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Prospects of coherent control in turbid media: Bounds on focusing broadband laser pulses
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We study the prospects of controlling transmission of broadband and bichromatic laser pulses through turbid
samples. The ability to focus transmitted broadband light is limited via both the scattering properties of the
medium and the technical characteristics of the experimental setup. There are two time scales given by pulse
stretching in the near- and far-field regions which define the maximum bandwidth of a pulse amenable to focusing.
In the geometric-optics regime of wave propagation in the medium, a single setup can be optimal for focusing
light at frequencies ω and nω simultaneously, providing the basis for the 1 + n coherent quantum control. Beyond
the regime of geometric optics, we discuss a simple solution for the shaping, which provides the figure of merit
for one’s ability to simultaneously focus several transmission modes.
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I. INTRODUCTION

This work is motivated by the goal of applying quantum
coherent control techniques in turbid samples. One of the
basic ideas of quantum control involves focusing laser fields
of the frequencies ω and nω onto an object with a nonlinear
response. Interference of the excitation pathways due to each
frequency component creates an asymmetric excitation [1].
This effect has been demonstrated in a number of theoret-
ical and experimental works devoted to generating directed
currents, controlling the absorption and propagation of light,
and the breakup processes in various physical and chemical
systems [1–5]. Extensions of this principle, based on applying
ultrafast laser pulses with a broad controlled spectrum, have
led to numerous applications in control of quantum evolution,
quantum information processing, spectral characterization,
detection, microscopy, and manipulations with microscopic
and nanoscopic objects [1–4,6–8]. We are interested in both
the “1 + n” scenario and control with shaped ultrafast pulses.
This task requires an ability to focus either bichromatic or
broadband laser pulses with shaped spectra in space in time.

As a laser pulse is applied to a turbid sample, such as
ground glass, biological tissue, paint, suspension, plastic, etc.,
its temporal and spatial structure breaks down [9–13]. In
space, a coherent beam breaks into a multitude of speckles,
so that spatial focusing is destroyed. In the spectral domain,
the spectrum at each point in space can be strongly modified,
so that the pulse shape is destroyed. The two effects are related,
and each of them is deleterious for coherent control.

This paper analyzes control of transmission of light with
multiple frequency components in turbid samples, with the
goal of designing quantum control experiments. For narrow-
band light, the corresponding technique [14] has recently led
to a breakthrough in focusing and manipulating laser beams
in opaque samples [15–18]. The method is based on using
a two-dimensional phase mask for the spatial correction of
the wave front. We analyze the capabilities of this approach
for spatiotemporal shaping of ultrafast laser pulses. While the
first tests have demonstrated the great potential of the method
for temporal focusing [19–21], efficiency of control over the
broad bandwidth of ultrafast pulses needs to be thoroughly

understood. Indeed, an experimental setup optimized for
controlling transmission at one given frequency may not be
suitable for another [22]. A setup built to focus light at
many frequencies simultaneously may be far from optimal
for each individual spectral component. This work questions
the fundamental limits of controlling broadband transmission
through an opaque sample [15–18,20–22].

We find that the ability to focus transmitted broadband light
is limited via both the scattering properties of the medium and
the characteristics of the spatial light modulator (SLM) used
to modify the incident wave front. There are two time scales,
given by pulse stretching in the near- and far-field regions
(defined further in the text), which set the upper limit of the
bandwidth of a pulse that can be focused. Their consideration
suggests an optimization of the experimental setup. In the
geometric-optics regime of wave propagation inside the
sample, a single setup can be optimal for simultaneously
focusing light at frequencies ω and nω, providing the basis for
the 1 + n coherent quantum control, as demonstrated by our
numerical simulations. Beyond geometric optics (i.e., when
multiple interference cannot be neglected), there is a simple
figure of merit for one’s ability to focus simultaneously several
transmission modes in space. We also discuss a potential ability
of using an opaque sample for shaping broadband spectra,
effectively replacing the dispersion element in the conventional
pulse shaper [20,21].

