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Oscillatory dynamics in nanocavities with noninstantaneous Kerr response
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We investigate the impact of a finite response time of Kerr nonlinearities over the onset of spontaneous
oscillations (self-pulsing) occurring in a nanocavity. The complete characterization of the underlying Hopf
bifurcation in the full parameter space allows us to show the existence of a critical value of the response time
and to envisage different regimes of competition with bistability. The transition from a stable oscillatory state
to chaos is found to occur only in cavities which are detuned far off-resonance, which turns out to be mutually
exclusive with the region where the cavity can operate as a bistable switch.
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I. INTRODUCTION

Self-pulsing (SP), the onset of spontaneous oscillations,
is a universal feature of nonlinear structures with feedback.
As long as passive systems are concerned SP has been
investigated theoretically in settings ranging from isolated
ring cavities [1–3] and parametric intracavity mixing [4–6] to
Bragg gratings [7,8] or grating-assisted backward frequency
conversion schemes [9,10], and it is still a subject of active
research [11–13]. In particular, the dynamics of nonlinear
passive cavities, whose study was pioneered in the 1980s
[1–3], is extremely rich, encompassing stable as well as
chaotic SP which can compete with bistabilities and transverse
effects [14]. Historically, SP and chaos (the optical equivalent
of strong turbulence) have been first analyzed by means of
delay-differential models accounting for the round-trip delay
at each passage, which can be large in ring cavities. An
instability named after Ikeda occurs in this framework when
the relaxation time of the nonlinear response is much shorter
than the transit time [1] and has been tested experimentally
[15]. However SP and so-called weak turbulence occur also in
the opposite (say, short cavity) limit, where the delay can be
averaged out to end up with a differential mean-field model [2].
This regime becomes important nowadays where nanocavities
are employed for many modern photonic applications [16],
including bistability [17], demonstrated in photonic crystal
(PhC) membranes which offer great flexibility of design
as well as high nonlinear performances in semiconductors
[18–25]. In these cavities, transverse effects are absent and
their dimensions are so small that the response time of the
medium can be much larger than the light transit time in
the cavity yet comparable to the photon lifetime, which is
strongly enhanced on account of the large quality factor
Q. SP in such nanocavities has been recently predicted,
owing to the free-carrier dispersion induced by two-photon
absorption [13]. The main feature of such a mechanism is the
existence of a critical value of the time relaxation constant
τ , as well as a wide region of the parameter space where
stable (nonchaotic) SP can be potentially observed. In this
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paper we analyze the dynamics of a nanoresonator in the
good-cavity limit when the underlying nonlinear mechanism is
a Kerr-like nonlinearity with finite response time. Our analysis
is based on the differential model proposed in Ref. [2]. In
spite of the simplicity of such a model, which makes it
an ideal prototype for understanding the role of relaxation
processes, a full characterization of SP and its competition
with bistability in the full parameter space was never reported
(to the best of our knowledge) after Ref. [2]. We propose such
an analysis, adopting a different normalization with respect to
that employed in Ref. [2], better aimed at capturing the key role
of the relaxation time. This is especially important nowadays
in view of assessing how a given designed nanocavity may be
expected to behave by changing the characteristic relaxation
time of the nonlinearity as a consequence of choosing different
materials and/or adopting techniques for fine-tuning their
response time. We propose an analytical characterization of
the SP instability and its competition with bistability in the full
parameter space, pointing out the qualitative similarity with the
features observed for a nonlinearity dominated by free-carrier
dispersion [13]. Nonetheless, we further investigate also the
destabilization mechanism of the oscillatory states initially
described in Ref. [2], showing that the chaotic regime, being
confined to far off-resonance cavities, is indeed mutually
exclusive with bistable switching.

II. MODEL DEFINITION AND LINEAR STABILITY
ANALYSIS

We start from the following dimensionless coupled-mode
model that rules the temporal evolution of the normalized
intracavity field a(t) coupled to the frequency deviation n(t),
owing to the intensity-dependent refractive index change:

da

dt
=

√
P + i(δ + χn)a − a, (1a)

τ
dn

dt
+ n = |a|2. (1b)

