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Dispersion of the dielectric permittivity of dense and cold atomic gases
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On the basis of general theoretical results developed previously in [JETP 112, 246 (2011)], we analyze the
atomic polarization created by weak monochromatic light in an optically thick, dense, and cold atomic ensemble.
We show that the amplitude of the polarization averaged over a uniform random atomic distribution decreases
exponentially beyond the boundary regions. The phase of this polarization increases linearly with increasing
penetration into the medium. On these grounds, we determine numerically the wavelength of the light in the
dense atomic medium, its extinction coefficient, and the complex refractive index and dielectric constant of the
medium. The dispersion of the permittivity is investigated for different atomic densities. It is shown that, for
dense clouds, the real part of the permittivity is negative in some spectral domains.
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I. INTRODUCTION

Improvements in techniques for cooling atomic gases in
atomic traps make their use very promising for practical appli-
cations in various areas of fundamental science and technology
such as metrology, the development of frequency standards,
and quantum information problems [1-9]. The largest number
of applications envisioned for cold and ultracold atomic
ensembles have at their foundation the interaction between
the medium and electromagnetic radiation. This interaction
also underlies many methods for diagnostics of the states of
these ensembles. Recently, dense atomic clouds, in which the
average interatomic distances are comparable with the optical
wavelength, have attracted much attention. This interest is in
part generated by such fundamental and practically important
physical effects as Anderson (strong) localization of light
[10-13] and lasing in a disordered medium [14—18] which
can take place in dense ensembles. The aim of recent studies
in this field was to observe these effects experimentally and to
describe them theoretically.

One challenging problem in the area of disordered atomic
systems is that the studied atomic ensembles normally consist
of a large number of atoms in samples that are produced with
a low duty cycle. The larger number of atoms is required
in order to obtain sufficient signal to noise to study the subtle
effects of interest. Such experiments require realistic modeling
in order to extract the essential physics of the observed
processes. However, it is challenging to treat these problems
as a multi-atom scattering process, and such studies have been
limited to several thousand atoms [19-21]; this should be
compared with the characteristic 10%-atom-sized samples of
recent experiments. Alternative theoretical approaches, even
if approximate in nature, are then desirable.

The present paper is devoted to the theoretical description
of optical properties of dense and cold atomic clouds. The
problem of a dense atomic ensemble belongs obviously to
the field of macroscopic electrodynamics. The main approach
here is based on using such averaged characteristics as the
field strength and atomic polarization. The key point in
a macroscopic approach is in finding the susceptibility or
dielectric constant of the dense ensemble. The influence of
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density of the medium on its susceptibility can be analyzed
on the basis of the idea of a local field and, following from
it, the Lorentz-Lorenz formula [22]. This formula is sufficient
to solve completely the problem of the dependence on density
only if the difference between the polarizability of a free atom
and its polarizability in the medium can be neglected [23]. As
we will show below, for the considered cold atomic ensemble
this is not the case. The resonant dipole-dipole interatomic
interaction causes atomic level shifts and broadening and
thereby essentially modifies the atomic polarizability. An
explicit analytical expression for the susceptibility, which
takes into account this modification, was obtained earlier in
Ref. [19]. The calculation in Ref. [19] was based on the relevant
macroscopic statistical description of the polarization response
of the medium to an external field. Part of the approximations
made in Ref. [19] are valid only for relatively low density
ensembles and, thus, the corresponding results have a restricted
range of applicability. Constitutive relations connecting atomic
polarization and an external field can be obtained consistently
only in the framework of a microscopic approach based on the
notion of the discrete structure of matter consisting of separate
atoms.

A consistent microscopic approach has already been ap-
plied to analyze the influence of interatomic interactions on
the spontaneous decay of an impurity atom embedded in a
dielectric [24-27]. Quite a number of works were devoted to
collective decay in dense homogeneous multi-atomic media
and to properties of spontaneous emission of such media
initially excited by a weak external field (see, for example,
[28-39] and references therein). In these works the main
attention was focused on the influence of the density of the
ensemble on its afterglow (i.e., on secondary radiation). In
the present paper we consider the influence of interatomic
interaction on the properties of the ensemble itself. We study
the spatial distribution of atomic polarization created by weak
monochromatic light in a cold atomic ensemble. We show
that, in the case of a uniform random atomic distribution, the
amplitude of polarization averaged over space configurations
decreases exponentially beyond the boundary regions. Its
phase increases linearly with distance into the medium. On
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this ground we determine numerically the wavelength of the
light in the dense atomic clouds, its extinction coefficient as
well as complex index of refraction and dielectric constant of
the medium. We also analyze the dispersion of the permittivity
for different atomic densities. Note that similar problems arise
in classical electrodynamics when studying light scattering
from a medium with random dielectric inclusions [40]. Such
inclusions strongly influence light propagation in such media,
giving rise to manifold internal scattering and essentially
modifying its averaged dielectric constant.