The rest of the paper is organized as follows: In the next
section we describe the implied experimental setup, formulate
our task in details, and describe the numerical simulations used
throughout the text for illustration purposes. In Sec. III we
neglect dispersion and backscattering and solve the problem
in the geometric-optics regime, where the typical scatterer size
is bigger than the laser wavelength. Thus we find the bounds on
focusing imposed by the finite modulation depth of the SLM.
In Sec. IV, we extend the description, including the effects of
dispersion, finite spatial resolution of the phase masks’ pixels,
and of focusing of a laser pulse in time and at an angle. We also
discuss focusing of broadband pulses in time versus focusing
in space. The general case, which goes beyond the geometric-
optics regime, is considered in Sec. V, where we discuss the
scaling of the problem and a simple strategy for using SLM
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to control simultaneously several independent transmission
modes. In the last section we summarize the findings of this
paper.

II. SETUP

Figure 1(a) shows the general setup according to
Refs. [15–18,20,21]. The wavefront of a laser beam is modified
by a two-dimensional SLM, whose pixels add a phase to the
incident wavefront. The beam is then sent onto the scattering
sample. Such a configuration allows the optimization of
spatiotemporal focusing in either the near or far field.

Below, the “near-field region” Enear(x,y,ω) corresponds to
the output surface of this sample. The other, “far-field region,”
with the field distribution Ẽ, is at infinity along the z axis. For
a spatial harmonic transmitted at an angle θ ,

Ẽ(k,θ ) =
∫

Enear(x,y) exp[ikx sin θ ]dxdy. (1)

In this paper we concentrate on scattering that is sufficiently
treated in the eikonal regime. We limit our consideration to
focusing in the far field, since it allows for easier modeling.
This would be equivalent to optimizing transmission into a
particular spatial harmonic of Enear, which can be then focused
with a lens. As we explain below, the temporal structure of the
pulse remains largely undisturbed in the considered regime
and we primarily discuss focusing in space.

Numerically, we solve the scalar wave equation for the
electric field amplitude in the parabolic approximation [9].
The random medium is modelled by a set of planes. Each
plane modifies the wave front as if the light was passing
through a thin glass slide (refractive index n = 1.51) with
randomly placed “impurities” characterized by a variation �n

in the refractive index. An example is shown in Fig. 2(a).
Here the glass slide is taken to be 10 μm thick, and round
Gaussian-shaped impurities of the 1/e radius σ = 30 μm
are characterized by �n � 0.2. In the calculations, we place
several such planes one after another, separating them by
regions of empty space.

Such modeling is inspired by experiments with diffusors
based on random arrays of microlenses, ground glass, and
all other opaque materials with relatively large impurities
(at least several microns in size) [23–25]. A single slide in
our modeling creates a far-field speckle pattern but does not
strongly modify the pulse spectrum. An array of slides, placed
one after another, modifies both the spatial and temporal
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FIG. 1. (Color online) Implied experimental setup. In panel (b),
the SLM and imaging lens are replaced by the image of the SLM
on the input surface of the sample. In addition, the direction of light
propagation is reversed.

structure of a broadband pulse. Although our modeling misses
the effects of depolarization and backscattering, it allows one
to understand some of the most important aspects of random
propagation in the regime of low to moderate scattering angles
(small backscattering). At the same time, the calculations
are fast, allowing us to look at many frequency modes.
Numerical propagation at each frequency consists of applying
a coordinate-dependent phase to the wavefront at the location
of each glass slide, followed by free propagation between the
slides. The latter is made by making a Fourier transform into
the wave vector space and applying a k-dependent phase to
each spatial mode. For a femtosecond laser pulse sent into the
sample, the temporal shape is obtained as a Fourier transform
of the transmitted spectrum.

