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Nonlinearity sensing via photon-statistics excitation spectroscopy
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We propose photon-statistics excitation spectroscopy as an adequate tool to describe the optical response of
a nonlinear system. To this end we suggest to use optical excitation with varying photon statistics as another
spectroscopic degree of freedom to gather information about the system in question. The responses of several
simple model systems to excitation beams with different photon statistics are discussed. Possible spectroscopic
applications in terms of identifying lasing operation are pointed out.
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I. INTRODUCTION

According to Glauber, an adequate description of the degree
of coherence of a light field is given by the second-order
correlation function [1]

g(2)(τ ) = 〈â†(t)â†(t + τ )â(t)â(t + τ )〉
〈n̂(t)〉〈n̂(t + τ )〉 , (1)

where â† and â denote photon creation and annihilation
operators of the mode of interest, t gives the detection time
of the first photon, and τ is the time delay until the detection
of the second photon. Basically, this quantity describes the
probability of detecting two photons of a light field at times
t and t + τ compared to the probability of detecting two
photons for a light field of the same mean intensity, but
statistically independent photon detection events. It is therefore
a measurement of the relative variance of a photon number
distribution. As a consequence, the most accurate description
of a light field is given by a hierarchy of such functions
up to arbitrary order which correspond to measurements of
the higher-order moments of a photon number distribution.
While photon number statistics are used quite regularly to
characterize the emission from a system, most prominently
for identifying single-photon sources [2], the buildup of
coherence in lasers [3,4] or Bose-Einstein condensates [5,6],
and in dynamic light scattering [7] or fluorescence correlation
spectroscopy [8], they are currently not routinely used as
a spectroscopic tool, although the important effect of the
excitation photon statistics on the excited quasiparticles has
been highlighted [9,10] and there have been theoretical predic-
tions for excitation photon-statistics dependencies of several
quantities, for example, excitation efficiencies of optically
active excitons in nanostructures [11]. The most probable
reason for neglecting this degree of freedom in experiments lies
in the small amount of light sources which offer tunable photon
statistics, although recently advances in this direction have
been made experimentally [6,12,13] and theoretically [14–16].

It is widely known and well studied that almost every kind
of optical amplification adds noise to the amplified signal [17].
In this paper we are interested in approaching this phenomenon
from the other side and aim at identifying nonlinearities in the
optical response of the system in terms of the output signal
photon statistics in dependence on the input signal photon
statistics. To clearly demonstrate the influence of nonlinearities
on the output photon statistics, we choose to study a simple
nonlinear system which nevertheless demonstrates all essential

features: a phase-insensitive system giving a sigmoidal re-
sponse superimposed on a linear response. The average output
photon number of such a system is given by

〈nout(nin)〉 = Lnin + S

1 + e−(nin−N)
, (2)

where L gives the slope of the linear response, S gives the
magnitude of the nonlinear sigmoidal step, and N denotes
the threshold input photon number of the nonlinearity. In
experiments on nonlinear optical systems, this response
function is usually not directly probed, but rather the response
to a mean input 〈nout(〈nin〉)〉 is investigated in terms of input-
output curves. Higher-order responses beyond the mean output
photon numbers are also examined in experiments in terms of
second- and higher-order photon number correlation functions
of the output signal [18,19]. These allow one to distinguish
between systems which give the same 〈nout〉 at a given 〈nin〉, but
show different underlying photon number statistics, resulting
in larger or smaller photon number fluctuations.

II. PHOTON NUMBER STATISTICS

The three most widely known kinds of photon number
distributions commonly found in real systems are coherent
states in lasers, thermal states in thermal emitters, and Fock
states as seen for photon number state sources, which are
for stationary fields characterized by values of g(2)(0) equal
to unity, 2, or 1 − 1

〈n〉 , respectively. The probability to detect
exactly n photons for a mean photon number 〈n〉 is given by a
Poisson distribution

p〈n〉,coh(n) = e−〈n〉 〈n〉n
n!