An important feature of the present work is that it takes
into account the polarization properties of light. Nearly all
the above-mentioned papers on multi-atomic systems used
only a two-level model for the atoms. This prevents a
correct consideration of the light polarization and an adequate
description of the resonance dipole-dipole interaction at small
distances and, as a consequence, a correct calculation of shifts
and broadenings of atomic levels. We also do not use a
model of an averaged continuous medium in our calculations.
That is, the influence on the intrinsic spatial disorder of
the atoms in the ensemble is considered. As a specific
illustration of this, recent approaches to atomic-physics—
based localization studies have considered systems of reduced
dimensionality. One way to achieve this for light localization
is to optically create a quasi-one-dimensional system through
modification of spatially larger samples. Such optical channels,
with wavelength-scale transverse dimensions, can be created
through quantum optical techniques based on electromag-
netically induced transparency, for instance. Alternatively, a
strongly focused far-off-resonance laser can generate a type
of optical waveguide through the dense sample, allowing
quasi-one-dimensional localization for a much weaker, but
near-resonance, probe beam. Theoretical modeling the average
properties of such generated optical waveguides, essential to
interpretation of experiments, may be done using the effective
optical responses of the resulting medium, as we discuss in the
current paper.

The remainder of this paper is organized as follows: In
Sec. II we describe our basic physical assumptions and
the calculational approach. Section III presents results of
numerical simulations. We conclude with a brief synopsis of
the results, highlighting the main points of the present report.

II. BASIC ASSUMPTIONS AND APPROACHES

Consider the temporal dynamics of a system consisting of
N + 1 motionless atoms. Let N atoms form the cloud. These
atoms are identical and have a ground state J = O separated
by the frequency w, from an excited J = 1 state. The natural
linewidth of this state is . One atom is located far from the
cloud and has the same J = 0 < J = 1 structure of levels
but a different transition frequency w, and a different decay
constant y;. We will assume that initially all atoms of the cloud
are in the ground state and the separated atom, which we will
refer to as a source atom or simply the source, is in a coherent
state which is a superposition of the ground state and a small
admixture of the excited state. In the course of spontaneous
decay such an atom creates an electromagnetic field which is
a superposition of vacuum and a small admixture of a one-
photon state. As is known, this superposition approximates a
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weak coherent state of the field with good accuracy. Under the
influence of the field, the atoms of the cloud are excited and, in
due course, emit secondary radiation which can be absorbed
by other atoms of the cloud. The process of manyfold photon
exchange determines the dipole-dipole interatomic interaction
and manifests itself in such phenomena as spontaneous decay
modification, collective atomic-state formation, and so on.

The microscopic description of dynamics of the considered
ensemble is based on the nonstationary Schrédinger equation
for the wave function ¥ of the joint system consisting of atoms
and the field generated in the process of the evolution

oy
Y — Hy.
Sy 4

2.1
The Hamiltonian of the system H can be presented as the sum
of the Hamiltonians of the free atoms, the free field Hy, and
the operator V of their interaction. In the dipole approximation
used here, we have

V=— Zd(“)E(ra),

a

(2.2)

E(r) = EP () + EO(r)

[2mh
=1 Z ﬂvwk exkadky eXp(ik - r) + H.c.,
K,a

where E® are the operators of the positive and negative fre-
quency components of the field, ak, is the photon annihilation
operator in a mode with wave vector k and polarization «, V
is the quantization volume, d is the dipole moment operator
of the atom a, and ey, are polarization unit vectors.

We will seek the wave function ¥ as an expansion in a set
of eigenstates {|/)} of the operator Hy:

¥ =Y bl
1

(2.3)

(2.4)

Here, the subscript [ defines the state of all atoms and the field.

