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Effect of surface-plasmon polaritons on spontaneous emission and intermolecular
energy-transfer rates in multilayered geometries
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We use a Green’s tensor method to investigate the spontaneous emission rate of a molecule and the energy-
transfer rate between molecules placed in two types of layered geometries: a slab geometry and a planar
waveguide. We focus especially on the role played by surface-plasmon polaritons in modifying the spontaneous
emission and energy-transfer rates as compared to free space. In the presence of more than one interface, the
surface-plasmon polariton modes split into several branches, and each branch can contribute significantly to
modifying the electromagnetic properties of atoms and molecules. Enhancements of several orders of magnitude
both in the spontaneous emission rate of a molecule and the energy-transfer rate between molecules are obtained
and, by tuning the parameters of the geometry, one has the ability to control the range and magnitude of these
enhancements. For the energy-transfer rate interference effects between contributions of different plasmon-
polariton branches are observed as oscillations in the distance dependence of this rate.
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I. INTRODUCTION

The control of electromagnetic properties of molecules,
such as their spontaneous emission constant and frequency,
and their intermolecular resonance interactions, is a topic of
considerable interest, both for fundamental reasons and for
applications in (electro)optical devices. One way to control
these properties is by chemical modification of the molecule,
leading to a change of its electronic level structure. However,
the electromagnetic properties may also be influenced without
chemical changes, namely by modifying the dielectric and (or)
metallic environment of the molecule. The Purcell effect [1]
(i.e., the modification of the spontaneous emission rate by
the environment) has been known for 75 years by now. Yet,
in particular during the past decade, this effect has proven a
flourishing area of research, owing to the growing possibilities
to control the structure of the environment at the nanometer
scale and the increasing precision with which molecules can
be positioned within this environment and their properties can
be detected. In addition, the desire to control optical signal
processing at the nanometer scale (nanophotonics) has boosted
activity in this area. A wide variety of geometries has been
studied in conjunction with the modification of the sponta-
neous emission rate: planar metallic and dielectric interfaces
[2–5], microcavities [6–10] and multilayered geometries [11],
nanorods [12–15], nanospheres [16–19], gratings [20], and
photonic crystals [21–27].

Being directly proportional to the local density of electro-
magnetic states of the environment, the spontaneous emission
rate is the most obvious electromagnetic property of atoms
and molecules that may be changed by the environment.
However, the electromagnetic interactions between molecules,
such as the resonance excitation transfer interactions mediated
by molecular transition dipoles may also be influenced. This
interaction drives the resonant transfer of electronic energy
between two molecules and is the main mechanism by which
an excited molecule transfers its excitation to a neighboring
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one. It plays an essential role in a variety of fields, such as
microscopy, nanophotonics (LEDs and micro- and nanolasers),
and biophysics (photosynthesis) [28]. Within the incoherent
limit, the rate of excitation energy transfer is proportional
to the square of the dipole-dipole interaction, which in a
homogeneous host gives rise to two distance-dependence
limits. The first one is the short-range or radiationless regime
pioneered by Förster [29], valid when the intermolecular
distance R is much smaller than the wavelength associated
with the transition of the donor molecule, λ (R � λ). In this
limit the transfer-rate scales according to R−6 (i.e., the square
of the instantaneous Coulomb coupling between two dipoles).
The other limit is the long-range or radiative regime [30], valid
when R � λ, and having a R−2 distance dependence. There
also exists an intermediate regime, valid when R ≈ λ, and with
a R−4 distance dependence.

The transfer of the excitation can always be regarded
as proceeding through the exchange of photons. In the
Förster regime, these photons are virtual (i.e., appearing
only in intermediate states) and are not required to conserve
energy, that is, they do not necessarily have the same energy
as the molecular transition they facilitate. They have to,
however, obey Heisenberg’s uncertainty relations for energy
and time; therefore, the longer-lived photons (corresponding
to molecules further apart) have the smaller permissible spread
in energy. When the molecules are a few wavelengths apart,
energy conservation is obeyed and the energy-transfer process
can be regarded as the emission and absorption of a real photon.

Given the numerous applications of the resonance energy
transfer, particularly in the Förster regime, controlled mod-
ification of the transfer rate is highly desirable. One way
to achieve modifications of the transfer rate is by using
inhomogeneous (nanostructured) geometries. Theoretical and
experimental work has been carried out in order to study
the modifications of the energy-transfer rate in different
geometries: planar dielectric interfaces [31,32], microcavities
[33–38], dielectric spheres [39–41], nanofibers [42], and the
current authors’ own contribution on dielectric cylinders [43].
In all cases, both enhancement and inhibition of the transfer
rate have been observed and calculated.
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In Ref. [43] we have shown that surface-plasmon polaritons
(SPPs) living at the interface between a dielectric cylinder and
its host may have a strong effect on the excitation transfer
interactions between molecules placed close to this cylinder.
The SPPs may act as intermediate to carry the excitation from
one molecule to the other in an efficient way. In this paper we
investigate the role that SPPs play in modifying the decay rate
of a molecule as well as the energy-transfer rate between two
molecules placed inside two types of multilayered structures:
a metal slab in a dielectric host and a planar waveguide.
The planar waveguide geometry has been considered before
[37,38] in a more general case, but without focusing on the
role that SPPs might play in modifying the electromagnetic
properties of the molecules. One of the interesting differences
with the dielectric cylinders in Ref. [43] is that the geometries
studied here have more than one interface, each of which
may carry SPPs, which in turn may mix if the interfaces
are close enough to each other. This yields a variety of SPP
branches, each with its own dispersion relation. Depending
on distances between the molecules considered and between
the molecules and the interfaces, one branch may dominate
the effect on the molecules’ electromagnetic properties or
(in the case of excitation transfer) interference effects between
different branches may show up in an oscillatory distance
dependence of the rate.

