2 representing the duty cycles, and nonzero
integers m and n indicating the orders of reciprocals. Then we
can write the dual-periodic structure as

g(x) = g1(x)g2(x) =
∑
m,n

Gm,ne
−iGm,nx, (5)

where

Gm,n = GmGn = 4

mnπ2
sin(mD1π ) sin(nD2π ), (6)

Gm,n = Gm + Gn = 2mπ

�1
+ 2nπ

�2
. (7)

Then the modulation of the second-order nonlinear suscepti-
bility χ (2) can be described as

χ (2)(x) = dg(x) = d
∑
m,n

Gm,ne
−iGm,nx, (8)

where d is the effective nonlinear coefficient.
An arbitrary twice-periodic modulation could result in

smaller domains, which may make fabrication more difficult.
A straightforward way to avoid the unwanted small domains
is by designing the structure such that

�2/�1 = l/2,

D1 = 1/2,

D2 = �l/2�/l, where l is an integer bigger than 2, (9)

where �·� is the floor function to get the integer part of a
number. In practice, this condition can be satisfied by tuning
the temperature and wavelengths.

We consider the pump wave vector along the x direction
and H (V ) in the y (z) directions. By choosing the right
wavelengths and temperature, we are able to obtain the
following QPM conditions for two backward-wave-type SPDC
processes:

�k1 = kp,H − ks,H + ki,V − Gm1,n1 = 0, (10)

�k2 = kp,H − ks,V + ki,H − Gm2,n2 = 0, (11)

where Gm1,n1 and Gm2,n2 are given by Eq. (7) in the case
of {m,n} = {m1,n1} and {m,n} = {m2,n2}, respectively. Here
we require the two SPDC processes to have the same signal
frequency ωs and the same idler frequency ωi , with the
energy-conservation condition ωp = ωs + ωi , where ωp is the
pump frequency. In addition, as we shall see in Sec. III, we
require m1n1 = ±m2n2. In order to show the experimental
feasibility of such a structure, in the following we design
two possible structures based on the temperature-dependent
Sellmeier equation given by Emanueli and Arie [44].

We first design a structure for a degenerate source of
λp = 655 nm, λs = λi = 1310 nm. Such a source could find
applications in long-distance fiber-based quantum information
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processing, as the wavelength of the photons is in the second
telecom window. At a working temperature of 75 ◦C, we get
the two reciprocals for QPM as G3,1 = 17.47 μm−1 and
G3,−1 = 18.24 μm−1, corresponding to the two modulation
periods �1 = 1.056 μm and �2 = 16.36 μm, respectively.
The ratio of the two periods is �2/�1 = 15.5, and thus the
duty cycle D2 should be 15/31.

We design a second structure for a nondegenerate source
of λp = 532 nm, λs = 807.3 nm, and λi = 1560 nm. This
choice is motivated by the photon source requirements in
real-world quantum networks, for example photonic memories
in quantum repeaters. The shorter-wavelength photon of this
source can be used for coupling and entangling atomic
systems, and the other photon at 1560 nm can be transmitted
over a long distance in fiber because its wavelength lies
in the low-loss transmission window of optical fibers. By
choosing the working temperature as 75.5 ◦C, we obtain
the two reciprocals for QPM as G3,1 = 14.95 μm−1 and
G3,−1 = 15.93 μm−1, with the two corresponding modulation
periods as �1 = 1.220 μm and �2 = 12.82 μm, respectively,
the ratio of which is �2/�1 = 10.5, and therefore the duty
cycle D2 = 10/21.

The above two example structures are both within current
micron and submicron periodic poling techniques [45–47]. In
the following section, we shall present the SPDC process in
the DPPKTP crystal and study the performances of the two
example sources.

III. GENERATION OF POLARIZATION-ENTANGLED
PHOTONS

We consider a classical pump wave illuminating the
DPPKTP crystal with a length of L in the x direction and the
interaction volume denoted by V . The induced second-order
nonlinear polarization is given by [48]

P
(2)
i (�r,t) = ε0χ

(2)
ijkEj (�r,t)Ek(�r,t), (12)

where ε0 is the vacuum dielectric constant and χ
(2)
ijk is the

second-order nonlinear susceptibility tensor, where i, j , k refer
to the Cartesian components of the fields. Here, we use the
Einstein notation of repeated indices for tensor products. The
Hamiltonian of the electromagnetic system can be expressed
as

H = 1

2

∫
V

d3�r
(

�D · �E + 1

μ0

�B · �B
)

, (13)

where μ0 is the vacuum permeability constant. Since �D =
ε0 �E + �P , we obtain the interaction Hamiltonian in the para-
metric down-conversion process,