Noteworthy, Eqs. (1) describe a photonic crystal nanocavity
with high Q coupled to a line-defect waveguide [18,20,24] and
implicitly assume that the nonlinearity is dominated solely by
the Kerr effect with relaxation time τ , while other possible
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nonlinear contributions, e.g., two-photon absorption along
with the free-carrier dispersion [13,18,20,24], are neglected.
Here P is the normalized power injected in the cavity through
coupling with the waveguide, and |a|2 is the normalized
intracavity energy, which can be easily rescaled into real-world
units by comparison with widely used dimensional models
(see, e.g., [24]). It is worth emphasizing that a unit coefficient
in front of the loss term in Eqs. (1) implies that the time
t is measured in units of the inverse damping coefficient
1/�0 = 2Q/ω0 = 2tc, where Q, ω0, and tc stand for the
overall quality factor, the resonant frequency, and the photon
lifetime of the cavity, respectively. In these units, the two key
(normalized) parameters are the detuning δ = (ω0 − ω)/�0

and the time constant τ = τp�0, where τp is the response
time of the nonlinearity in real-world units, while χ = ±1
accounts for the sign of the nonlinear Kerr coefficient. We
point out that our model differs from Ref. [2], inasmuch as
the time scale is referred to the cavity lifetime instead of the
response time of the medium. Indeed Eqs. (1) can be reduced
to the model analyzed in Ref. [2] by means of the substitution
a,n,t → a/

√
τ ,n/τ,τ t . The effect of such a transformation is

however to rescale the detuning and the injected power in such
a way that they become dependent on the response time of the
medium, which is not suitable for our purpose of investigating
the impact of the relaxation time on the dynamics of a given
cavity with fixed characteristics.

For a cw driving P = const, Eqs. (1) have the steady-state
solution a(t) = A, n(t) = N = |A|2, where

P = E[1 + (δ + χE)2], (2)

E = |A|2 being the stationary intracavity energy. It is well
known that bistability occurs for δ >

√
3 when χ = −1, and

δ < −√
3 when χ = 1 [14]. In the discussion below, we

will focus on the latter case, where the cavity resonance is
blue-shifted due to the nonlinearity, a case which is directly
comparable to the net effect of free-carrier dispersion induced
by two-photon absorption [13]. All the conclusions of this
paper remain valid also for χ = −1, provided δ → −δ. The
values of intracavity energies corresponding to the knees of
the bistable response are

E±
b = −2χδ ± √

δ2 − 3

3
, (3)

and the corresponding input powers P ±
b = P (E±

b ) can be
calculated by means of Eq. (2).

The stability of solution (2) can be investigated by plugging
into Eqs. (1) the ansatz a(t) = A + δa(t), n(t) = N + δn(t),
while retaining linear terms in the perturbations δa,δn.

The perturbation column array ε ≡ (δa,δa∗,δn)T is found
to obey the following linearized equation:

dε

dt
= Mε, (4a)

M =

⎛
⎜⎝

iδ̂ − 1 0 iχA

0 −iδ̂ − 1 −iχA∗

A∗/τ A/τ −1/τ

⎞
⎟⎠ , (4b)

where δ̂ ≡ δ + χE.

The characteristic equation of M reads as

λ3 + a2λ
2 + a1λ + a0 = 0, (5)

where the coefficients are a2 = 2 + 1
τ

, a1 = (1 + δ̂2 + 2
τ

), and
a0 = 1

τ
(1 + δ̂2 + 2χEδ̂).

SP occurs when the system undergoes a Hopf bifurcation,
i.e., a pair of complex-conjugate eigenvalues λR ± iλI crosses
into the right-half complex plane, entailing an exponential
growth of a pulsating perturbation with period T = 2π/|λI |.
The bifurcation point (λR = 0) corresponds to the constraint
a1a2 = a0, which can be solved to yield the following explicit
expression for the SP (Hopf) threshold values E±

H :

E±
H =

−χδ
(
2 − 1

τ

) ±
√

δ2

τ 2 − 4
(
1 + 1

τ

)2(
1 − 1

τ

)
2
(
1 − 1

τ

) , (6)

and the corresponding injected power threshold P ±
H =

E±
H [1 + (δ + χE±

H )2].
The analysis reported above shows that the bistable re-

sponse depends only on the detuning, while the time constant
τ can affect qualitatively the onset of SP due to the Hopf
bifurcation. In fact different scenarios are possible depending
on the existence of one or both Hopf thresholds [in turn
corresponding to the roots in Eq. (6) being real and positive],
and whether they occur at powers above or below the bistable
knee for up-switching. Four possible scenarios are displayed
in Fig. 1, where we show the bistable stationary response along
with the unstable eigenvalues responsible for instabilities.
First, Fig. 1 shows the well-known fact that a purely real and
positive eigenvalue of M leads to instability of the steady-state
solution along the negative slope branch, which turns out to be
a saddle point in phase space. Conversely, SP is characterized
by a pair of complex-conjugate eigenvalues, and the relative
thresholds are highlighted by empty triangles. We find such
a threshold to occur always on the upper branch of the
bistable response (or when the response is monotone; see
below). However, depending on the value of τ , the lower Hopf
threshold P (E−