The key simplification of the approach employed is in
restriction of the total number of states |/) taken into account.
We will calculate all radiative correction up to the second order
of the fine structure constant. In this case we can consider only
the following states (see [41]):

Ve =18.8,---.8) ® [ka), (2.5)
Vg =18.8,---,8) ® |vac), (2.6)
Ve, = 18.8,....8.€,8,...,8) @ |vac), 2.7
Veore, =185 --..8.€,8,...,8.,8,...,8) ®|Ka). (2.8)

In the rotating wave approximation it is enough to take into
account only the states (2.5) and (2.7). States without excitation
both in atomic and field subsystem (2.6) allow us to describe
coherent states of the source atom. Nonresonant states with
two excited atoms and one photon (2.8) are necessary for a
correct description of the dipole-dipole interaction at short
interatomic distances. Note that, in the case considered, there
are three excited states for each atom e = |J,m), which differ
by the value of angular momentum projection m = —1,0, 1.
Therefore, the total number of one-fold excited states (2.7) is
3(N + D).
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Equation (2.1) should be supplemented by an initial
condition. According to our previous discussion, we will
consider the case when the field is initially in a vacuum state,
all atoms of the cloud are in the ground state, and the source
atom which we denote by index s is in a superposition of the
ground state and one of the excited states |J,m). Designating
the corresponding amplitudes as bj and by, we can write

¥(0) = bylg") + boleso),

where the index e, corresponds to the one of the three possible
states of atom s which is populated in the initial moment of
time.

In the framework of the assumptions made, the amplitude
of state /, = |g’) does not change during the evolution of the
system by () = by, because transitions to this state from other
states taken into account are impossible. The transition from
Eq. (2.6) to any of the states is also impossible.

To determine all other amplitudes we have to solve the
set of equations which follows from Eq. (2.1). In spite of
the performed restriction of the number of states, this set of
equations is infinite because of the infinite number of degrees
of freedom of the field. We can, however, exclude amplitudes
of states with one photon and obtain a finite closed system of
equations for b,(¢) = b, (t); a # s. For Fourier components
b.(w) we have (at greater length; see [20])

(2.9)

Z [(a) - wa)See’ - 2:ee’(a))] be’(w) = Aes(w)- (210)

e'#s

Matrix elements X, (w) for e and ¢ corresponding to
different atoms describe excitation exchange between these
atoms. Assuming that, in state ¥, and ., atoms b and a
are excited correspondingly, in the framework of the pole
approximation (see [42]), we have

dl,d.
a38a " gpsep
Yoo (W) = E

hr3

Jrn

2
r,r, RO w,r . Wgl
-5 |:3—3z . —< . ):|exp<l - >}
(2.11)

Here r,, is the projection of the vector r = r, — r;, on the axis
of the chosen coordinate system and » = |r| is the separation
between atoms a and b.

If e and ¢’ correspond to excited states of one atom then
Yee(w) differs from zero only for e = ¢’ (m = m’). In this
case, X, (w) determines the Lamb shift and the decay constant
of corresponding excited state. Including Lamb shifts in the
transition frequency w, we get

Yee(w) = —iVa/Z-

The term A.(w) in the right-hand side of Eq. (2.10)
describes excitation of the cloud atoms by the radiation of
the source. Assuming that the size of the atomic ensemble is
negligible compared with the distance from it to the source,

2.12)
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and neglecting the secondary excitation of the source atom s
by reradiation from the cloud, we have

ibo

A == 5. , 2.13
es(@) (@ — s +i7:/2) es(@) ( )
- k*dl. d ., k. k,
Ees(a)) = - Z ehé;_ Bty |:8;w - ZZ i|
JTRY s
x exp (ikry +ik - r,). (2.14)

Here, k = wn/c. Relation (2.14) is written in a coordinate
frame originating at some point inside the cloud; r, are radii
locating the atoms; n is a unit vector oriented fNrom the source
to the cloud. In obtaining the expression for X.(w) we took
into account the nonapplicability of the pole approximation
because of the large separation between the cloud and source,
we used the rotating wave approximation for the same reason
and kept only one term which decreases most slowly with r,.
All these factors generate the differences between T and the
elements of matrix X.