The paper is organized as follows: In Sec. II we give the
general formalism for calculating the spontaneous emission
and the energy-transfer rates in an inhomogeneous geometry.
In order to keep this paper reasonably self-contained, we also
briefly introduce SPPs and, for reference, consider the relevant
features of these collective excitations for the case of a single
planar interface between a semi-infinite metal and a semi-
infinite dielectric. In Sec. III the case of a metal (Ag) slab
in a dielectric (SiO2) host is investigated by calculating the
spontaneous emission and energy-transfer rates and the SPP
contribution to these rates. In Sec. IV a planar waveguide
geometry constructed by sandwiching a SiO2 layer between
two Ag plates is considered on the same lines of inquiry.
Finally, Sec. V is reserved for conclusions.

II. THEORETICAL FRAMEWORK

A. Electromagnetic interactions, the Green’s tensor, and
numerical implementation

The spontaneous emission (SE) rate of a molecule and
the energy-transfer (ET) rate between two molecules in any
geometry can be calculated using the Green’s tensor of the
electromagnetic field for that geometry through the following
expressions [43–45]:

γ (r,ω) = 2ω2di dj Im[Gij (r,r,ω)], (1a)

for the decay rate of a molecule with electronic transition
dipole moment d, transition frequency ω and located at
position r and

�(rB,rA,ω) = 2πω4
∣∣di

BGij (rB,rA,ω)dj

A

∣∣2
, (1b)

for the energy-transfer rate between two molecules A and B

with electronic transition dipole moments dA and dB , transition
frequency ω, and located at rA and rB , respectively [46]. The

Green’s tensor, denoted in the above equations by G(rA,rB,ω),
is a solution of the differential equation,

∇r × ∇r × G(r,s,ω)−ω2ε(r,ω)G(r,s,ω)=Iδ(r − s), (2)

where ε(r,ω) is the position-dependent dielectric permittivity
of the geometry at hand and I is the 3 × 3 unit tensor.
Throughout this paper we have chosen to work in natural units
(i.e., c = h̄ = 1).

It is useful to consider two other quantities as well, namely
the normalized spontaneous emission and energy-transfer
rates, which are these rates in a specific geometry normalized
to their values in free space. By definition, we have

γ̃ (r,ω) ≡ γ (r,ω)

γ0(r,ω)
= d̂i d̂j Im[Gij (r,r,ω)]

d̂i d̂j Im[G0
ij (r,r,ω)]

, (3a)

�̃(rB,rA,ω) ≡ �(rB,rA,ω)

�0(rB,rA,ω)
= |d̂ i

B Gij (rB,rA,ω) d̂
j

A|2
|d̂ i

B G0
ij (rB,rA,ω) d̂

j

A|2
, (3b)

where G0(rB,rA,ω) is the free-space Green’s tensor, with a
well-known analytical expression [47], and G(rB,rA,ω) is the
Green’s tensor for the geometry under consideration. From the
above expressions it is clear that calculating the Green’s tensor
for a geometry gives both the SE and ET rates in that geometry.

Following our previous work [43] and that of others [47]
on the subject, the Green’s tensor for any particular geometry,
G(r,s,ω), can be split into a homogeneous part, Gh(r,s,ω),
which is nonzero only when the two molecules are in the same
medium (i.e., not separated by any surface of discontinuity
in the dielectric properties of matter), and a scattering part,
Gs(r,s,ω), which accounts for the presence of such surfaces of
discontinuity:

G(r,s,ω) = Gh(r,s,ω) + Gs(r,s,ω).

In Cartesian coordinates, the expression of the homogeneous
part of the Green’s tensor is well known [47]:

Gh(r,s,ω) = −δ(r − s)

k2
ẑẑ + i

8π2

∫
d2kρ

1

kzk2
ρ

×{M(kρ, ± kz,r) ⊗ M∗(kρ, ± kz,s)

+N(kρ, ± kz,r) ⊗ N∗(kρ, ± kz,s)}z ≷ zs, (4)

where k = |k| = |(kρ,kz)| = ω
√

ε(ω) is the wave number of
light in the homogeneous medium, kρ is the component of

the wave vector of light in the xy plane, and kz =
√

k2 − k2
ρ

is the z component of this wave vector. The symbol ⊗
represents the tensor (or Kronecker) product of two vectors.

The vector wave functions, M and N, also have well-known
expressions [47]:

M(kρ, ± kz,r) = i(kρ × ẑ) eikρ ·ρ e±ikzz, (5a)

N(kρ, ± kz,r) = −1

k

( ± kzkρ − k2
ρ ẑ

)
eikρ ·ρ e±ikzz, (5b)

where M corresponds to transverse electric (TE) modes, while
N corresponds to transverse magnetic (TM) modes.

If we now consider an inhomogeneous medium, in which
the dielectric properties vary in a piece-wise fashion in the z

direction alone [i.e., ε(r,ω) = ε(z,ω)], we have a model for a
planar multilayered geometry, of which the slab and the planar
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waveguide are examples. The scattering part of the Green’s
tensor, Gs(r,s,ω), in this geometry, has a form analogous to
the homogeneous part [47]:

Gs(r,s,ω) = i

8π2

∫
d2kρ

1

kzk2
ρ

[RMM(kρ, ± kz,r)

⊗ M∗(kρ, ± kz,s) + RNN(kρ, ± kz,r)

⊗ N∗(kρ, ± kz,s)], (6)

with the coefficients RM and RN introduced to account
for scattering from the various interfaces that make up the
geometry. These coefficients can be calculated by imposing
the appropriate continuity conditions on the components of
the Green’s tensor across the various interfaces. As this is a
relatively straightforward procedure, the details of which can
be found elsewhere [43,47], we shall not give it here. We shall
return, instead, to the expressions given for the normalized SE
and ET rates [Eq. (3)]. The normalized SE rate is seen to be
linear in the Green’s tensor, and so, splitting this tensor into a
homogeneous and a scattering part allows us to make explicit
the effect that the presence of surfaces of discontinuity has on
the SE rate. We can now write

γ̃ (r,ω) = n(ω) + 6π

k
d̂i Im

[
Gij

s (r,r,ω)
]
d̂j , (7)

where a summation over the component indices i and j is
implicitly understood and where n(ω) stands for the (real part
of the) refractive index of the medium into which the molecule
is embedded. In the present paper, the decaying molecule
is always embedded in an inert medium, whose dielectric
permittivity is a (real) constant. When the molecule is inside
an absorbing medium, one must use the transverse part of the
Green’s tensor to calculate the radiative decay rate [48]. The
linear dependence of the normalized SE rate on the Green’s
tensor also makes it straightforward to identify even further
contributions (i.e., contributions coming from the several types
of surface-plasmon polaritons which we shall introduce later
on).