Figure 2(b) shows the near-field intensity of a 200-μm-wide
beam which has passed through a set of five planes with
σ = 30 μm impurities. Adjacent planes are separated by
30 μm of empty space. In the regime of geometric optics
(σ � λ), the speckle pattern is mainly due to multiple random
lensing. Figure 2(c) shows the same beam, stressing the
phase at the exit from the last plane. The phase pattern is
shown for the wavelength λ = 800 nm. The speckle pattern
at each frequency is almost the same, except for a frequency-
dependent phase which corresponds to a different time delay
of the pulse arriving at different x,y points. The zeroth spatial
harmonic is Ẽ0 = ∫

Enear(x,y)dxdy. A 25 fs pulse sent to the
system stretches in the far field to about 100 fs, as shown
in Fig. 2(d). Figure 2(e) shows the far-field speckle pattern
for a λ = 800 nm beam in the absence of the wave-front
compensation.

Here we propose to image the SLM onto the input surface of
a sample. Hereafter, we refer to the image of the SLM as ISLM.
In this geometry, maximizing the transmission from the zeroth
to the zeroth spatial mode (τ00) is achieved simultaneously for
forward- and backward-propagating beams. Thus, each pixel
of the phase mask must add to the backward-propagating beam
an x,y-dependent phase such as to make the wavefront phase
as flat as possible [Fig. 1(b)].

Within the arrangement of Fig. 1(b), we shall use the term
“near field” for the field in the ISLM plane—even if this plane
is placed at some distance from the actual border of the turbid
sample.

III. ROLE OF SLM PARAMETERS

An ISLM can be thought of as a thin transparent plate
with variable refractive index nSLM(x,y). A wavefront passing
through it acquires the phase

φSLM(x,y) = kα0 − kα(x,y), (2)

where the optical pathways α0 − α(x,y) are defined by
nSLM(x,y) = n0 + �nSLM(x,y). Figure 3 shows focusing of
the λ0 = 800 nm wave shown in Fig. 2, with an ISLM of
infinite spatial resolution and a phase modulation depth of 2π

[0 � α(x,y) � λ0]. Panel (a) shows the mask α(x,y) ranging
from 0 (black) to λ0 (white). Panel (b) shows the corrected
wavefront. The flat phase of the near-field wavefront ensures
that the wave is almost perfectly focused in the far field, as seen
in panel (c). Variations in the near-field intensity somewhat
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FIG. 2. (Color online) (a) Distribution of impurities in one of the four planes modelled in the calculation. The area shown is 770 × 770
μm2. Panels (b) and (c) show the near-field intensity and phase distributions for a λ0 = 800 nm beam after passing through four diffusing
planes separated by regions of empty space. In panel (c), intensity is shown by brightness, and phase, between 0 and 2π , is shown by color.
(d) A 25 fs input pulse exits the system in the far field stretched to 100 fs. (e) Far-field speckle pattern for 800 nm light.

decrease the focusing efficiency, adding a broad low-intensity
pedestal, which is invisible on the scale of Fig. 3(c).

We begin by neglecting dispersion and backscattering
and considering propagation in the eikonal regime. The
latter corresponds to impurities in the sample being large,
|∇n| � k, where k is the wave vector [10]. Experiments using
commercially available diffusors, ground glass, random arrays
of waveguides, etc., may fall under this case. In the eikonal
regime, the wave is composed of trajectories—“rays.” Each ray
propagates in accordance with the laws of geometric optics and
carries the phase kS, where S is the optical path. The surface
of equal phase at each point is orthogonal to the ray passing
through this point; intensity variations are due to the varying
density of the rays.

Assume that the SLM’s image has sufficient spatial res-
olution and that the SLM is optimized to focus light with
the wave vector k0 = 2π/λ0. What happens with a wave
characterized by k = k0 + �k? If the maximum ISLM’s depth
α was infinite, then the phase flattening would work perfectly

at each frequency. Indeed, by imaging the SLM mask on the
surface of the sample we can effectively build a flat slab out
of the sample and ISLM: for each k,

k[α0 + S0 + �S(x,y) − α(x,y)] = const., (3)

where S(x,y) = S0 + �S(x,y) is the optical path of a ray
passing through the point (x,y) in the ISLM’s plane.

