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Modified self-Kerr-nonlinearity in a four-level N-type atomic system
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The self-Kerr-nonlinearity of a four-level N-type atomic system is studied both experimentally and theoretically.
The self-Kerr-nonlinear coefficient n2 of the probe beam is greatly enhanced near atomic resonance, and can
be dramatically modified by changing the switching laser power. With an increasing switching laser power, the
slope of the Kerr nonlinear coefficient n2 around the atomic resonance changes from negative to positive, and
the value of n2 varies from ∼–4 × 10−6 to 4 × 10−6 cm2/W at certain near-resonant probe frequency detunings.
Such controllable Kerr nonlinearity can find applications in optoelectronic devices, such as all-optical switching
and logic gates.

DOI: 10.1103/PhysRevA.84.053820 PACS number(s): 42.50.Gy, 42.65.−k, 32.80.Qk

I. INTRODUCTION

Great enhancement of the near-atomic resonant nonlinear-
ity with reduced absorption due to quantum interference and
atomic coherence is an important feature of electromagneti-
cally induced transparency (EIT) [1]. In the past few years,
a number of resonantly enhanced nonlinear phenomena have
been observed in EIT-based media, such as frequency conver-
sion [2], four- and six-wave mixing [3–6], EIT-induced beam
focusing [7], elimination of optical filamentation [8], and spa-
tial solitons [9]. The greatly enhanced self-Kerr-nonlinearity
[10] and cross-Kerr-nonlinearity [11] in three-level EIT
systems have been experimentally measured. Although large
cross-Kerr-nonlinearity in a four-level N-type atomic system
was theoretically predicted [12] and experimentally measured
recently [13,14], the self-Kerr-nonlinear properties of such
four-level N-type atomic systems have not been explored so
far. In this work, we report our experimental investigation
of the self-Kerr-nonlinearity in the four-level N-type atomic
system. The self-Kerr-nonlinear coefficient n2 is quantitatively
measured in such a four-level N-type atomic system by
following the cavity-scanning technique described in Ref. [10].
We have also developed a theoretical model and obtained an
analytical solution for the third-order self-Kerr-nonlinearity in
the four-level N-type system through the iterative method [10]
under the weak-probe approximation. Self-Kerr-nonlinearities
in two-, three-, and four-level atomic systems are measured and
quantitatively compared in one experimental setup. By simply
changing the power of the additional switching laser beam,
both the value (as well as the sign) of the self-Kerr-nonlinear
coefficient n2 and its slope near resonance can be altered,
which can be very useful in the applications of such greatly
enhanced nonlinearity with modified absorption.

The theoretical model is described in Sec. II with the
details of the iterative method. In Sec. III, the experimental
setup and observations are presented, and the basic principle
of measuring the self-Kerr-nonlinear coefficient n2 from
the direct experimental observations is also given. Quantitative
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comparisons are made between the experimental measure-
ments and the theoretical calculations in Sec. IV. Sec. V serves
as the conclusion.

II. THEORETICAL MODEL

We consider a four-level N-type atomic system, as depicted
in the inset of Fig. 1. The density-matrix elements under the
rotating-wave approximation can be derived by the standard
semiclassical method [15]:
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where �p = μ13Ep/h̄, �c = μ23Ec/h̄, and �s = μ24Es/h̄ are
the Rabi frequencies of the probe, coupling, and switching
lasers, respectively. We define γ̃21 = γ21 − i(�p − �c), γ̃31 =

053820-11050-2947/2011/84(5)/053820(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.053820


JITENG SHENG, XIHUA YANG, HAIBIN WU, AND MIN XIAO PHYSICAL REVIEW A 84, 053820 (2011)

FIG. 1. (Color online) Experimental setup. PBS1 and PBS2:
polarization beam splitters; M1-M3: cavity mirrors; APD: avalanche
photodiode detector; and PZT: piezoelectric transducer. Inset: four-
level atomic system in 87Rb and laser coupling scheme.