Knowledge of explicit expressions for A.s(w) and ¥, (w)
allows us to determine the amplitudes of all one-fold excited
states (2.7). Note that system (2.10) can be reduced to an
integral equation by using the continuous medium approxima-
tion. This significantly simplifies the solution of the problem
for a two-level atom system [35-39]. Moreover, in this case,
even an analytic solution is possible for spatially homogeneous
spherical clouds. This solution neglects, however, the impor-
tant properties of real physical systems, and therefore we will
solve the linear system (2.10) numerically. In a numerical
solution we can correctly describe all polarization effects and
take into account the random inhomogeneities of the medium.

Introducing the inverse matrix which, as shown in Ref. [19],
is a resolvent operator of the considered multi-atomic cloud

Reo(®) = [(0 — ©4)800 — Zew(@)] 7", (2.15)

we can write the solution of the system (2.10) as follows:
be(w) = Z Ree’(w)Ae’s(w)~

e'#s

For amplitude b.(t), we get

by exp(—iwt) Z Ree’(a))ie’s(w)

o d e'#s
be(t)=/ e z ,
oo 2T w—ws+iys/2

(2.16)

(2.17)

This relation give us the possibility to find the distribution
of excited states at any instant of time. In this work we
are interested in the spatial distribution under quasistatic
conditions. Such conditions can be realized if decay times
of all collective states of the dense atomic ensemble are much
less than the decay time of the source atom s.

Let us consider the relation (2.17) for a time interval
much less that y,~! but larger than the mentioned collective
relaxation times. Formally, relations for the quasi-steady-state
regime can be obtained by two limiting processes: First,
we should pass to the limit y; — O and then to r — oo.
Realizing these limiting processes and taking into account
that limo(w —ws +iy/2) 7 = c(w — wy), where ¢(x) is

Vs—>
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a singular function, and that tliT s(w — wy)exp(—iwt) =
— 100

—2mid(w — w;) exp(—iw,t), we get

be(t) = by exp(—iwst) Y Reo (@) Sers(@y).
e'#s

By using b.(¢) we can obtain the amplitudes of all states

taken into account in our calculations (see [20]) and, conse-

quently, the wave function of the considered system. Among

other things, this allows the calculation of the polarization

as the averaged dipole moment of unit volume of the atomic

ensemble. For a given projection u of the polarization vector
we have

2.18)

1 R
Pulr,t) = - > dw). (2.19)

acAV

Here c?l(f) is the operator of the corresponding projection of
the dipole moment of atom a. The summation in Eq. (2.19) is
made over all atoms located in a mesoscopic volume AV near
the point r. Quantum-mechanical averaging is performed over
the wave function of the system.

In analyzing the polarization it is convenient to select
positive- and negative-frequency parts and use a basis of
circular polarization (u = 0, & 1):

Pou(r,r) =P, 0) + P(r.0).

Using the known wave function and taking into account
the short lifetime of the nonresonant virtual states with two
excited atoms and, consequently, its small contribution to the
polarization, we find

(2.20)

PPx.r) = PLP(r) exp(—iwst),

bib 5
PHr) = X_VO YD Repe, (@090, (@y).

acAV ¢

2.21)

The additional index m at e, means that under summation
we have to include only those states e of atom a which
contribute to the corresponding projection of the polarization
vector. In the basis of circular polarization such contributions
come only from one Zeeman sublevel with m = . Due
to the optical isotropy of the atomic ensemble, the orientation
of the atomic polarization vector coincides with the orientation
of the polarization of the light exciting the atoms. The latter, in
turn, depends on the specific Zeeman sublevel m; of the source
atom which was excited initially. In the case when the quan-
tization axis coincides with the vector n the configurationally
averaged atomic polarization has only one nonzero projection
w = my. Thus, to determine the polarization, we only have to
take into consideration the Zeeman state with m = m.

In the next section, we will use relation (2.21) to calculate
the spatial distribution of atomic polarization and analyze, on
this foundation, coherent-light propagation through ensembles
of different densities.

III. RESULTS AND DISCUSSION

A. Atomic polarization

Expression (2.21) allows us to consider atomic clouds with
different shapes and with different atomic spatial distributions.
We, however, will further consider mainly model cylindrical
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clouds with random but (on average) uniform atom distribu-
tions along the vector n. For definiteness let us assume that
the state my = 1 of the source atom is excited initially. In such
a case the source creates a nearly-plane right-hand circularly
polarized wave in the area of the cloud and the vector of the
atomic polarization has only one nonzero component, which
we will refer to without index.