When we consider the normalized ET rate between two
molecules, no such split is possible, since the normalized ET
rate is quadratic in the Green’s tensor and, therefore, inter-
ference effects between what can be called direct interaction,
resulting from the homogeneous part of the Green’s tensor,
and indirect interaction, resulting from the scattering part,
also contribute to the normalized ET rate. The contributions
resulting from the different surface-plasmon polaritons are,
correspondingly, somewhat more difficult to sort out.

We now return to considering the numerical implementation
of calculating the Green’s tensor and the SE and ET rates. The
homogeneous part of the Green’s tensor can be straightfor-
wardly calculated in closed form [43], which leaves only the
scattering part to be calculated numerically. Expression (6) can
be further simplified by considering polar coordinates for the
wave vector and performing the angular integral analytically.
This is possible, since the geometry has a rotational symmetry
around the z axis and the R coefficients in (6) depend only on
the magnitude of the wave vector kρ .

Without going through the detailed analytical calculations
(the reader may wish to consult [47] and [49] for a more step-

by-step account), we give below the expression for a particular
component of the scattered part of the Green’s tensor:

Gzz
s(ij )(r,s,ω) = i

4π

∫ ∞

0
dkρ

k3
ρ

kzj kikj

R
±(ij )±
N e±ikzi ze±ikzj zs

×J0(kρ |ρ − ρs |), (8)

where a summation is implied over the ± indices on the R

coefficients. The left-side ± index accounts for the direction
of propagation along the z axis of an electromagnetic mode
at the acceptor’s location, denoted by r = (ρ,z), while the
right-side ± index stands for the same propagation direction
at the donor’s location, denoted by s = (ρs ,zs). The ± signs
in the exponential functions have the same value as the
corresponding indices on the R coefficients. Each electromag-
netic mode in the above integral is identified by the in-plane
component of its wave vector, kρ , and its polarization (in
this case, purely TM modes, denoted by the subscript N on
the R coefficients). The z component of the wave vector is

given by kzi =
√

k2
i − k2

ρ =
√

ω2εi − k2
ρ . Each mode, in turn,

enters the above integral weighted by the R coefficients. This
expression gives the zz component of the scattering part of the
Green’s tensor when the donor molecule is located at position
s = (ρs ,zs) in layer j and the acceptor molecule is located at
position r = (ρ,z) in layer i. J0 is the Bessel function of first
kind and zeroth order, which is the result of the integration over
the angular variable. The remaining integral in (8) cannot be
performed analytically, and we resort to numerical integration
in the complex kρ plane using integration routines from the
free-software GNU Scientific Library [50], adapted for our
purposes. It is possible to numerically extract the contributions
from different poles in the integrand of Eq. (8), and we
perform that extraction for surface-plasmon polariton poles,
thus separating their contribution (see [51] for the technical
details of such a pole extraction).

B. Surface-plasmon polaritons on a single planar interface

In this section we consider the existence of surface-plasmon
polaritons (SPPs) on a planar interface between a metal and a
dielectric. We will consider a general model, but will also give
relevant numerical values for the interface between silver (Ag)
and silica (SiO2), following the experimental data of Johnson
and Christy [52]. SPPs are modes of the electromagnetic field
that only propagate along the interface between two media
(metal and dielectric), and decay exponentially away from this
interface, on both sides. We consider one of the two half-
spaces, occupying the region with z < 0, to consist of a metal
of frequency-dependent dielectric permittivity εm(ω) given by
a Drude model:

εm(ω) = 1 − ω2
P

ω2 + iγ ω
, (9)

and the other half-space, occupying the region with z > 0,
to consist of a dielectric material with constant permittiv-
ity εd (εSiO2 ≈ 4.0). In the above expression, ωP is the
plasma frequency of the metal (ωAg

P = 9.176 eV), and γ

is the linewidth responsible for losses in the metal (γ Ag =
0.021 eV = 2.288 × 10−3 ω

Ag
P ). For the purposes of introduc-

ing SPPs, we consider a lossless metal, setting γ = 0. Using
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Maxwell’s equations and the continuity conditions at the
interface between the two media, one can derive the dispersion
relations for the transverse magnetic (TM) modes supported by
this structure [53], written as expressions for the components
of the wave vector as

kx = ω

√
εdεm

εd + εm

, kd,m
z = ω

√
ε2
d,m

εd + εm

, (10)

where kx is the tangential component, continuous across the
interface, and kd

z and km
z are the normal components in the

dielectric and metal, respectively. The rotational symmetry
around the z axis permits us to set kd

y = km
y = 0.

The conditions for the existence of SPPs can now be
derived by requiring that kd

z and km
z be purely imaginary

(confinement to the interface), and kx be purely real. Using
expressions (10) for the wave vector components, and the
fact that the permittivity of the dielectric material is real
and positive, εd > 0, one finds that εm � −εd . Considering
a Drude model with vanishing linewidth γ = 0, SPPs are
restricted to a frequency interval of 0 � ω � ωSP, where ωSP

is the surface-plasmon frequency given by

ωSP =
√

ω2
P

1 + εd

. (11)

For the Ag/SiO2 interface, the surface-plasmon frequency is
ω

Ag/SiO2
SP = 4.103 eV = 0.447 ω

Ag/SiO2
P .