γ31 − i�p, γ̃41 = γ41 − i(�p − �c + �s), γ̃32 = γ32 − i�c,
γ̃42 = γ42 − i�s , and γ̃43 = γ43 − i(�s − �c) for simplicity.
�nm are the natural decay rates between level |n〉 and level |m〉;
and γnm = 1

2 (�n + �m) + γ col
nm . Here, �p = ωp − ω13, �c =

ωc − ω23, and �s = ωs − ω24 are the probe, coupling, and
switching frequency detunings, respectively; and γ col

nm is the
collision-induced dephasing rate.

We will use the iterative technique [10] to solve Eq. (1) in
the steady state. The density-matrix elements can be expanded
as ρnm = ρ(0)

nm + ρ(1)
nm + ρ(2)

nm + ρ(3)
nm + · · ·. Here, we make two

assumptions: (1) All the populations are in the ground state
in the zeroth order, i.e., ρ

(0)
11 = 1, ρ

(0)
22 = ρ

(0)
33 = ρ

(0)
44 = 0, and

(2) the coupling and the switching fields are much stronger
than the probe field, that is, �p � �s,�c. Under the weak-
probe approximation, the terms with ρnm�p (n �= m) can be
neglected in the equations of the off-diagonal density-matrix
elements ρnm (n �= m), i.e., Eqs. (1e)–(1i). Solving Eqs. (1e)–
(1i) simultaneously, the off-diagonal density-matrix elements,
to the first order, can be obtained to be
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Since in a closed atomic system the total population is con-
served, i.e., ρ11 + ρ22 + ρ33 + ρ44 = 1, it is straightforward
to find the second-order diagonal density-matrix elements

satisfying the relationship

ρ
(2)
11 + ρ

(2)
22 + ρ

(2)
33 + ρ

(2)
44 = 0. (3)

Substituting Eqs. (2a)–(2d) into the equations of the diago-
nal density-matrix elements ρnn [Eqs. (1a)–(1d)], and solving
them simultaneously with Eq. (3), the diagonal density-matrix
elements can be obtained, up to the second order, to be
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.

Substituting Eqs. (4a)–(4d) into the equations of the off-
diagonal density-matrix elements [Eqs. (1e)–(1i)], and solving
them again, can yield the following result:
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From the definitions χ = 2Nμ13

ε0Ep
ρ31, χ = χ (1) + 3|Ep|2χ (3),

and n=n0 +n2I [16], the third-order susceptibility is obtained
as
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12ε0h̄

3
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and the self-Kerr-nonlinear coefficient n2 is given by 3Reχ (3)

cε0
.

Here c is the speed of light in vacuum and ε0 is the vacuum
permittivity.

Considering the Doppler effect in an atomic vapor cell, we
replace �p, �c, and �s by �p + kpv, �c + kcv, and �s − ksv;
then the third-order susceptibility is given by

χ (3)(v) =
∫ ∞

−∞
− iN (v)|μ13|4
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3

2�21 + �32

�21(�31 + �32)

1

F (v)

×
[

1

F (v)
+ 1

F (v)∗
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Here we only consider the case where both the coupling
and the switching lasers are on resonance (�c = �s = 0);
therefore, F is reduced to

F (v) = γ31 − i(�p + kv) + |�c|2/4

γ21 − i[(�p + kv) − (�c + kv)] + |�s |2/4
γ41−i[(�p+kv)−(�c+kv)+(�s−kv)]

,

= γ31 − i(�p + kv) + |�c|2/4

γ21 − i�p + |�s |2/4
γ41−i(�p−kv)

, (8)
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where kp ≈ kc ≈ ks ≡ k is the wave number of the electro-
magnetic field. The atomic speeds obey a Maxwell-Boltzmann
distribution, which yields a Gaussian distribution for the
velocity N (v) = N0

u
√

π
e−v2/u2

. Here u/
√

2 is the root mean

square atomic velocity, and �ωD = 2
√

ln 2ku is the full width
at half maximum (FWHM) of the Doppler width of the thermal
atomic distribution.