H ) can take place above [as in Figs. 1(a) and
1(c)] or below [see Figs. 1(b) and 1(d)] the knee P (E−

b ), which
characterizes the bistable up-switching. In the former case the
cavity can exhibit bistable up-switching to a stable steady
state, whereas in the latter case up-switching occurs inevitably
toward a SP-unstable state: stabilization is achieved by moving
along the hysteresis cycle below the Hopf threshold. Moreover,
also depending on the value of τ , the upper branch can be
indefinitely SP-unstable above the first threshold P (E−

H ) [see
Figs. 1(a) and 1(b)] or, vice versa, can exhibit a SP switch-off
energy or secondary threshold beyond which SP ceases to
take place [see Figs. 1(c) and 1(d); note that we change the
detuning in Fig. 1(d) only to make the picture clearer, though
the same qualitative behavior occurs at δ = −4]. Indeed, if
τ � 1, Eq. (6) may also admit a real solution E+

H , and hence
SP occurs only in a finite range of energies (and powers)
E−

H < E < E+
H . When τ grows, this finite interval shrinks and

vanishes as a critical value τ = τc is reached. For τ = τc, SP
no longer takes place and the entire upper branch becomes
stable. From Eq. (6), we find such a critical value τc to be
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FIG. 1. (Color online) Steady-state response E vs P for (a)–(c)
δ = −4 and (d) δ = −10 and different τ (χ = 1). Stable and unstable
branches are reported as solid and dotted lines, respectively. The blue
and red curves superimposed on the right side show how the real
part Re(λ) and imaginary part Im(λ) (of the dominant eigenvalue
underlying the instability) change with E. Bifurcation points are
highlighted over with the dashed line Re(λ) = 0. The shaded regions
labeled BI (light blue) and SP (light yellow) correspond to the
negative slope branch of the bistable response (real eigenvalue) and
SP instability (pair of conjugate eigenvalues with a positive real part),
respectively. Four different scenarios are shown: (a) SP occurs at
P = P −

H values above the bistable knee value P −
b and is unbounded

for increasing P ; (b) SP occurs at P = P −
H values below the bistable

knee P −
b , still being unbounded; (c) as in (a), except SP occurs in a

finite range below a given value P = P +
H ; and (d) as in (b), except

SP occurs in a finite range below a given value P = P +
H . The shaded

green regions yield the range of power where bistable up-switching
to a stable state is permitted, while red ones identify the coexistence
of a SP and an unstable saddle branch.

given by the positive real root of the cubic polynomial (its
explicit expression is too cumbersome):

τ 3
c + τ 2

c −
(

1 + δ2

4

)
τc − 1 = 0, τc ≈ |δ|

2
, |δ| � 1.

(7)

The behavior discussed above can be clearly seen by
reporting the SP threshold energies E±

H versus τ , at constant
detuning. Such a plot, displayed in Fig. 2 for δ = −4, shows
a shaded region (E−

H < E < E+
H ), which corresponds to SP.

We clearly see that no SP occurs for τ > τc. Conversely,
decreasing τ below τc results into widening the portion of the
upper branch that exhibits SP, until below τ = 1 the whole
upper branch above the switch-on threshold E−

H turns out
to be unstable. In this case, the SP switch-off energy E+

H

diverges as the asymptote τ = 1 (dashed vertical line) is
approached. Importantly, for τ → 0 also the first threshold
E−

H diverges, which means that a finite response time is a key
ingredient for SP to be observable. This is consistent with
the fact that Kerr instantaneous nonlinearities yield no SP at
all. In fact, in this case, the eigenvalues are easily found to be
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FIG. 2. (Color online) SP threshold energies E±
H as a function

of τ for fixed detuning δ = −4. The shaded area corresponds to the
domain E−

H � E � E+
H where SP occurs, which lies above the upper

knee level of energy E+
b (red dashed line).

λ± = −1 ±
√

E2 − (δ + 2χE)2, which rule out the possibility
to have a complex-conjugate pair with a positive real part.