(3)

in the coherent case, a Bose-Einstein distribution

p〈n〉,th(n) = 1

(1 + 〈n〉)(1 + 1
〈n〉

)n (4)

in the thermal case, and a sub-Poissonian distribution

p〈n〉,Fock(n) =
{

1 if n = 〈n〉,
0 else (5)

for Fock number states. Nevertheless, the optical response of
these systems to an optical excitation will not only depend on
the mean photon number of the excitation light field, but also on
its statistical properties. The response of a system as described
by Eq. (2) for a given mean input photon number may therefore

053806-11050-2947/2011/84(5)/053806(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.053806


MARC AßMANN AND MANFRED BAYER PHYSICAL REVIEW A 84, 053806 (2011)

differ depending on the underlying input photon number
distribution. This opens up the possibility to characterize such
systems in detail spectroscopically by varying the input photon
number statistics. To this end, we theoretically investigate
three systems which share the same mean output photon
numbers according to Eq. (2), but give either a Poissonian
distribution around this mean, a Bose-Einstein distribution
around this mean, or a Fock state as a response, and study
how the output photon numbers and correlation functions vary
for inputs which also show a fixed mean photon number,
but show variances according to Poissonian, Bose-Einstein,
and Fock distributions for different values of S and N . The
same linear slope L = 1 has been used for all calculations. We
start with the linear case S = 0. The input-output curves are
obviously the same for all nine possible combinations of input
photon statistics and system responses. One of these linear
curves is shown in Fig. 2 for comparison to other systems.
The photon statistics for the different cases, however, differ.
In the following, we use the terms g(2)

in for the photon statistics
of the input light field, g(2)

sys for the statistics of the nonlinear

system, and g
(2)
out for the photon statistics of the output light

field, and focus on equal time correlation functions only.
The results are shown in Fig. 1. Here and in the following
figures the nine possible combinations of Fock, coherent and
thermal (labeled by the characters F, C, and T, respectively)
excitation and system response are expressed as a set of two
characters, where the first character denotes the excitation
photon number statistics and the second represents the system
response statistics. As expected, the output photon statistics
of systems excited with Fock states are not distorted and stay
Fock, Poissonian, or Bose-Einstein distributions, respectively.
In analogy, also systems giving a Fock response preserve the
input photon statistics. In all other cases some distortions
occur as the total variance Vout of the output photon number
distribution behaves roughly as

Vout ≈ Vsys + g2
sysVin. (6)

This distortion is only present for small input photon numbers
if both of the statistics of the input light field and the
nonlinear system are Poissonian. Already for intermediate
photon numbers, the distribution recovers to the Poissonian
limit of g

(2)
out = 1. The situation is similar if one of the two

photon statistics is Poissonian and the other is thermal. In
these cases the photon number noise increases at small mean
input photon numbers according to Eq. (6) and recovers to
the thermal limit of g

(2)
out = 2. In the case where both statistics

are thermal, the situation changes. Although there is also a
photon-number-dependent contribution which vanishes with
increasing mean input photon number, the output photon
number noise saturates at g

(2)
out = 4, which is much higher than

the initial noise of the input photon field. This behavior is not
surprising or unexpected. Basically all constant contributions
beyond unity can be traced back to quadratic terms in the
variances, while those terms depending on mean input photon
numbers correspond to linear terms in the variances. However,
the results already show that the output photon statistics
are very sensitive to the response of the system if thermal
excitation is used. It might seem surprising that the noise
overshoot depending on 〈nin〉 is usually not observed in

FIG. 1. (Color online) Output photon statistics for different
linear systems and varying excitation conditions. The upper panel
shows excitation with Fock states, the middle panel represents
excitation using coherent states, and the lower panel corresponds
to excitation with thermal states. The black solid lines represent
systems giving a Fock distribution, the red dashed lines represent
Poissonian distributions, and the blue dotted lines mark Bose-Einstein
distributions.

experiments on coherent or thermal systems using laser pulses
with Poissonian photon number distributions for excitation.
Obviously our choice of L = 1 for the linear slope character-
izes an ideal system. This value has been chosen for reasons
of clear demonstration of the effects we predict. For any
experiment on a real system such as a laser, this value will be
much smaller and the output photon number using excitation
pulses containing only few photons is too small to allow
for sensible measurements of photon statistics under most
circumstances.