III. EXPERIMENTAL MEASUREMENTS

The experimental setup is shown in Fig. 1, which is similar
to the one used in Ref. [17]. The probe, coupling, and switching
lasers are single-mode lasers (Toptica DL 100) with current
and temperature stabilized. A three-mirror optical ring cavity
consists of an input mirror M1 and an output mirror M2
with 3% and 1.4% transmissivities, respectively, and a third
mirror M3 with reflectivity larger than 99.5%, mounted on a
piezoelectric transducer (PZT) for cavity frequency scanning
and locking. M1 and M3 are curved mirrors with a 10-cm
radius of curvature. The optical path length of the ring cavity is
∼37 cm. The rubidium vapor cell, without buffer gas, is 5 cm
long with Brewster windows, and is wrapped in a μ-metal
sheet for magnetic shielding and in heat tape for controlling
the temperature. Four energy levels in the D line of 87Rb atom
are used for the N-type four-level system, as shown in the
inset of Fig. 1. The coupling (ωc) and switching (ωs) laser
beams are injected separately through two polarization beam
splitters (PBS 1 and PBS 2) and counterpropagate through the
vapor cell. The probe (ωp) beam is injected into the cavity via
the input mirror M1 and circulates in the cavity as the cavity
field. The output of the cavity is detected by an avalanche
photodiode detector (APD). The coupling beam copropagates
with the cavity field, and has a small misalignment with the
cavity axis to avoid its circulation in the cavity. The switching
beam is carefully aligned to obtain good overlaps with other
beams in the vapor cell by monitoring the absorption. The
radii of the coupling, switching, and probe laser beams are
estimated to be 400, 400, and 100 μm at the center of the
atomic cell, respectively. The empty cavity finesse is ∼100.
When the atomic cell, two PBSs, and a diaphragm (as a mode
cleaner) are inserted into the cavity, the cavity finesse degrades
down to ∼40. An additional frequency-stabilized diode laser is
used to lock the optical ring cavity (not shown in Fig. 1). Both
the coupling and switching lasers are locked on the saturated
absorption spectrum with �c = �s = 0 using another atomic
cell. The probe laser is locked on a Fabry-Perot cavity, and
by tuning the applied voltage on the PZT of the Fabry-Perot
cavity, the probe laser frequency can be easily detuned within a
range of several hundred megahertz. With another Fabry-Perot
cavity and the saturated absorption spectrum, the exact value
of the probe frequency detuning can be determined.

By scanning the ring cavity, the cavity transmission spec-
trum shows a typical symmetric Lorentzian shape when the
probe beam is tuned far from the atomic resonances (linear
intracavity medium). When the probe (cavity) field is tuned
to near the atomic resonance, the cavity transmission profile
becomes asymmetric due to the self-Kerr-nonlinear coefficient
n2 and the degree of such asymmetry is a direct measure of the
Kerr nonlinearity [10]. Figure 2 shows the cavity transmissions

FIG. 2. Cavity transmissions with the scan of the cavity length
scanning. (a1) �p/2π = 14 MHz, Pc = Ps = 0; (b1) �p/2π =
14 MHz, Pc = 13.3 mW, Ps = 0; (c1) �p/2π = 14 MHz, Pc =
13.3 mW, Ps = 0.4 mW; (d1) �p/2π = 14 MHz, Pc = 13.3 mW,
Ps = 2.7 mW; (a2) �p/2π = −14 MHz, Pc = Ps = 0; (b2) �p/2π =
−4 MHz, Pc = 13.3 mW, Ps = 0; (c2) �p/2π = −14 MHz, Pc =
13.3 mW, Ps = 0.4 mW; (d2) �p/2π = −14 MHz, Pc = 13.3 mW,
Ps = 2.7 mW. Other experimental parameters are T = 66 ◦C and
�c = �s = 0.