HI (t) = 1

2

∫
V

d3�r �P · �E

= ε0

∫
V

d3�rχ (2)Ep(�r,t)Es(�r,t)Ei(�r,t), (14)

where we replace χ
(2)
ijk/2 with the second-order nonlinear

susceptibility χ (2) [48], which has the form of Eq. (8) for
an ideal structure. After quantization of the electromagnetic
fields, E(�r,t) becomes a Hilbert space operator Ê(�r,t),
which can be decomposed into its positive and negative

parts Ê(�r,t) = Ê(+)(�r,t) + Ê(−)(�r,t). Then we can rewrite the
interaction Hamiltonians

ĤI (t) = ε0

∫
V

d3�rχ (2)(x)Ê(+)
p (�r,t)Ê(−)

s (�r,t)Ê(−)
i (�r,t) + H.c.,

(15)

where H.c. denotes the Hermitian conjugate part. Here, we
only write the two terms that lead to energy-conserving
processes, and we neglect the other six terms that do not
satisfy energy conservation and are therefore of no importance
in the steady state. Note that neglecting these contributions is
equivalent to making the rotating-wave approximation.

Since the transverse structure of DPPKTP is homogeneous,
we ignore the transverse vectors of interacting waves and only
consider the interaction along the propagating direction. We
consider the case of signal and idler photons in forward and
backward directions, respectively. Then the negative parts of
the field operators of the signal and idler Ês , Êi are represented
by Fourier integrals as

Ê(−)
s (x,t) =

∑
q=H,V

∫
dωsE

∗
s,qe

−i(ks,qx−ωs t)â†
s,q (ωs), (16)

Ê
(−)
i (x,t) =

∑
q=H,V

∫
dωiE

∗
i,qe

i(ki,qx+ωi t)â
†
i,q(ωi), (17)

where Ej,q = i
√

h̄ωj/[4πε0cnq(ωj )], j = s,i. For simplicity,
here we consider a continuous-wave (cw) plane-wave pump
with horizontal polarization. In addition, the pump field is
treated as an undepleted classical wave, and thus the positive
part of its field operator is replaced with its complex amplitude,

E(+)
p (x,t) = Epei(kp,H x−ωpt). (18)

Then, by substituting Eqs. (8), (16), (17), and (18) into
Eq. (15), we obtain

ĤI (t) = −h̄EP

4πc

∑
q=H,V

∑
q ′=H,V

∑
m,n

dGm,n

∫ 0

−L

dx

∫
dωs

×
∫

dωi

√
ωsωi

nq(ωs)nq ′(ωi)
â†

s,q(ωs)â
†
i,q ′ (ωi)

× ei(ωs+ωi−ωp)t e−i(ks,q−ki,q′−kp,H +Gm,n)x + H.c. (19)

For the SPDC process, the interaction is weak, so under
first-order perturbation theory the state evolution from time t ′
to t can be written as

|	〉 = |vac〉 + 1

ih̄

∫ t

t ′
ĤI (τ )dτ |vac〉. (20)

Considering steady-state output, we may set t ′ = −∞ and
t = ∞. Then we have∫ ∞

−∞
dτei(ωs+ωi−ωp)τ = 2πδ(ωs + ωi − ωp), (21)

which gives the energy-conservation relation

ωs + ωi − ωp = 0. (22)

The integral over crystal length can be calculated as∫ 0

−L

dx e−i(ks,q−ki,q′−kp,H +Gm,n)x = Lh(L�kqq ′), (23)
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where �kqq ′ = kp,H − ks,q + ki,q ′ − Gm,n and the h function
has the following form:

h(x) = 1 − e−ix

ix
= e−i x

2 sinc
x

2
. (24)

h(L�kqq ′) determines the natural bandwidth of the two-
photon state, as we shall see. In the case of infinite crystal
length, Eq. (23) becomes a δ function, thus leading to the
momentum conservation, i.e., the perfect phase-matching
condition, �kqq ′ = 0.