Figure 1 shows the spatial dependence of the absolute
value [Fig. 1(a)] and phase [Fig. 1(b)] of the complex
quantity P (r) for different detunings A = w; — w, of the
source probe radiation from exact bare atomic resonance. The
calculations were made for a cloud with length L = 10 and
radius R = 20. Hereafter in this paper we use the inverse wave
number of the resonant probe radiation in vacuum k, '=¢/w,
as a unit of length. In these units, the mean density of atoms
is n = 0.2. To avoid the influence of boundary effects at the
lateral surface of the cylinder as well as diffraction effects
caused by the sharp boundary we calculate atomic polarization
P (r) only for an area near the axis of the cylinder where we
can neglect the dependence of the polarization on r. In this area
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FIG. 1. (Color online) Spatial distribution of atomic polarization.
(a) Amplitude of polarization abs(P")(z)) semilogarithmic scale.
(b) Phase of polarization arg(P*)(z)). Calculations were made for
a cylindrical cloud with length L = 10, radius R = 20, and atomic
density n = 0.2.
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we deal with a quasi-one-dimensional case. The polarization
depends only on z. Our analysis shows that, for the parameters
considered, this takes place for the inner portion of the cylinder
with7 < 15. Results shown in Fig. 1 are obtained by averaging
the atomic polarization over the region with radius » = 10.

The curves in Fig. 1 were obtained by averaging over the
random locations of atoms inside the cloud. The total number
of statistical tests was about 6 x 10* Despite such a large
number, the curves which were not smoothed additionally
keep indications of fluctuations. These fluctuations manifest
themselves most clearly far from the front edge of the
cloud. Here the averaged polarization is extremely small in
comparison with the polarization corresponding to any random
specific spatial configuration of the ensemble.

In spite of the fluctuations, the results shown in Fig. 1 allow
us to reach several important conclusions about the spatial
dependence of the polarization. First, beyond the boundaries
and near the ends of the cylinder (z = 0 and z = 10), the phase
of the polarization wave increases linearly. Second, beyond
these areas we have a single-exponential decay of the atomic
polarization. And last, in the boundary regions with a size of
about 1.5 + 2, we see peculiarities connected with the fact
that atoms located here interact mainly with atoms situated to
one side of them, inside the cloud. This causes some modi-
fication of the dipole-dipole interatomic interaction. Besides
that, the electromagnetic wave reflects from the base edges
of the cylindrical clouds. This leads to formation of a standing
wave of polarization. This effect is most evident at the far
edge of the cloud (z = 10) for the wave strongly detuned from
resonance (curves corresponding to A = —y and A = 2.5y).
For these waves absorption is small and the amplitude of
the reflected wave slightly decreases inside the medium. At the
very edge of the cloud, we have either a node or an antinode
of the standing wave depending on the optical density of the
medium. In our case there is a vacuum beyond the cloud.
Its refractive index is equal to unity so, for large positive
detunings, we have a node [curve A = 2.5y in Fig. 1(a)] at the
edge and, for negative ones, we have an antinode (A = —y).

Data shown in Fig. 1 were obtain for several different detun-
ings and one given density of the cloud. Note, however, that all
peculiarities discussed above were observed in our calculation
for the full range of parameters considered; that is, for all
different detunings and for all considered densities of atoms.

Knowledge of the polarization of the atomic ensemble
allows us to make some conclusions about light propagation
in it. Three averaged quantities: the polarization, the field
strength, and the electric displacement, are proportional to
each other. The coefficients of proportionality for regions
away from the boundaries cannot depend on the spatial
coordinates because here we deal with a quasiuniform
medium. The linear increase of the phase of the polarization
and the single-exponential decay of its amplitude means that,
in the corresponding area, the spatial dependence of the
polarization and of the averaged field strength £ are as follows:

P(z) = Poexpli(k’ +ik")z], a1
E@2) = Eyexpli(k’ + ik")z]. '

Here, we have taken into account that only one component
of each vector is nonzero and that these components depend
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only on z. The real ¥’ and imaginary k" parts of the wave
number can be determined from the decay coefficient and
wavelength of the polarization (i.e., from the angles of
inclination in the region of the linear dependence of the curves
shown in Fig. 1). The results of corresponding calculations are
depicted in Fig. 2.