under several different experimental conditions. Figures 2(a1)
and 2(a2) are for the two-level cases with the coupling and
switching beams turned off. Figures 2(b1) and 2(b2) are for
the three-level cases with only the switching beam turned off.
Figures 2(c1) and 2(c2) are for the four-level cases with a
relatively weak switching laser beam and Figs. 2(d1) and
2(d2) are for the four-level cases with a relatively strong
switching laser beam. The left and right columns of Fig. 2
correspond to the situations when �p/2π = 14 and −14
MHz, respectively. When the cavity length is scanned from
shorter to longer, the left part of the peak becomes more
gradual, while the right part of the peak becomes steeper
if n2 is negative, as shown in Fig. 2(b1). The opposite is
true when the value of n2 is positive. The self-Kerr-nonlinear
coefficient n2 can be directly determined by the degree of
asymmetry (� = t1 + t2 − 2tp) of the peak as n2 = λ�

τIpl
[10].

Here, λ is the wavelength, τ is the time period between two
transmission peaks, Ip is the peak intensity, l is the length of
the rubidium cell, and t1, t2 are the times on two sides of the
peak at which the output intensity is half of the peak intensity,
respectively. Therefore, from Fig. 2, it is easy to see that when
�p/2π = 14 MHz, n2 is very small in the two-level case due
to its almost symmetric transmission peak; n2 has a negative
value when the coupling beam is applied [Fig. 2(b1)]; the
absolute value of n2 decreases (i.e., a smaller negative value)
when a weak switching beam is applied [Fig. 2(c1)] since
the degree of the asymmetry reduces; and n2 changes sign
when a strong switching beam is applied [Fig. 2(d1)]. Similar
discussions can be used for Figs. 2(a2)–2(d2) with the sign
of n2 switched. During the experimental measurements under
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different conditions, the intracavity peak power has been kept
at ∼50 μW (�p ≈ 2π × 10 MHz) by adjusting the input probe
laser power to compensate for the changes in absorption under
different laser beam configurations and powers.

IV. COMPARISONS AND DISCUSSION

Figure 3 shows both the experimentally measured and
theoretically calculated self-Kerr-nonlinear coefficients (n2)
versus the probe frequency detuning for different atomic
energy level configurations. The theoretical simulations are
carried out according to Eq. (7) with the Doppler effect
included. The key parameters in the experiments are, for
each panel, (a1) Pc = Ps = 0; (b1) Pc = 13.3 mW
(�c ≈ 2π × 120 MHz), Ps = 0; (c1) Pc = 13.3 mW, Ps =
0.4 mW (�s ≈ 2π × 35 MHz); (d1) Pc = 13.3 mW, Ps =
2.7 mW (�s ≈ 2π × 91 MHz). The frequency detunings for
the coupling and switching beams are kept as zero. In the
calculations, the parameters used are γ21 = 2π × 1 MHz,
γ31 = γ41 = 2π × 130 MHz, �ωD = 2π × 540 MHz with
(a2) �c = �s = 0; (b2) �c = 2π × 100 MHz, �s = 0; (c2)
�c = 2π × 100 MHz, �s = 2π × 35 MHz; and (d2) �c =
2π × 100 MHz, �s = 2π × 120 MHz. The large γ31 and γ41

values taken for the calculation may come from several factors.
Under current experimental conditions, the main contributions
are from the power broadening and collisional dephasing. The

FIG. 3. Self-Kerr-nonlinear coefficients n2 versus probe fre-
quency detuning. The left column presents the experimentally
measured results and the right column gives the corresponding
theoretically calculated curves. (a1) and (a2) are for the two-level
cases; (b1) and (b2) are for the three-level cases; (c1) and (c2) are
for the four-level cases at a relatively small switching laser power;
and (d1) and (d2) are for the four-level cases at a relatively strong
switching laser power. The experimental parameters are Ps = 0,
0.4 mW, and 2.7 mW in (b1), (c1), and (d1), respectively. Other
experimental parameters are the same as in Fig. 2. The theoretical
parameters are γ21 = 2π × 1 MHz, γ31 = γ41 = 2π × 130 MHz,
�ωD = 2π × 540 MHz with (a2) �c = �s = 0; (b2) �c = 2π ×
100 MHz, �s = 0; (c2) �c = 2π × 100 MHz, �s = 2π × 35 MHz;
and (d2) �c = 2π × 100 MHz, �s = 2π × 120 MHz.