The dispersion relation ω(kx) is shown schematically in
Fig. 1 (see also [53]) for a lossless Drude metal and a dielectric
with εd = 4.

In addition to the SPP region, 0 � ω � ωSP, there also exists
a stop gap for ωSP < ω < ωP , where no propagating modes
exist. In the radiative region above the plasma frequency, all
the modes can propagate freely in both the metal and the
dielectric.

Although we have only considered a lossless Drude model
with γ = 0 thus far, this limitation is not very severe in prac-
tice. The effect of a nonzero γ is to introduce a small imaginary
component k′′

x for the wave vector, which leads to dampening

FIG. 1. (Color online) Dispersion relation of SPPs at the interface
between a dielectric with εd = 4 and a lossless Drude metal. kP is the
wave number corresponding to the plasma frequency.

of the SPPs as they propagate along the interface. For the
Ag/SiO2 system at ω = 0.40 ωP , close to the surface-plasmon
frequency ωSP = 0.447 ωP , the propagation length L of an
SPP, defined as L = 1/k′′

x such that |eikxL| = 1/e, is rather
large, L ≈ 56 λ

Ag
P ≈ 7.56 μm, for γ = 2.288 × 10−3 ωP , the

linewidth of Ag at optical frequencies.
One of the most interesting features of SPPs is their behav-

ior near the surface-plasmon frequency ωSP. From Fig. 1 one
can see that, as the frequency approaches ωSP, the propagation
constant along the interface, kx , increases enormously—in the
lossless limit kx → ∞. Therefore, at frequencies close to ωSP,
which can lie in the optical region, the wavelength λ ∝ k−1

x

becomes very small, possibly in the x-ray region. As it is near
the surface-plasmon frequency ωSP that the effect of SPPs is
greater, in the rest of the paper we shall mostly focus on this
frequency region (i.e., ω = 0.40 ωP ).

III. METALLIC SLAB

In this section we consider a Drude metallic slab of
thickness d and dielectric permittivity εm(ω) given by Eq. (9)
embedded in a dielectric material with constant dielectric
permittivity εd = 4. This geometry is presented schematically
in Fig. 2. We have calculated both the SE rate of a molecule
and the ET rate between two molecules placed near the
slab, focusing on the role that SPPs have in modifying these
rates.

In calculating the dispersion relations for this geometry, the
mirror symmetry plane at z = 0 leads to two different types of
SPPs with the following dispersion relations [54,55]:

εmkd
z + εdk

m
z tanh

(−ikm
z d/2

) = 0, (12a)

εmkd
z + εdk

m
z coth

(−ikm
z d/2

) = 0. (12b)

The two different types are the antisymmetric branch
[Eq. (12a)] and symmetric branch [Eq. (12b)], with respect to
the mirror symmetry plane at z = 0. The dispersion relations
for the SPPs are shown graphically in Fig. 3 for two different
slab thicknesses, d = 0.01 λP and d = 0.20 λP , where λP

is the wavelength associated with the plasma frequency ωP

of the Drude metal slab. The plasma frequency of Ag is
ω

Ag
P = 9.176 eV, corresponding to a wavelength of λ

Ag
P =

135.12 nm [52]. The two corresponding slab thicknesses
are, therefore, d = 0.01 λ

Ag
P = 1.35 nm and d = 0.20 λ

Ag
P =

27.02 nm. In this geometry, the symmetric branch of the SPP
exists partially in the stop gap between ωSP and ωP , where
no modes exist on a single interface between a metal and a
dielectric (see Fig. 1). This happens, however, only when the
thickness of the metallic slab is small enough so that the SPP
dispersion relation splits into two branches [Eq. (12)]. When

FIG. 2. Geometry of a Drude metal slab of thickness d embedded
in a dielectric material.
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FIG. 3. (Color online) Dispersion relations for SPPs in a slab geometry.

−i km
z d/2 � 2.0, or d � 4.0 δm, where δm = 1/Im(km

z ) is the
penetration depth of the SPPs inside the Drude metal slab, then
tanh(−ikm

z d/2) ≈ coth(−ikm
z d/2) ≈ 1 and the two distinct

SPP dispersion relations reduce to the dispersion relation for
SPPs on a planar interface between a metal and a dielectric
half-space [Eq. (10)]. For a Ag slab embedded in SiO2,
the SPP frequency is ω

Ag
SP ≈ 4.103 eV, with a corresponding

wavelength of λ
Ag
SP = 302.13 nm. Close to this frequency,

namely at ω = 0.40 ω
Ag
P = 3.67 eV, the penetration depth of

SPPs inside silver is δAg = 1/Im(kAg
z ) ≈ 80 nm. When the slab

thickness is larger than this penetration depth, the SPPs on the
two interfaces of the slab decouple, and each SPP is localized
at a single interface.

In the next subsection we calculate the SE rate of a molecule
placed above a Drude slab and investigate the effect of SPPs
on the rate.

A. Spontaneous emission

We first consider a molecule with a molecular transition
dipole along the z axis and placed above a Drude metal
slab of thickness d, embedded in a dielectric medium with
constant dielectric permittivity, εd = 4. Figure 4 presents
the various decay rates of the molecule for several slab
thicknesses as a function of both distance to the slab and
frequency. Figures 4(a) and 4(d) show, in a logarithmic scale,
a contour plot of the total emission rate of the molecule
as a function of both frequency ω and distance z to the
slab, for two slab thicknesses, d = 0.01 λP and d = 0.20 λP .
Figures 4(b) and 4(e) show the distance dependence of the
different contributions to the emission rate at a frequency
close to the surface-plasmon frequency, ω = 0.40 ωP , or
ωAg = 3.67 eV (λAg = 337.8 nm) in a Ag/SiO2 environment,
and for the same two slab thicknesses. The contributions of the
two types of SPPs, symmetric and antisymmetric, are clearly
shown, as is the radiative emission rate (i.e., the emission into
photons freely propagating in the dielectric medium). A further
contribution to the decay rate of the molecule, via the lossy
surface waves (LSW), is also present at very small distances
from the surface of the slab. This contribution, which, unlike
SPPs, is completely absent in the case of a lossless Drude
metal, comes about because of the presence of losses in the
metal and it is related to excitation of electron-hole pairs [56].