In order to have a complete picture and further show how
the onset of SP changes with detuning, we have drawn in
Fig. 3 a color map of the level curves of SP threshold energies
E±

H , in the parameter plane (τ,δ). A number of interesting
observations can be drawn. The SP region is bounded by the
border τ = τc, and in the bistable region (δ < δb) τc decreases
with decreasing values of absolute detuning |δ|. Interestingly
enough, the scenario illustrated in Fig. 2 remains valid also

FIG. 3. (Color online) Color level plots of the (a) “on” E−
H and

(b) “off” E+
H values of threshold energy for SP, in the parameter plane

(τ,δ). Bistability occurs below the line δ = δb. The curve P (E−
H ) =

P (E−
b ) (black solid) divides the bistable region into a domain labeled

BI + SP, where SP sets in only for powers above the bistable knee for
up-switching, and a domain labeled SP, where stable up-switching is
not possible, being hampered by SP, which dominates the dynamics.
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for detunings δ > δb, where bistability disappears. Finally,
in the region of positive detunings, we are left with the
upper branch being fully unstable for all energies E > E−

H .
In this region, the threshold energy E−

H diverges, not only in
the instantaneous limit τ = 0, but also for τ = 1, whereas
relatively low values of E−

H are found for τ ∼ 1/2, i.e.,
when the response time of the nonlinearity is nearly equal
to the photon lifetime. Furthermore, the bistable region is
divided into two distinct domains by the (solid black) curve
which arises from the condition P (E−

H ) = P (E−
b ) (its explicit

expression is too cumbersome). In the domain BI + SP above
such curve (bounded from above also by the line δ = δb),
we see that the cavity can work as a bistable switch since the
upper branch right above the knee for up-switching is stable [as
in Figs. 1(a) and 1(c)], whereas, in the domain labeled SP below
the curve, up-switching is no longer allowed, since the upper
branch above the knee is SP-unstable [as shown in Figs. 1(b)
and 1(d)]. The reader can easily recognize a qualitative
similarity of the picture discussed here with the dynamics
of SP ruled by free-carrier dispersion, recently discussed in
Ref. [13]. Although a detailed analytic investigation of the
stability of the SP-oscillating state (the limit cycle) is beyond
the scope of this paper, similarly to the case discussed in
Ref. [13], our numerical simulations of Eqs. (1) suggest that
stable limit cycles, working as attractors from a large basin,
exist in a wide domain of the parameter plane (witnessing the
supercritical nature of the Hopf bifurcation). An example of
such stable dynamics is shown in Fig. 4.

Let us comment on the observability of the SP dynamics. In
nanocavities with high Q (Q = 103−105) the photon lifetime
in the near infrared ranges from a few picoseconds to tens of
picoseconds. While the constraint to have a response time of
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FIG. 4. (Color online) Dynamics of SP ruled by Eqs. (1), with δ =
−4 and τ = 0.75. (a) Temporal evolution of the intracavity energy
and carrier density corresponding to the rightmost blue circle in (b).
(b) Steady response with superimposed peak energy of the periodic
oscillations (blue open circles). The red filled circle marks the Hopf
bifurcation point. The black filled circle marks the SP-unstable steady
state which gives rise to the dynamics shown in (a) and (c). (c) Phase-
space picture of the optical field showing the attracting limit cycle
from two different initial conditions (open circles).

the nonlinearity of the same order of magnitude is naturally
met in semiconductors with nonlinear response dominated by
free-carrier dispersion, the same constraint in the framework
of the Kerr model rules out the possibility to observe SP
dynamics in media with nonlinearities of electronic origin
since they are too fast (femtosecond range). Nevertheless the
predictions of our Kerr model become interesting for Kerr-like
materials with response time in the picosecond (ps) range,
such as, e.g., soft matter, metal films [26], or more traditional
liquids with reorientational nonlinearity, which are still the
object of recent studies [27,28]. In particular, for instance,
highly nonlinear liquids such as nitrobenzene [29] or CS2

could be easily employed to fill a photonic crystal matrix (as
also recently proposed for microstructured fibers [28]), while
metal films could be employed in conjunction with dielectrics
to form a single cavity or cavity arrays [30]. Assuming, for
instance, a response time τphys ∼ 30 ps [29], which yields τ =
(τphys/2tc) ∼ 0.75 in a cavity with Q ∼ 25 000 (tc ∼ 20 ps at
λ = 1.55 μm), assuming n2I ∼ 10−17 m2/W and a nonlinear
modal volume V = 3(λ/n)3, the threshold power P = 10 in
Fig. 4 corresponds to a real-world power Pin = (γ /�2

0)P ∼
10 mW in the waveguide coupled to the nanocavity, where
γ = ω0n2I c/(neffnV ) is the overall nonlinear coefficient [24].
Here we have assumed a refractive index n ∼ neff ∼ 1.5 and
Q to be essentially determined by the coupling itself.