However, in reality the modulation depth α can cover only
a few wavelengths. Assuming αmax = λ0, we have for the
compensated wave front at k0:

k0[α0 + S0 + �S(x,y) − α(x,y)] = 2πjxy + k0(α0 + S0),

(4)

where jxy is an integer which can vary from one point (x,y) to
another. This is the situation shown in Fig. 3. The term k0S0

FIG. 3. (Color online) (a) Phase mask applied by ISLM to correct the wave front shown in Fig. 2(c). (b) Near-field intensity and phase
distribution at 800 nm after the phase correction. (c) Corrected far-field intensity distribution.
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is a constant phase which does not influence focusing. For a
different wave vector, we have

(k0 + �k)[α0 + S0 + �S(x,y) − α(x,y)]

= (k0 + �k)(α0 + S0) + 2πjxy + �k[�S(x,y) − α(x,y)].

(5)

The phase compensation (5) will work for any k if the
maximum modulation depth αmax > �S for most pathways.
If, on the other hand, �S � αmax, the compensation will not
work as soon as �k(�S − α) � �k�S exceeds π for many
points (x,y). Thus,

�kmax = π

〈�S〉 . (6)

According to the Huygens-Fresnel principle,

〈�S〉 = cτfar, (7)

where τfar shows how much a short pulse sent to the system
is stretched in the zeroth spatial mode or, equivalently, in the
far-field focus. Another way to see this fact is as follows:
Consider two points A and B at the exit from the sample
such that SA = SB + 〈�S〉. When cw light of frequency ω is
sent into the system, the phase of the field at the points A

and B differs by φAB(ω) = 〈�S〉ω/c. At a different frequency
ω + δω,

φAB(ω + δω) = φAB(ω) + δω〈�S〉/c. (8)

According to Eq. (1), the complex values of the field from all
near-field points are summed to produce a far-field speckle.
One can see from Eq. (8) that the detuning δω = πc/〈�S〉
corresponds to the speckle pattern being significantly different
from that at the frequency ω. At this value of the detuning,
constructive interference between the fields coming into the
far-field region from the points A and B turns into a destructive
one, and vice versa. Therefore, the frequency correlation length
of the far-field speckle pattern is approximately 2�ωfar =
2πc/〈�S〉. This means that the transmitted spectrum in the
far field consists of independent bands of the width 2�ωfar.

Equivalently, a very short laser pulse sent into the system
stretches in the far field to τfar = π/�ωfar.

Comparing Eqs. (6) and (7), we see that compensation can
only work for detunings �ω = ω − ω0 such that

|�ω| <
π

τfar
≡ �ωfar. (9)

Figure 4 assumes the compensation mask shown in Fig. 3(a)
applied to the sample discussed in Figs. 2 and 3. Figure 4(a)
shows the intensity Icenter in the far-field focus as a function
of field wave vector, calculated for a single realization of the
random sample. As k is detuned from k0 = 12 500 cm−1, the
focusing vanishes. The width 2�k � 500 cm−1 corresponds,
up to a numerical factor of �1.5, to τfar = 100 fs; that is, the
pulse stretching seen in Fig. 2(d).

Unexpectedly, Icenter in Fig. 4 increases again in the vicinity
of k = 2k0. The effect is explained in the following way. If the
condition (4) is fulfilled, then

2k0[α0 + S0 + �S(x,y) − α(x,y)]

= 4πjxy + 2k0(S0 + S0,SLM), (10)

and the phase compensation at twice the main wave number
is again complete, as shown in Fig. 4(c). We see that,
in the simplified model (i.e., negligible dispersion), ISLM
can spatially resolve the phase front—an ability to focus
bichromatic fields and to perform “1 + n” quantum control
comes at no expense. An experimental setup optimized to
focus a laser field at frequency ω will also focus field at
frequency nω.