Suppose that perfect phase-matching conditions given by
Eqs. (10) and (11) can be satisfied at frequencies �s and �i ,
with corresponding wave vectors Ks,H , Ks,V , Ki,H , and Ki,V ,
such that

�s + �i = ωp, Kj,q = nq(�j )�j

c
, (25)

with j = s,i and q = H,V . Due to the existence of the
bandwidth, and constrained by Eq. (22), we let

ωs = �s + ν, ωi = �i − ν, (26)

where |ν| � �j , j = s,i. Then in the case of the QPM
conditions given by Eqs. (10) and (11), we can write the state
of SPDC as

|	〉 = |vac〉 + AHV dHV L

∫
dν h(L�kHV )â†

s,H (�s + ν)

× â
†
i,V (�i − ν)|vac〉 + AV HdV HL

∫
dν h(L�kV H )

× â
†
s,V (�s + ν)â†

i,H (�i − ν)|vac〉, (27)

where

dHV = dGm1,n1 = 4d

π2m1n1
sin

m1π

2
sin(n1D2π ), (28)

dV H = dGm2,n2 = 4d

π2m2n2
sin

m2π

2
sin(n2D2π ), (29)

AHV = iEp

2c

√
�s�i

ns,H ni,V

, (30)

AV H = iEp

2c

√
�s�i

ns,V ni,H

, (31)

with nj,q denoting the refraction index of a photon with
polarization q at frequency �j . Here AHV dHV and AV HdV H

are slowly varying functions of frequency, which have been
taken outside the integral.

We can see that the maximally polarization-entangled
state can be obtained under the condition of
|AHV dHV h(L�kHV )|=|AV HdV H h(L�kV H )|. The condition
of dHV = dV H = d ′ can be satisfied straightforwardly
by choosing m1n1 = ±m2n2. In the following, we make
calculations on h(L�kHV ) and h(L�kV H ), i.e., the spectrum
of the photon pairs. In other words, the two-photon correlation

time is on the order of several hundred picoseconds.

A. Characterizing the spectrum of photon pairs generated from
our source

We first expand the magnitudes of the wave vectors for
signal and idler photons around the central frequencies �s and
�i , respectively, up to first order in ν,

ks,q = nq(ωs)ωs

c
≈ Ks,q + ν

uq(�s)
, (32)

ki,q = nq(ωi)ωi

c
≈ Ki,q − ν

uq(�i)
, (33)

where uq(�j ) = d�j/dKj,q are the group velocities of signal
and idler photons at central frequencies, with j = s,i and q =
H,V . Therefore, we obtain

�kHV = −νSHV , SHV =
[

1

uH (�s)
+ 1

uV (�i)

]
, (34)

�kV H = −νSV H , SV H =
[

1

uV (�s)
+ 1

uH (�i)

]
. (35)

We thus obtain the joint spectral densities for the compo-
nents |H,V 〉 and |V,H 〉,

|h(L�kHV )|2 = sinc2 νLSHV

2
, (36)

|h(L�kV H )|2 = sinc2 νLSV H

2
, (37)

and the corresponding bandwidths are �ωHV ≈
1.77π/(LSHV ) and �ωV H ≈ 1.77π/(LSV H ), respectively.
Compared with the usual forward-wave type-II SPDC under
the same conditions on crystal length and frequencies [49],
the backward-wave source has a much narrower bandwidth,
with a reducing factor of (u−1

H + u−1
V )/|u−1

H − u−1
V |.

More explicitly, we consider the two example structures
given in Sec. II, and the crystal length is set to 2 cm.
For the degenerate source, we get the bandwidth �ωHV =
�ωV H ≈ 2π × 3.66 GHz and the reducing factor is 41. For
the nondegenerate source, we obtain the two bandwidths as
�ωHV ≈ 2π × 3.61 GHz and �ωV H ≈ 2π × 3.63 GHz, cor-
responding to reducing factors of 25.9 and 78.2, respectively.
Note that, compared with the asymmetric spectrum in the
forward-wave case, our backward-wave source has an almost
symmetric spectrum.

B. Quantifying the polarization entanglement produced by our
source

To quantify the polarization entanglement produced by our
source, we employ a commonly used entanglement measure,
namely concurrence [50], whose value ranges from 0 for a
nonentangled state to 1 for a maximally entangled state. For
a pure two-qubit state |ψ〉, expressed in a fixed basis such as
{|00〉,|01〉,|10〉,|11〉}, the concurrence C = |〈ψ |σy ⊗ σy |ψ〉|,
where σy is the second Pauli matrix ( 0

i

−i

0 ) in the same basis.
For our source, we need to treat the two-photon term of the
state given by Eq. (27), denoted as |	2〉. Note that the state
|	2〉 is unnormalized, and the reciprocal of the square of its

053825-4



COMPACT SOURCE OF NARROW-BAND . . . PHYSICAL REVIEW A 84, 053825 (2011)

normalization constant is the two-photon generation rate, given
by

R = 〈	2|	2〉 = d ′2L2

[
|AHV |2

∫
dν|h(L�kHV (ν))|2

+ |AV H |2
∫

dν|h(L�kV H (ν))|2
]

. (38)