Figure 2 shows how interatomic interactions modify the
spectral dependencies of absorption and reflection in dense
media. In dilute media, both absorbtion and refraction indices
increase linearly with density according to the relation k =
ko + no(w)/2, where n is the density and k& and o(w) are
the complex wave number and the complex cross section of
light scattering from free atoms, respectively. In the case when
atomic motion and atomic collisions can be neglected, the
latter gives a Lorentz profile for the absorption coefficient
and a corresponding dispersion curve for the refractive index.
The influence of collective effects causes essential distortion
of the spectra. The absorption spectrum is nonsymmetric;
there are noticeable shifts of the maximum of absorbtion
which, in the considered range of densities, are in the blue

1.0
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0.8 1
o 061
=
“ 04
02
0.0 . -
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(=)
=4
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FIG. 2. (Color online) Spectrum of imaginary (a) and real (b)
parts of the wave number of a plane electromagnetic wave in atomic
ensembles of different density. ko = w,/c is the wave number of the
resonant source radiation in vacuum.
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wing. The amplitude of the absorbtion increases slowly with
density and there is an evident tendency toward saturation. A
density increase from n = 0.2 to n = 0.5 leads only to a 25%
increase in maximum absorption, which is much less than
for a density increase from n = 0.1 to n = (0.2. Saturation
effects in our interpretation connects with level shifts caused
by strong dipole-dipole interaction for dense media. These
shifts cause also essential nonhomogeneous broadening of the
spectral profiles, which is clearly seen in Fig. 2.

Calculation of the real and imaginary parts of the wave num-
ber permits us to assess qualitatively the Ioffe-Regel criterium
for strong light localization in atomic media. According this
criterium, localization can be observed if the transport length
of a photon is less than its wavelength in the medium. The
wavelength of the photon is determined by the inverse real
part of the wave number A/(27) = 1/k’. The transport length
of a photon can be estimated by the absorption coefficient
because, in the considered media, there is no real absorption
and attenuation of the coherent component of light connects
only with the exit of photons from the corresponding mode
(i.e., with scattering). Taking into account that the amplitude
of the field decreases two times slower than the light intensity,
the ratio of transport length to wavelength can be estimated as
k’/(2k"). Figure 3 shows the spectral dependence of this ratio
for clouds with different densities.

It is seen that, even for a density n = 0.1, there is a
region of frequencies where the considered ratio is less than
unity. As density increases, the width of the corresponding
spectral region also increases. The minimal value of the ratio
is k' /(2k"); however, it decreases very slowly and shifts into
the blue wing. It is also noticeably greater than that predicted
for the case of independent scatterers (cf. Figs. 3 and 4 in
Ref. [23]). Here we see directly the influence of the resonant
dipole-dipole interaction. Increasing the density results in a
decreae in the portion of atoms which interact effectively with
the light at a given frequency.
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FIG. 3. (Color online) Spectral dependence of the loffe-Regel
parameter for atomic ensembles with different densities.
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B. Dielectric constant and atomic susceptibility of dense cold
atomic gases

With knowledge of the complex refractive index we can
also calculate the dielectric constant. The latter can be found
by the following relations:

¢ =Re(e) = (k? —k"?)/k}, & =Tm(e) = 2k'k"/ k3.
(3.2)

In the spectrum of the real and imaginary parts of the
dielectric constant (Fig. 4) we see all regularities which were
previously observed in the spectrum of the complex refractive
index. But there is one important additional difference. For
dense cold atomic media, the real part of ¢ can be negative at
some frequencies. The dipole dynamics is in phase opposition
with the driving field. At the considered densities however,
and in the corresponding spectral area the imaginary part &”
is not negligible and the electromagnetic field keeps its wave
nature.

The complex refractive index as well as the dielectric con-
stant are used for macroscopic description of the light in media.
One of the main characteristics in the microscopic approach is
a single atom polarizability « which is the proportionality

2.5

(a) n=0.1
n=0.2

2.0 1

1.5 -
w
1.0 1
054"
w

4 -2 0 2 4
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FIG. 4. (Color online) Imaginary (a) and real (b) parts of the
dielectric constant for atomic ensembles with different densities.