Note that the peak amplitude at 2k0 in Fig. 4 is slightly
smaller than that at k0. Indeed, the assumption that the phase
mask is able to resolve individual pathways becomes invalid
at the near-field caustics, where several rays intersect at the
same point. This situation is mathematically similar to that of
an SLM with limited spatial resolution, which is discussed in
the next section.

Moreover, similar to the case of k = 2k0, at k = 1.5k0 the
phase of the compensated wave can only have two values, 0
and π , as seen in Fig. 4(b). Each part of the near-field wave
front—that with the zero phase and phase equal to π—yields a

I c
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FIG. 4. (Color online) (a) Laser
intensity in the zeroth far-field
mode as a function of frequency
with the ISLM mask tuned for ω0.
Panels (b) and (c) show the near-field wave
fronts at ω = 1.5ω0 and ω = 2ω0.

053807-4



PROSPECTS OF COHERENT CONTROL IN TURBID . . . PHYSICAL REVIEW A 84, 053807 (2011)

strong focus in the far field. The two foci interfere destructively.
However, because of the random amplitudes, the destructive
interference is not complete, and focusing at k = 1.5k0 is still
better than that at the adjacent values of k. Reminiscent of
fractional quantum wave packet revivals [26], such incomplete
focusing happens at any k = (P/Q)k0 with integer P,Q.

IV. ADDITIONAL BOUNDS

The above consideration remains valid if the goal is to
optimize transmission into a spatial harmonic propagating at
an angle θ (or, equivalently, off-axis far-field focusing). In this
case, Eq. (4) turns into

k0[α0 + S0 + �S(x,y) − α(x,y)]

= 2πjxy + k0(α0 + S0) + k0x sin θ, (11)

where x is the coordinate in the ISLM plane. In a complete
analogy with Eq. (10), light with the wave vector 2k0

will also be focused. In our numerical simulations, the
spectral bandwidth �k of the spatially focused light did not
depend on θ .

The ability of the scheme to focus several frequencies
simultaneously depends on the sample’s dispersion. Indeed,
the above consideration is based on the assumption that light
at each frequency propagates along the same set of rays.
In another series of calculations we included the effect of
dispersion, assuming that the samples are made of BK-7
glass [27]. We found that the focusing survives in the presence
of dispersion: In our calculations, the focused intensity at the
frequency 2ω0 decreases only by a factor of approximately 2
to 3. This number is small compared to the ∼105-fold increase
in the intensity at the focus observed in the case of complete
phase compensation.

Finite size of the ISLM’s pixels in the (x,y) plane does
bring an important additional bound on one’s ability to focus
broadband light. If the ISLM grid cannot resolve the phase
variations in the incident wave front, then each pixel will be
used to compensate the phase of the average field:

Eave(k0) =
∑

S

P (�Sp)eik0(S0+�Sp), (12)

where P (�Sp) is the probability distribution for the pathways
characterized by the length S0 + �Sp averaged by a single
pixel. Coarse graining over ISLM’s pixel size limits the
compensation fidelity. Suppose that a pixel is tuned to
compensate the phase of Eave at the given position at the
frequency k0c. At a different frequency we have

Eave(k) =
∑

S

P (�Sp)ei(kS0+k0�Sp+�k�Sp). (13)

The values of Eave corresponding to k and k + �k differ
drastically if �k�Sp ∼ π for many pathways passing through
the particular pixel. Thus, the phase compensation will not
work for detunings �ω exceeding

�ωnear = π

τnear
, (14)

FIG. 5. (Color online) Focusing as a function of frequency in the
limit of low spatial dispersion.

where τnear = c〈�Sp〉 describes stretching of the pulse in the
near field averaged over an area of the ISLM’s pixel.

The bounds on the focusing imposed by the SLM are
summarized in Fig. 5. There can be several peaks of the focused
field, each of the width 2�ωfar, under the envelope of the
width �ωnear.