Having characterized so far the threshold for SP and its
competition with bistability, since Ikeda and Akimoto have
shown that the limit cycles destabilize, leading eventually to
chaos [2], in the next section we deepen this point with the
aim of determining the domain of the parameter plane where
the transition to chaos could be observed.

III. THE TURBULENT REGIME

In Ref. [2] Ikeda and Akimoto have studied the transition to
chaos, identifying a period-doubling cascade up to 2 2P (i.e.,
oscillation with period four) at a fixed value of detuning. Here
we report further details about the emergence of chaos in a wide
domain of parameters. We employ different tools, ranging from
the Poicaré section and its corresponding bifurcation diagram
to the calculation of Lyapunov exponents. Our principal
purpose is to assess whether a nanocavity described by the
model Eqs. (1) can work as a reliable bistable switch and
hence whether the onset of chaos should be expected when the
cavity operates progressively off-resonance, especially in the
region labeled BI + SP in Fig. 3. To begin with, it is instructive
to report about the dynamics ruled by Eqs. (1) when, starting
above the threshold P −

H , the input power P is adiabatically
decreased. In fact, this is the situation where the onset of chaos
is expected according to Ref. [2]. We start at moderately low
detuning (δ = −4) and for τ = 0.45, which corresponds to SP
being unbounded on the upper branch. As shown in Fig. 5(a),
in this case, the Hopf bifurcation is clearly supercritical,
since the system settles on a limit cycle, whose amplitude
vanishes approaching the bifurcation point [approximately as
(E − E−

H )1/2]. However, at larger (in modulus) detunings, we
observe a jump in |a|2 as the limit cycle [period one (1P )]
loses its stability and the system settles on a period-two (2P )
oscillation, as shown in Fig. 5(b) for δ = −10. The 2P solution
does not visit anymore the simplest 1P limit cycle. Conversely
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FIG. 5. (Color online) Dynamical evolution ruled by Eqs. (1) as
the forcing term

√
P varies adiabatically in time (dashed line). Here

τ = 0.45, and (a) δ = −4 and (b) δ = −10. The vertical lines mark
the time instants at which the input power crosses the main bifurcation
points: bistable knees P ±

b (dotted blue and black, respectively) and
Hopf threshold P −

H (dashed red). The insets show close-up views of
characteristic time intervals, indicated by arrows. Notice that in (b)
the two thresholds P ±

b and P −
H almost overlap.

it abruptly switches to the stable low-branch steady state.
Remarkably this happens still above the Hopf bifurcation
point E−

H . A more complex sequence of period-doubling
bifurcations and chaotic motion is detected at higher detunings
when the input power approaches the knee value P −

b . In
Fig. 6, where δ = −15, oscillations with several different
periods are evident. Moreover a chaotic regime appears, in
the range

√
P ≈ 17−20 (P ≈ 280−400). In phase space this

corresponds to the appearance of a strange attractor (not shown
because its structure is already illustrated in Ref. [2]).

Since following simply the adiabatic dynamics could be
possibly misleading (e.g., because of critical slowing down),
as it neglects the rich variety of phenomena that occurs over
the small scale, we have drawn also bifurcation diagrams
calculated by collecting trajectory points on a Poincaré section
for different powers. A typical example, using the same
parameters as in Fig. 6, and defining the Poincaré section on
the fixed phase 	 a − π = 0 of the intracavity field, is reported
in Fig. 7. We can clearly identify a period-doubling cascade (up
to 2 3P ), as well as chaotic regimes. The onset of chaos follows
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FIG. 6. (Color online) As in Fig. 5, with δ = −15. The chaotic
region is highlighted in yellow.
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FIG. 7. (Color online) Bifurcation diagram, τ = 0.45 and δ =
−15. The vertical dashed lines highlight a 3P window and the
collapse at small P . Inset shows a detail in which period doubling
and periodic windows can be identified more clearly.

a nontrivial scenario where narrow windows of period-three
(3P ) solutions are interspersed between two ranges of powers
where the motion turns out to be chaotic. The vertical dashed
lines in Fig. 7 mark indeed a 3P window. This is analogous to
the Feigenbaum’s route to chaos and confirms the observation
of chaos for P ≈ 220 − 380, already drawn above from Fig. 6.