Finally, Figs. 4(c) and 4(f) show the frequency dependence
of the total emission rate of a molecule at different distances
from a slab of the same two thicknesses as in the previous four
panels. The frequency range spans the interval ω ∈ (0,ωP ),
encompassing both what in Figs. 4(a) and 4(d) we have called
the surface-plasmon region, where SPPs can be excited, and
the stop gap, where no SPPs exist on a single interface.

In Figs. 4(a) and 4(d) it is evident that the largest
enhancement of the emission rate occurs very close to the
interface and very close to the surface-plasmon frequency,
ωSP, although for the case of the thinner slab in Fig. 4(a),
the enhancement is still appreciable even at relatively larger
distances from the slab and at frequencies far from ωSP. We
shall discuss this effect further when we analyze Figs. 4(c)
and 4(f).

Figures 4(b) and 4(e) break down the emission rate at
ω = 0.40 ωP into individual contributions coming from the
radiative emission rate, as well as the SPPs. As one would
expect by considering the dispersion curves for SPPs from
Fig. 3, as the slab thickness increases, the two contributions
from the two types of SPPs become more and more similar
to one another and to the contribution of an SPP on a
single interface between a dielectric and a metal. For smaller
slab thicknesses [Fig. 4(b)], there is a marked difference
between the two contributions. At the frequency that we use,
ω = 0.40 ωP (ω = 3.67 eV and λ = 337.8 nm for Ag/SiO2),
the antisymmetric SPP has a very large parallel component
of the wave vector and hence, a very small penetration depth
inside both the dielectric and the Drude slab. Its contribution
to the decay rate is, therefore, significant only when the
molecule is very close to the slab (below 5 nm for the Ag/SiO2

geometry). The symmetric SPP, on the other hand, has its
dispersion curve very close to the light line in the dielectric
[Fig. 3(a)] and the SPP is, therefore, weakly confined to the
interface, contributing significantly to the decay rate even
when the molecule is several wavelengths distant from the
slab. In all cases, the total decay rate of the molecule at
sufficiently large distances from the slab reverts to its value in
a homogeneous medium of dielectric permittivity εd = 4. The
difference between the curves representing the total decay rate,
and the sum of the contributions from the radiative decay rate
and the SPP decay rates comes from the LSW contribution,
which, as we mentioned previously, is absent for a lossless
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FIG. 4. (Color online) Relative decay rates of a molecule above a Drude slab with γ = 2.288 × 10−3 ωP . The thickness of the slab is
d = 0.01 λP for the three panels on the top row and d = 0.20 λP for the three panels on the bottom row. This corresponds, in a Ag/SiO2

environment, to d = 1.36 nm and d = 27.02 nm, respectively. (a) and (d) The decay rates as a function of both frequency and distance to the
upper surface of the slab; (b) and (e) the different contributions to the relative decay rate as a function of distance to the slab at a frequency
ω = 0.40 ωP ; (c) and (f) the frequency dependence of the relative decay rate for several molecule-slab separations.

Drude metal. The LSW contribution is significant only when
the molecule is very close to the surface of the slab, and it is
more marked for the thicker slab [Fig. 4(e)].

The last two panels, Figs. 4(c) and 4(f), depict the frequency
dependence of the total emission rate of a molecule at several
distances above a slab of thickness d = 0.01 λP [Fig. 4(c)] and
d = 0.20 λP [Fig. 4(f)]. For the smaller of the two thicknesses
[Fig. 4(c)], the frequency range where SPPs can be excited
is larger, as seen from the dispersion curves in Fig. 3(a).
Correspondingly, there is an increase in the emission rate of the
molecule in this frequency range. Two peaks in the emission
rate are clearly present. At small molecule-slab separations,
the near field of the molecule can successfully excite SPPs
of very large wave vectors, whose frequency lies very close
to the surface-plasmon frequency ωSP. As this separation is
increased, the near field of the molecule, due to its evanescent
nature, can only couple to wave vectors with smaller in-plane
components, and thus can excite SPPs with a smaller wave
vector, and frequency further away from ωSP. The peak of the
emission rate is then shifted away from the surface-plasmon
frequency, toward lower frequencies (antisymmetric SPP) and
higher frequencies (symmetric SPP). As the frequency grows
larger and exits the region where SPPs can be excited, the
emission rate drops abruptly and is essentially equal to the
radiative emission rate.

For the larger of the two slab thicknesses, d = 0.20 λP , no
SPPs can be excited above the surface-plasmon frequency ωSP

[see also Fig. 3(b)] and the surface-plasmon frequency region
is delimited by ωSP, as illustrated in Fig. 4(d) as well. As the

molecule-slab separation is increased, the shift of the peak in
the emission rate occurs only toward lower frequencies, and
above ωSP, the emission rate is again basically equal to the
radiative emission rate.

B. Energy transfer

We turn now to calculating the ET rate between two
molecules placed near a Drude metal slab. Figure 5 shows
the two configurations of molecules that we use in calculating
the ET rate. The fact that SPPs can be excited at the two
surfaces of the slab has interesting consequences. For the first
configuration in Fig. 5, one can calculate the ET through the
slab, and investigate how the excitation of SPPs influences this
transfer. As was mentioned before, for small slab thicknesses
both symmetric and antisymmetric SPPs can be excited; their
electromagnetic field extends between the two surfaces of the
slab, thus being able to facilitate the energy transfer between
molecules placed on opposite sides of the slab.