Note that �ωnear is due to the pulse stretching at the
ISLM’s pixel. If one moves the ISLM plane away from
the surface of the sample, then �ωnear approaches �ωfar. The
same happens if the pixel size is increased, or if interference of
multiple pathways at each point of the ISLM plane becomes
too strong. We numerically verified that the peak at 2ω0 in
Fig. 5 disappears if the ISLM pixels become so large that they
cannot resolve the phase variations in the scattered wave.

The peak also disappears if the interference in the scattering
process cannot be neglected. In our calculations, this was
achieved by reducing the typical size of the impurities while
simultaneously increasing their number. This led to both
higher scattering angles and deviations from the eikonal
regime which allows interpreting propagation of light via an
ensemble of rays. Surprisingly, however, predictions based
on the eikonal-optics approach hold even for rather strong
scattering: For light that has passed through 30 3-μm-thick
planes with σ = 2 μm impurities, the phase compensation for
the λ0 = 800 nm far-field focusing still provided a noticeable
focal spot at λ = λ0/2 = 400 nm.

Our consideration above refers to focusing laser pulses
in space, but not in time. Note, however, that the ability
to spatially focus broadband light is bound by �ωfar—the
spectral bandwidth of a pulse which is not strongly distorted
in the far field. Thus, we show that the above approach is
limited to a spectral band where the temporal structure is not
destroyed, and temporal focusing is not required. If the far-field
stretching is substantial, one needs to assign different pixels to
different bands, as described in the next section. Only at that
stage does the question of temporal shaping and focusing—
adjusting the relative phases of several independent frequency
bands—arise.

V. THE GENERAL CASE

In the general situation, many interfering pathways may
lead to the same near-field point. As before, let τnear character-
ize the stretching of the pulse at the exit from the sample,
and τfar characterize it at infinity. Similar to the previous
section, the near-field speckle pattern changes at detunings
exceeding �ωn = π/τnear, and finite depth of the SLM’s
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phase modulation prevents focusing at detunings exceeding
�ωf = π/τfar except for the frequencies ωm related to ω0 by∫

kmdS(km) = m

∫
k0dS(k0). (15)

As shown in Sec. IV, if τnear < τfar, it makes sense to place the
ISLM in the near field with respect to the random sample.
Note that such situations include those where the pulse
is significantly modified after passing through the random
sample, both in space and in time.

In the case of stronger scattering, when the geometric-
optics-based model is inapplicable, one must view the far-field
focusing as phasing together random phasors corresponding to
different scattering channels [14]. This regime is mathemat-
ically similar to that of large ISLM pixels, discussed in the
previous section [Eqs.(12)–(14)]. Below we briefly discuss
what scaling should be expected for focusing broadband pulses
in this case.

Let us assume that the far-field transmission spectrum
within the bandwidth of the laser pulse consists of M

uncorrelated bands of the width �ωf , and that the laser beam
covers N pixels of the phase mask in the scheme of Fig. 1(a).
In order to obtain figures of merit for the focusing capability,
we assign N/M pixels of the SLM to each frequency band, in
the way that is discussed below. Assuming a circular Gaussian
distribution for the field amplitude after the sample [11,14],

P (ERe,EIm) = 1

2πI0
exp

(
−E2

Re + E2
Im

I0

)
, (16)

where P is the probability density, ERe,EIm are the real and
imaginary field amplitudes, respectively, and the intensity of
the focused field at frequency ω is [11]

Icoh(ω) = π

4

(
N

M

)2

I0. (17)

In order for the focused spectrum to be controllable, this value
must exceed the background due to the other pixels assigned
to all other frequencies. The latter is obtained with the help of
Eq.(16):

〈Iback(ω)〉 = (M − 1)
N

M
I0. (18)

Enhancement in spectral intensity due to the focusing is then
[14]

ηω = π

4

N

M2
. (19)

Once control over each spectral band of the width �ωfar is
achieved, one can tune the overall phase of the field in each
band by applying an extra phase to each phase mask’s pixels
controlling the mode. Through these phases, the spatially
focused pulse can either be focused in time or be given
any temporal shape allowed by the frequency resolution of
�ω and the number of pixels in the phase mask. Thus the
system makes an analog of a conventional pulse shaper [28],
with the dispersion element being replaced by the random
sample [20,21].