maximum values of the self-Kerr-nonlinear coefficient n2 for
the four-level system [Fig. 3(c1)] can reach ∼4 × 10−6 cm2/W
with dramatic change near the atomic resonance similar to the
case of the three-level system [Fig. 3(b1)] [10]. As one can see
from Figs. 3(c1) and 3(d1), with an increase in the switching
laser power, the slope of n2 near the atomic resonance changes
from negative to positive. Specifically, under strong switching
laser power, as shown in Figs. 3(d1) and 3(d2), the line shape
of n2 can be understood as a superposition of three curves of
the nonlinear coefficients from three atomic resonances [18].
The dependence of the self-Kerr-nonlinear coefficients n2

versus the switching laser power Ps at �p/2π = 14 MHz is
depicted in Fig. 4. The dots with error bars (statistical errors)
are the experimental data, and the solid line is a theoretical
fitting using Eq. (7). From Fig. 4, it is clear that the Kerr
nonlinear coefficient n2 can be dramatically modified at certain
near-resonant probe frequency detunings, even switching the
sign, just by changing the switching laser power. Such change
of sign for nonlinear coefficient (or nonlinear dispersion
slope) by controlling the switching beam power can be used
in compensating the sharp linear dispersion change [19] to
achieve the “white-light cavity” condition for the intracavity
EIT medium, as done in the three-level EIT medium [20], with
an additional control parameter.

Equation (7) is actually a general solution which includes
the cases for two-level, three-level, and four-level systems.
There are a large number of parameters that can be adjusted.
We can also calculate the theoretical curve for the self-Kerr-
nonlinearity as a function of the frequency detuning of the
switching beam (�s). However, the experimental measure-
ments for such detuning case become complicated due to the
closely lying hyperfine levels of the rubidium D2 line, which
are all within the Doppler-broadened spectrum. We would also
like to point out that the self-Kerr-nonlinearity studied here is
different from the cross-Kerr-nonlinearity studied in the earlier
works [13,14]. The cross-Kerr-nonlinearity is proportional to
n′

2Is , which corresponds to the term of |�s |2 in the first-order
solutions in Eq. (2b), while the self-Kerr-nonlinearity we
studied here is proportional to n2Ip, which is the feature of the
third-order solutions for the probe beam. These two different
kinds of Kerr nonlinearities have very different applications
[9,12].

FIG. 4. Experimentally measured (dots with error bars) and
theoretically calculated (solid line) self-Kerr-nonlinear coefficients
(n2) as a function of Ps at �p/2π = 14 MHz. Other parameters are
the same as in Fig. 3.
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V. CONCLUSION

We have directly measured the self-Kerr-nonlinear coef-
ficient n2 in a four-level N-type atomic system by using
the cavity scanning technique, which has the advantage of
taking out the contributions from the linear absorptions of
the laser beams. A set of coupled equations of density-matrix
elements and the iteration technique were used to calculate
the third-order susceptibility χ (3) for the multilevel atomic
systems with Doppler effect included. Comparisons were
made between the experimentally measured and theoretically
calculated self-Kerr-nonlinear indices for the two-, three-, and
four-level systems. Although the four-level N-type atomic

system has the same magnitude of the self-Kerr-nonlinear co-
efficient as the three-level system, the power of the additional
switching beam can control the magnitude, as well as the sign
(slope), of the Kerr nonlinearity near the atomic resonance
with coupling and switching beams tuned to resonance. Such
greatly enhanced and controllable self-Kerr-nonlinearity can
be used to construct efficient all-optical switching and logic
gates for classical and quantum communication applications.
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