The bifurcation diagram is computed up to P ≈ 150
because lower power levels do not result in any limit cycle.
Vice versa, the solution is observed to collapse toward the
stable node represented by the lower branch of the bistable
response. This phenomenon is independent from chaos, as
mentioned above with reference to detuning δ = −10. It
occurs at large negative detunings for input powers above the
SP threshold (P > P −

H ). This can be qualitatively explained by
the coexistence of a stable fixed point (lower branch solution), a
saddle (negative-slope branch), and an unstable limit cycle. As
the 2P limit cycle spans the phase space with wide oscillations
around the upper branch, it can approach the saddle point
(which near the first bistable knee is closer in phase space to the
center of the oscillations) being forced away, until eventually
it can be captured by the lowest energy (stable) solution.

While the bifurcation map is a useful visual tool to
characterize the onset to chaos and the full dynamics at
fixed parameters, in order to explore in which region of the
parameters one should expect to observe the chaotic dynamics,
we have resorted to computing the dominant (maximal)
Lyapunov exponent. We have explored a wide region of the
parameter plane (τ,δ), where, in each point of such a plane,
we have iterated over the values of power P to find the
largest exponent. We recall that a positive Lyapunov exponent
(within numerical inaccuracies) entails that the system exhibits
a chaotic behavior [here quasiperiodic motion is excluded by
the dissipative character of our model Eq. (1a)]. From the map
displayed in Fig. 8, we notice that chaotic motion manifests
itself only when the cavity is detuned far off-resonance (i.e., at
very large values of |δ|), provided that the SP-unstable range
is not finite, or in other words that the Hopf bifurcation is
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FIG. 8. (Color online) Color level map of the maximal Lyapunov
exponent in the parameter plane (τ,δ).

not bounded from above (E+
H → ∞) which requires τ < 1.

Therefore we can draw the important conclusion that the region
where the cavity could work as a bistable switch is mutually
exclusive with chaos. Therefore the onset of chaos cannot spoil
the behavior of the cavity as a switch, once the latter is used in
the region labeled BI + SP in Fig. 3. We point out that, in terms
of power, the observation of chaos is much more challenging
than stable SP since power levels leading to the former turn
out to be much larger than those leading to the latter; indeed,
at very large detuning, which corresponds to several times
the cavity linewidth, bistability is observed at a much higher
power level (compare the horizontal axis scale in Figs. 4
and 7).

As a final remark about the existence of 2nP periodic
solutions, we point out that they can be detected only when
P −

H < P −
b [as in the examples shown in Figs. 1(b) and 1(d)]. As

discussed with reference to Figs. 1–3, this may occur not only

for τ < 1 (as shown explicitly above) but also for τ > 1, where
the Hopf bifurcation is bounded from above. More specifically
2P solutions are easily seen in a small subset of the region
marked as SP in Fig. 3. In this case two unstable solutions,
namely a repulsive (negative slope) branch and a SP branch,
coexist. This seems to be a key ingredient for the limit cycles
to lose their stability.

IV. CONCLUSIONS

In this work we have revisited the model that rules the
behavior a passive small cavity with Kerr delayed response,
pioneered in Ref. [2]. We have reported a full characterization
of SP instabilities and their competition with bistability,
outlining the existence of different possible scenarios. Im-
portantly we have found a maximal critical value for the
relaxation time that allows SP to occur and have shown that
SP can have two bifurcation points, while it can occur also
in the absence of bistability. We have further characterized
the destabilization mechanism of the limit cycle in the full
parameter space, finding that chaos is mutually exclusive with
the domain where the cavity can be employed as a bistable
switching element. In particular the chaotic regime predicted
by Ikeda and Akimoto [2] in this system corresponds to
strongly off-resonance operation, in turn implying the use of
extremely high powers, thus making its observation rather
challenging. Vice versa, in contrast with Kerr instantaneous
nonlinearities, the observation of stable SP appears feasible in
high-Q nanocavities filled with Kerr-like media with response
time in the range of picoseconds. Future work will be devoted
to studying the effect of coupled cavity systems and the
interplay of different nonlinear mechanisms.
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