If the M spectral components are given equal phase,
together they form a pulse that is M times shorter in time than
each of the M components. Its intensity is M times higher

than that of the incoherent sum of the components. Thus, the
maximum achievable intensity is

ηt = π

4

N

M
(20)

times stronger than that of uncompensated light.

VI. SUMMARY

Coherent control of physical and chemical processes in
turbid media requires availability of focused laser pulses with
tunable temporal or spectral shapes. This, in turn, sets the
task of coherently controlling propagation of bichromatic and
broadband laser pulses through turbid media.

Recent works have shown that this task can be carried
out by using phase masks to adjust the phases of different
transmission modes. Each mode, centered at its own central
frequency and having its own speckle pattern, can coherently
contribute to the output field. By controlling the interference
between the modes one can achieve the desired spatiotemporal
focusing. In this sense, the experimental scheme shown in
Fig. 1 is an analog of a conventional pulse shaper, with the
dispersive element replaced by the turbid sample. Resolution
of this turbid pulse shaper is set by the transmission properties
of the sample [21], together with one’s technical ability to
control relative phases of the modes. The ability to shape
pulses simultaneously in space and time and to work with very
narrow-band transmission modes, can bring new dimensions
into experiments on coherent control.

Most present-day experiments do not assume correlations
between the phase patterns of different frequency bands and
work in the regime where the phase mask cannot resolve
phase variations within a single speckle pattern. In this case
one can obtain the figure of merit for the efficiency of
the spatiotemporal focusing of light by assigning a fraction
of the phase mask to each of the independent frequency bands.
This is done in section V of our paper [Eqs. (19) and (20)]. For
M independent frequency bands, this leads to focused intensity
at a single frequency scaling as ηω ∝ 1/M2. If the phases of
the frequency bands are set such as to produce a short pulse in
the focus, its intensity scales as ηt ∝ 1/M .

An interesting regime arises in the case of moderately
strong scattering and relatively large-size (above 2 μm in
our simulations with 800 nm light) scatterers. In this case, in
agreement with the geometric-optics approach, optimization
of spatial focusing at frequency ω0 automatically ensures that
focusing at the frequency ω = nω0 is also achieved. In this
situation, “1 + n” coherent control must be available at no
extra cost provided the relative phase between the two fields
can be maintained. In addition, interesting phase structures
arising at frequencies that are rational fractions of ω0 call for
further investigation.

In the geometric-optics regime, the efficiency of the spatial
focusing is bound by the two time scales. A single setup of
the phase mask can only optimize spatial focusing within
a single frequency transmission band, with the width given
by 2�ωfar = 2π/τfar [Eq. (9)], where τfar corresponds to
the stretching of an ultrashort pulse in the far field at
the output. At the same time, there is an overall envelope
of the focusing efficiency (Fig. 5). Its width is given by
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�ωnear = π/τnear. Here, τnear is the duration of a pulse covered
by the area of a single pixel of the phase mask in the
geometry of Fig. 1(b), and �ωnear is the band width of the
transmission matrix taken at one pixel. The separation of
the two time scales suggests that one should choose the
experimental setup with the shortest τnear. To minimize the
pulse stretching in the plane of the phase mask, we proposed
to image the SLM onto the input surface of the turbid
sample.

The intuition inspired by geometric optics remains valid if
one considers far-field focusing at an angle, or if moderate
dispersion of the sample is taken into account. However,
using the same phase mask to focus at frequencies ω and
nω simultaneously becomes difficult if the pixels of the phase
mask can not resolve individual near-field speckles. In this

case �ωnear approaches �ωfar, and pulse stretching in the
near and far field is the same. Then the geometry cannot be
optimized by placing the phase mask at any particular distance
from the sample. Control over focusing of multiple frequencies
can be achieved by assigning subsets of the mask to different
frequency bands.
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