FIG. 5. Two configurations of molecules used in calculating the
ET rate in the presence of the Drude metallic slab.
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Figure 6 shows the ET rate for slabs of different thicknesses,
when the two molecules are in the two configurations of
Fig. 5. Figure 6(a) shows the ET rate through the slab for
the configuration in Fig. 5(a). The molecules are placed on
the same z axis, and their dipole moments are oriented along
z as well. For all the curves in this figure, the relative ET
rate drops off monoexponentially at small values of z, with
a decay distance roughly equal to the characteristic decay
distance of the antisymmetric SPP. This suggests that transfer
of energy occurs predominantly through the antisymmetric
SPP. For thicknesses even larger than shown in Fig. 6(a), the
ET rate through the slab is negligible, since the two extended
SPPs become localized at each interface, failing to reach across
the slab.

Figure 6(b) shows the ET rate along the slab, for the
configuration in Fig. 5(b). The molecules are placed on the
same side of the slab, at a distance of z = 0.01 λP = 1.35 nm
from its surface, and with their dipole moments oriented along
the z axis. The ET rate is plotted as a function of the x

distance between the molecules in the plane of the slab. If
the molecules are placed on the same side of the slab, one
can investigate how the excitation of the two different types of
SPPs influences the transfer of energy along the metal slab.
Depending on the thickness of the slab, d, the symmetric
and antisymmetric SPPs can have very different propagation
lengths along the surface of the slab, just as their penetration
depth inside the slab can be markedly different, especially near
the surface-plasmon frequency ωSP (see also the discussion in
the previous subsection).

FIG. 6. (Color online) (a) Relative ET rate between two
molecules in the configuration from Fig. 5(a), with the ET rate
plotted as a function of the distance z between a molecule and
its corresponding surface of the slab; (b) relative ET rate for the
configuration from Fig. 5(b), with the ET rate plotted as a function
of the distance x between the molecules, when the molecules
are at a distance z = 0.01 λP from the upper surface of the slab;
(c) η̃ ratio for the configuration from Fig. 5(a); (d) η̃ ratio for the
configuration from Fig. 5(b). The frequency is ω = 0.40 ωP , the
linewidth is γ = 2.288 × 10−3 ωP .

If we consider the x dependence of the SPPs, in addition
to the dampening due to ohmic losses in the metal slab, there
also exists a (much larger for the linewidth γ considered here)
dampening due to the circular symmetry of the geometry.
The SPPs are excited by a point dipole and, therefore, they
propagate along the interface from a single point, leading to
this dampening. The symmetric SPP, whose wave vector is
the smaller of the two, has a long characteristic wavelength,
while the characteristic wavelength of the antisymmetric
SPP is shorter. This mismatch in wavelength between the
SPPs, coupled to the fact that the ET rate from Eq. (3b)
depends on the square of the Green’s tensor, and therefore
includes interference terms between different contributions
to this tensor, accounts for the oscillations visible in the
curves in Fig. 6(b). For the thicker slabs (d = 0.10 λP and
d = 0.20 λP ), the characteristic wavelengths of the two SPPs
at ω = 0.40 ωP are comparable in magnitude, while still
differing. The amplitude of the two contributions is also
comparable, which leads to pronounced interference effects
between them and a clearly discernible oscillatory behavior of
the relative ET rate. For the thinner slabs (d = 0.01 λP and
d = 0.05 λP ), the dispersion curves of the two SPPs differ
dramatically from each other. The characteristic wavelengths
of the SPPs at ω = 0.40 ωP are, therefore, also markedly
different, as are their individual contributions to the ET rate.
The interference effects are still present, but much weaker,
and the main contribution to the ET rate comes, in this
case, from the short-wavelength antisymmetric SPP, as the
less pronounced oscillations modulating the ET rate curves in
Fig. 6(b) illustrate.

In addition to considering the SE and ET rates relative
to their values in free space, another useful comparison is
between the SE and ET rates themselves, in the same geometry.
The reason is that the energy-transfer rate can only be measured
if it is comparable to or larger than the decay rate of the donor
due to other channels. Assuming that the decay of the donor
due to vibrational interactions is small (so that the donor’s
quantum yield in vacuum is large), we compare the ET rate to
the SE rate, which includes decay due to all electromagnetic
interactions (i.e., also due to SPPs). Thus, we define η ≡ �/γ ;
if η > 1, ET is the dominant channel for the donor to lose its
energy. In Figs. 6(c) and 6(d), we plot the ratio,

η̃ ≡ η

η0
= �/γ

�0/γ0
= �̃/γ̃ , (13)

corresponding to the situation of Figs. 6(a) and 6(b), respec-
tively. Thus, these plots show the role of the geometry (and
implicitly SPPs) in favoring one decay channel of the donor
(excitation transfer to the acceptor) over another (spontaneous
decay), when compared to free space. From Fig. 6(c) we
observe that for the molecular configuration of Fig. 5(a) for
almost all slab thicknesses, the ratio η̃ is smaller than unity,
expressing the fact that the enhancement of the ET rate in the
presence of the metal slab is smaller than the enhancement of
the SE rate in the presence of the metal slab. Consequently, it
may be difficult to experimentally observe the energy transfer
in this particular geometry.

The situation is quite different for the molecular configura-
tion from Fig. 5(b). For this case, we observe that the ratio η̃ can
be much greater than unity, which means that the effect of the
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metal slab may strongly favor energy transfer from the donor
to the acceptor over the spontaneous decay of the donor. We
note that, since in the geometry of Fig. 5(b) the SE rate does not
depend on x, the curves in Fig. 6(d) are just scaled versions of
those in Fig. 6(b) (now plotted in a linear scale); the same does
not hold for Figs. 6(c) and 6(a), in which corresponding curves
really are functionally different from each other, because the
SE rate depends on z.

The results presented in Fig. 6 have been obtained when
both the donor and acceptor are oriented along the z direction,
perpendicular to the metal slab. It is straightforward to
generalize them for different orientations of the molecules
as well as for rotational averages.