053811-6



DISPERSION OF THE DIELECTRIC PERMITTIVITY OF ...

factor between averaged dipole moment of an atom and
averaged strength of electric field acting on it. The difference
between the free-atom polarizability and the polarizability in
the medium permits us to analyze the mutual influence of
atoms in the medium. The key point in the calculation of the
polarizability is the idea of an effective field acting on the
atoms and its distinction from the mean field. In this work we
will use the well-known Lorentz-Lorenz formula connecting
the mean atomic polarizability and the dielectric constant [22]:

3 -1
o= — .
dnne +2

Substituting the known dielectric constant in this equation
gives us the real and imaginary parts of the polarizability. The
results of corresponding calculation are shown in Fig. 5. The
main result here is the essential decrease of the polarizability
as the density increases. At higher densities, the collective
atomic states are distributed over a wider region of frequency,
and polarizability at a given frequency per one atom is smaller.

To conclude this section, let consider the quality of the
derived dielectric constant and its application in a macroscopic
approach. We compare two different results for the total cross
section of light scattering from a homogeneous sphere. The
first result is obtained in Ref. [20] by means of a microscopic

(3.3)

1.2

(a) ——— n=0.1
n=0.2

1.0 1
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0.6 1
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FIG. 5. (Color online) Imaginary (a) and real (b) parts of the
atomic polarizability in ensembles with different densities.
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FIG. 6. (Color online) Spectrum of the total cross section of
light scattering from a spherical cloud with radius R = 15. The
atomic density is n = 0.2. The first curve is the results of consistent
microscopic [20] calculations. The second curve is calculated on the
basis of the Debye-Mie model with the permittivity obtained in this

paper.

calculation. The second one is the cross section calculated in
the framework of the well-known Debye-Mie model with the
permittivity from this paper. The result of comparison is shown
in Fig. 6.

The quantitative difference between these two results does
not exceed a few percent. It is very good agreement, especially
taking into account the approximate numerical determination
of the permittivity. We have also noticed that the Debye-Mie
model is exactly valid for a homogeneous sphere whereas
our atomic cloud has boundary regions with different local
permittivity and hence is not completely uniform.

IV. CONCLUSION

In the present paper we consider the influence of the
resonant dipole-dipole interatomic interaction in dense atomic
clouds on their optical properties. Dispersion of the permit-
tivity and atomic polarizability are determined under different
conditions. Atomic clouds with densities up to n = 0.5 are
considered. It is observed that, for a dense cloud, the real part
of the dielectric constant can be negative.

The expression for the dielectric constant found here was
used to calculate the resulting spectrum that we compare with
the result of a previous self-consistent approach [20]. This
comparison was restricted to the case of ensembles containing
several thousand atoms, but good agreement allows us to use
the obtained permittivity for macroscopic calculations in cases
when the microscopic approach cannot be utilized because of
technical difficulties, as indicated in the introduction to this
paper.

In this work we also determine the spectral regions, for
each atomic density considered, for which the mean-free path
is smaller than the wavelength; that is, we specify conditions
when the Ioffe-Regel criterium for strong localization of
light in cold dense atomic gases is satisfied. However,
more definitive conclusions about the possibilities of strong
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localization need additional study of its direct manifestation in,
for instance, the distribution of fluctuations of the transmitted
light intensity or in the afterglow delay.

Finally, all calculations in this work were made under
the assumption of motionless atoms but for nondegenerate
gases. In our opinion, the developed approach is applicable
to the case of quasiresonant compressible dipole [23] or
quasistatic electric dipole traps [21]. The typical temperature
of 30-100 mK achieved for the dense Rb cloud in such traps
(see, for example, [21]) is large enough to ignore all effects
of degeneracy which can strongly affect light scattering from
quantum gases [43]. On the other hand, the atomic velocity
is sufficiently small here to neglect the Doppler shift (it is
several times smaller than the natural width of the excited
atomic levels) and to allow us to consider the dipole-dipole
interaction as resonant. Averaging over all possible random
position of the motionless atoms in our model allows us to
take into account the residual motion of real atoms in the
traps.

PHYSICAL REVIEW A 84, 053811 (2011)

It seems important to further generalize the developed
approach to the cases when atomic motion plays a more
significant role; for example, to the case of hot gases. Such
a generalization is important for a wider range of problems of
precision spectroscopy, particularly spectroscopy of selective
reflection from the boundary of a dielectric-dense atomic gas
[44-50]. In this case, however, the dipole-dipole interaction
loses its resonant behavior and collisional broadening should
be taken into account, along with the essential Doppler
effect.
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