Substituting Eqs. (36) and (37) into the above equation, we
obtain

R = 2πd ′2L
( |AHV |2

SHV

+ |AV H |2
SV H

)
. (39)

Then we can calculate the concurrence

C = |〈	2|σy ⊗ σy |	2〉|
〈	2|	2〉

= d ′2L2|AHV AV H |
R

∣∣∣∣∣
∫

dν h∗(L�kHV (ν))h(L�kV H (ν))

+
∫

dν h∗(L�kV H (ν))h(L�kHV (ν))

∣∣∣∣∣. (40)

By substituting Eqs. (24), (34), and (35) into the above
equation, we arrive at

C = 2Smin

δnSHV + SV H/δn

, (41)

where Smin =min{SHV ,SV H } and δn =√
ns,H ni,V /(ns,V ni,H ).

For degenerate case, i.e., �s = �i , SHV = SV H , δn = 1,
and thus C = 1, so our source can generate degenerate
maximal polarization entanglement. This feature can also be
seen directly from the two-photon term of the state given by
Eq. (27), which shows a maximally entangled state in the form
of (|HV 〉 + |V H 〉)/√2.

While for non-degenerate case, i.e., �s �= �i , SHV �=
SV H , δn �= 1, and therefore C < 1, so the entanglement is
nonmaximal. However, actually there is not a big difference
between δnSHV and SV H/δn, so the concurrence is very near
to 1. Explicitly, let us consider the example structure given in
Sec. II, the concurrence of the entanglement generated from
which is found to be as high as 0.9978.

C. Generation rate of the entangled photon pairs

The photon pair generation rate can be estimated from
Eq. (39) by substituting Eqs. (30), (31), and |Ep|2 =
2P/(ε0npcS) into it, where P denotes the pump power and S

represents the transverse area of the pump beam. Therefore, we
obtain

R = πd ′2LP�s�i

ε0npc3S

(
1

ns,H ni,V SHV

+ 1

ns,V ni,H SV H

)
.

(42)

Let us consider the two specific example sources, for
which we set P = 1 mW, S = 0.01 mm2, and L = 2 cm. The
nonlinear coefficient d ′ is given by Eq. (28), where m1 = 3,
n1 = 1, and the effective nonlinear coefficient d, stemming

from d24, is found to be 3.9 pm/V. Then we find the generation
rate of the degenerate source to be 421 pairs/s, and thus we get
the spectral brightness as 2πR/�ω ≈ 115 pairs/(s GHz mW).
The generation rate of the nondegenerate source is found
to be 554 pairs/s, corresponding to the spectral brightness
of 154 pairs/(s GHz mW). We have to emphasize that the
experimental value of the photon pair rate and the two-photon
spectrum will definitely be affected by the poling quality,
e.g., the deviations and fluctuation of the poling period and
duty cycle [51]. However, the state of the art of the poling
technique can enable us to engineer a nearly idealized poled
structure.

IV. CONCLUSIONS

In conclusion, we have presented a scheme for build-
ing polarization-entangled photon pair sources utilizing
backward-wave-type SPDC processes in a dual-periodically-
poled crystal. Our scheme does not rely on any state projection
and can work in degenerate and nondegenerate cases. The
backward-wave-type SPDC enables the entangled photon pairs
from our source to transmit in a beamlike way, exhibiting more
efficient photon collection and mode overlapping. Further-
more, the backward-wave-type SPDC has a much narrower
bandwidth than the usual forward-wave one. In addition,
our scheme employs two concurrent SPDC processes in a
single crystal rather than any interferometer, and therefore
our source is compact and stable. By proper engineering
on the domain structure, a complete set of Bell states can
be achieved directly from this DPPKTP crystal [52]. This
implies further applications in integrated photonic quantum
technologies.

We have designed two possible DPPKTP structures for
degenerate and nondegenerate sources, respectively. Using a
2-cm-long bulk crystal, the bandwidths of the two sources
were found to be ∼3.6 GHz with spectral brightnesses of 115
and 154 pairs/(s GHz mW), respectively. Our high-spectral-
brightness narrow-band sources should find applications in
large-scale quantum networks and other fields requiring
narrow-band entangled photons. Furthermore, we have also
quantified the polarization entanglement via concurrence and
found that the degenerate source can provide maximally
polarization-entangled photon pairs while the concurrence of
the polarization entanglement generated from the nondegen-
erate source is as high as 0.9978. Finally, the two structures
are both within current manufacture technologies, and thus we
believe our sources can be realized in experiment. We hope our
approach can stimulate more investigations on applications of
QPM on photonic quantum technologies.
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