IV. PLANAR WAVEGUIDE

This section is dedicated to investigating the role of
SPPs in the electromagnetic interactions of molecules (i.e.,
spontaneous emission and energy transfer) placed inside a
planar waveguide. The planar waveguide is shown in Fig. 7
and it consists of a dielectric slab with permittivity ε2 = 4
and thickness d2 sandwiched between two Drude metal slabs
of thickness d1. Analogous to the case of the single Drude
slab, the symmetry plane at z = 0 for this geometry splits
the dispersion relation of the SPP of this geometry into four
distinct branches: two groups of symmetric and antisymmetric
SPPs, associated with the two types of interfaces comprising
the geometry, an external interface between the Drude slab and
the vacuum outside the waveguide, and an internal interface
between the Drude slab and the material comprising the inte-
rior of the waveguide [57,58]. These dispersion diagrams are
shown in Fig. 8 for several parameters of the waveguide. The
four different branches of the dispersion relation are as follows:
external antisymmetric SPP (EASPP), external symmetric SPP
(ESSPP), internal antisymmetric SPP (IASPP), and internal
symmetric SPP (ISSPP).

A. Spontaneous emission rate

In this subsection we present calculations of the emission
rates of molecules placed in the vicinity of a waveguide,
emphasizing the contribution of SPPs to these rates. Figure 9
shows the total SE rate of a molecule placed above the
waveguide of Fig. 7, as well as the radiative emission rate and
the emission rate into the different types of SPPs mentioned
in the beginning of this section. The log-log scale employed
here makes these different contributions to the SE rate plainly

FIG. 7. Geometry of the waveguide.

FIG. 8. (Color online) Dispersion relations for SPPs in a waveg-
uide geometry with γ = 0.

visible. The frequency used for these calculations is ω =
0.40 ωP , close to the internal surface-plasmon frequency,
ωSPI = 1/

√
5 ωP ≈ 0.447 ωP .

Figure 9(a) corresponds to thicknesses d1 = d2 = 0.01 λP ,
for which there is the maximum difference in the contributions
of the different types of SPPs (see Fig. 8). The ESSPP, lying
closest to the light line in vacuum, has the smallest contribution
to the decay rate. The main contribution to the decay rate of
the molecule comes from the EASPP, which, though more
confined to the external surface of the waveguide than the
ESSPP, couples much stronger to the molecule. Finally, the
ISSPP, with its larger parallel component of the wave vector,

FIG. 9. (Color online) Relative decay rates of molecules above
a planar waveguide, as a function of the distance to the surface of
the waveguide, for γ = 0. The frequency is ω = 0.40 ωP , where no
IASPP can be excited (see Fig. 8).
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is the strongest confined to an interface, and its contribution is
relevant only very close to the surface of the waveguide.

If we now increase the thickness of the material inside the
waveguide, making d2 = 0.20 λP [see Fig. 9(b)], the EASPP
and ISSPP become virtually indistinguishable [see Fig. 8(b)],
and their contributions to the decay rate are the same and
constitute the dominant channels through which the molecule
decays.

If, on the other hand, the thickness of the metal slabs
is increased to d1 = 0.20 λP , while keeping the dielectric
material inside the waveguide to a thickness of d2 = 0.01 λP

[see Fig. 9(c)], it is the ESSSP and EASPP that start to
coincide [see Fig. 8(c)] and, hence, it is their contribution that is
dominant and roughly the same, while the ISSPP contribution,
though comparable to the others at very short distances from
the waveguide, falls off abruptly as this distance increases.

Finally, when both thicknesses involved in the problem are
set to d1 = d2 = 0.20 λP , all types of SPPs have a relatively
small parallel component of the wave vector [see Fig. 8(d)]
and, hence, larger penetration depths in the materials [see
Fig. 9(d)]. It is worth pointing out that in the last two panels in
Fig. 9, where d1 = 0.20 λP , the enhancement of the decay
rate is much smaller than in the first two panels, where
d1 = 0.01 λP .

For all the panels in Fig. 9, the frequency used, ω =
0.40 ωP , forbids excitation of the IASPP, whose dispersion
branch, Fig. 8 shows, lies completely above the internal SPP
frequency ωSPI.

B. Energy transfer rate

This subsection is dedicated to investigating the ET rate
between two molecules when placed inside and around
the planar waveguide. Figure 10 shows the relative ET
rate between the two molecules (donor and acceptor) as a
function of their separation along the waveguide, for several
z positions of the donor and acceptor, and two frequencies
close to the two surface-plasmon frequencies associated
with the structure, ωSPI = 1/

√
5 ωP ≈ 0.447 ωP and ωSPE =

1/
√

2 ωP ≈ 0.707 ωP . One can thus investigate the transfer
of excitation energy within the waveguide, as well as to the
outside medium. The calculations are performed when both
molecules have their transition dipole moments perpendicular
to the plane of the waveguide, or along the z axis, and the two
frequencies considered are ω = 0.40 ωP and ω = 0.70 ωP . In
a Ag/SiO2/Ag waveguide these correspond to wavelengths of
λ = 337.8 nm and λ = 193 nm. The calculations in Fig. 10
have been performed for several thicknesses of the metallic
plates and heights of the dielectric interior of the waveguide.
In Fig. 10(a), the relevant parameters are d1 = d2 = 0.01 λP .
A large enhancement of the ET rate occurs from the inner
to the outer surface of the metal plate, caused by excitation
of the ISSPP by the near field of the donor located at (xs =
0,zs = 0.004 λP ). The acceptor molecule couples to this SPP
with its near field, resulting in a large enhancement of the ET
rate. The fact that the maximum of the relative ET rate occurs
when the intermolecular separation along the waveguide x is
approximately x ≈ 0.5 λP can be accounted for by the fact that
what is plotted in Fig. 10 is the normalized ET rate (i.e., the
ET rate in the planar waveguide normalized to its value in free

FIG. 10. (Color online) Relative ET rates between molecules in a
planar waveguide geometry, as a function of their mutual separation
along the x axis, for γ = 2.288 × 10−3. In the inset, which is
the same for all four subfigures, the black arrow represents the
donor molecule, fixed at zs and xs = 0, the gray arrow represents
the acceptor molecule, fixed at z and with varying x position:
(a) d1 = 0.01 λP , d2 = 0.01 λP ; (b) d1 = 0.01 λP , d2 = 0.20 λP ;
(c) d1 = 0.20 λP , d2 = 0.01 λP ; (d) d1 = 0.20 λP , d2 = 0.20 λP .

space). When the intermolecular separation is very small, the
ET rate is in its Förster regime and, inside the waveguide, is
dominated by the direct interaction between the molecules
(i.e., the energy transfer occurs mainly through exchange
of virtual photons which do not scatter of the waveguide
surfaces). As the intermolecular distance increases, the direct
interaction contributes less, and the main contribution comes
from the ISSPP. The rapid oscillations in the ET rate can be
attributed, as in the case of a single metal plate, to interference
between the different pathways of ET. In this case, it is
the interference between the ISSPP and the EASPP which
leads to these oscillations. At the frequency which is used,
ω = 0.40 ωP , the dispersion curves of these two SPPs show
the largest wave vector [see Fig. 8(a)], with the ISSPP wave
vector the largest of the two. By contrast, when both molecules
are placed outside the waveguide, and the frequency is close
to the external plasmon frequency (i.e., ω = 0.70 ωP ), there
is almost no enhancement of the ET rate. At this particular
frequency the EASPP dispersion curve is very close to the
light line and no other SPPs are excited [see Fig. 8(a) again].

As the height of the dielectric interior of the waveguide
is increased, the transfer rate from the inner to the outer
surface of the metal plate is seen not to depend strongly
on the height of the waveguide interior [see Fig. 10(b), the
curve for ω = 0.40 ωP ]. It is noticeable, however, that the
oscillations in the ET rate are no longer present. The reason for
this is that for this particular height of the waveguide interior,
d2 = 0.20 λP , the ISSPP and EASPP dispersion curves nearly
overlap [see Fig. 8(b)]. As such, the interference between these
two pathways of energy transfer is always constructive, which
leads to the absence of oscillations in the ET rate. Near the
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external plasmon frequency, at ω = 0.70 ωP , the enhancement
of the ET rate is much smaller, for the same reason as discussed
in the above paragraph.

If, on the other hand, it is the thickness of the metal plate
that is increased, as in Fig. 10(c), transfer from the interior
to the exterior of the metal plate is actually suppressed near
the internal plasmon frequency, ω = 0.40 ωP . In this case,
even though the ISSPP still has a large wave vector, the
acceptor molecule located on the outside of the waveguide
can no longer couple to it efficiently. The EASPP, on the other
hand, although capable of coupling to the donor molecule,
has a wave vector very close to the light line and, hence, a
very small contribution. Near the external plasmon frequency,
at ω = 0.70 ωP , however, the wave vectors corresponding to
both the EASPP and the ESSPP are much larger—they nearly
coincide—and the ET transfer between two molecules close to
the outer surface of the metal plates is considerably enhanced.

When both the thickness of the metal plates and the height
of the waveguide interior are rather large [see Fig. 10(d)],
there is a slight enhancement of the ET rate to the outside of
the waveguide. On top of this enhancement there is a slight
oscillation of the ET rate, due to interference between the
IASPP and the ESSPP [see Fig. 8(d)] which, at ω = 0.40 λP ,
have wave vectors of the same order of magnitude. As in the
previous case, the largest enhancement of the ET rate occurs
when both molecules are close to the outer surface of the metal
plate, mediated by the ESSPP at ω = 0.70 ωP .

Finally, we have also calculated the η̃ ratio from Eq. (13) for
Fig. 10 and have observed effects similar to those discussed
for Fig. 6. Since the position of the donor is kept fixed, the
curves obtained have the same shape as those of Fig. 10, only
scaled by the relative SE rate of the donor, and for this reason
we do not present them here.

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated the role that SPPs
play in modifying the electromagnetic properties of atoms
and molecules placed near a metallic slab embedded in a
dielectric host, and in a planar waveguide. In these and other
multilayered geometries, the presence of multiple interfaces

gives rise to several branches in the dispersion relations of
SPPs. These branches can be distinguished by their symmetries
and their influence on the spontaneous emission rate and the
energy-transfer rate has been investigated.

In a slab geometry, the dispersion relation of surface plas-
mons splits into two branches: symmetric and antisymmetric,
which differ markedly from one another when the thickness
of the slab is suitably small. Their influence on the SE
and ET rates can, consequently, also differ appreciably, and
we have been able to investigate this influence and relate
it to specific properties of the SPPs (i.e., wavelength and
frequency). It is close to the surface-plasmon frequency of the
slab geometry ωSP that the effect of the SPPs on the SE and
ET rates is the strongest. At these frequencies, the wavelength
of the SPPs (the antisymmetric SPP, to be precise) can be
much smaller than that of light of the same frequency, which
leads to subwavelength effects in the behavior of the SE and
ET rates, such as very fast oscillations in the ET rate, for
example.

If we consider the geometry of the planar waveguide,
the SPP dispersion relation now splits into four branches:
external symmetric and antisymmetric and internal symmetric
and antisymmetric, with two surface-plasmon frequencies,
associated with the external ωSPE and internal ωSPI SPPs.
Depending on the positioning of molecules inside or around
the planar waveguide, and on the molecule’s characteristic
frequency, they can be made to selectively couple to one
or more of these SPPs and their spontaneous emission or
energy-transfer rates can be dramatically modified. We have
been able to identify the SPP branches that affect these rates
the most for several particular parameters of the geometry and
configurations of molecules.

This intricate dependence of the electromagnetic properties
of molecules on geometrical parameters and frequency extends
the space of possibilities for tailoring these properties.
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