III. NONLINEARITIES AND NOISE

Let us now focus on the effects of introducing a nonlinear
response. We demonstrate the difference at a system with
parameters of L = 1, N = 45, and S = 50. While the input-
output (IO) curve is not sensitive to the statistics of the
nonlinear system, the excitation photon number statistics will
have an influence on the IO curve. This effect can be seen in
Fig. 2. Here, the black solid line gives the IO curve using Fock
excitation. The red dashed line gives the corresponding IO
curve using coherent excitation. Obviously, the step in the IO
curve becomes smeared out. This behavior is a consequence of

053806-2



NONLINEARITY SENSING VIA PHOTON-STATISTICS . . . PHYSICAL REVIEW A 84, 053806 (2011)

FIG. 2. (Color online) Input-output curves for parameters of L =
1, N = 45, and S = 50 at varying excitation photon statistics. The
green dash-dotted line shows the curve for S = 0 for comparison. The
undistorted IO curve using Fock-state excitation is shown in black.
The excitation photon number distributions with larger variance tend
to smear out the steplike jump in the IO curve, as can be seen for
coherent (red dashed) and thermal (blue dotted) excitation.

the larger photon number variance of the coherent excitation.
As the photon number will fluctuate around the mean value,
the nonlinear response of the system already contributes at
mean photon numbers below the nonlinear threshold. This
effect is even stronger for excitation with thermal light. As
the photon number variance is even larger in this case, the
nonlinear region is broadened drastically and smeared out.
Identifying the step in the IO curve may become rather difficult
in this case. Also it should be noted that for large input
photon numbers even far beyond the step in the IO curve,
the mean output photon number for thermal excitation is
much smaller than for Fock-state or coherent excitation. This
behavior is also a consequence of the properties of the different
excitation photon number distributions. The most probable
photon number corresponds to the mean photon number for
Fock-state or coherent excitation, and the fluctuations around
this mean are zero or small, so that for mean input photon
numbers beyond the threshold region also the actual input
photon number for each repeated excitation will be larger
than the threshold value. For thermal light, however, the most
probable input photon number is always zero. In this case,
even for 〈nin〉 way beyond the threshold region, the actual
input photon number for some of the repeated excitations
will still be below the threshold. Consequently, 〈nout〉 will
be smaller compared to Fock-state or coherent excitation. The
green dash-dotted curve gives the IO curve of a linear system
for comparison. Although the suppressed step in the IO curve
looks as an indicator that excitation using thermal light is not a
suitable tool to characterize nonlinear systems, it is instructive
to study the output photon number statistics, too. For the
same choice of parameters the output photon statistics for
all nine combinations of input photon statistics and system
response statistics are shown in Fig. 3. As expected, no
differences from the linear system are seen for excitation using
Fock states. For excitation using Poissonian photon statistics,
however, a small peak occurs in g(2) in the vicinity of the
threshold. The relative

FIG. 3. (Color online) Output photon statistics for nonlinear
systems with parameters of L = 1, N = 45, and S = 50 and varying
excitation conditions. The upper panel shows excitation with Fock
states, the panel in the middle shows excitation using coherent states,
and the lower panel represents excitation with thermal states. The
black solid lines represent systems giving a Fock distribution, the red
dashed lines represent Poissonian distributions, and the blue dotted
lines mark Bose-Einstein distributions.

magnitude of this peak is equal for all three possible system
response statistics and amounts to an excess of ∼20% beyond
the value taken for a linear system. This highest value occurs at
an input photon number 〈nin〉 = 40, which corresponds to the
lower border of the threshold region. This increased noise peak
can be seen in the region between 〈nin〉 = 30 and 〈nin〉 = 60,
which equals the region in which the IO curve for coherent
excitation differs from the bare response of the system, as
seen for Fock-state excitation. Therefore, the increased output
photon number noise can be explained by the variance of
the input photon number. For each repeated excitation 〈nin〉
will differ and the amplification by the nonlinearity will
have a different magnitude. Accordingly, the added noise is
largest when the mean photon number reaches the onset of
the threshold as the amplification ratios vary strongly and
decreases afterward because the spread in the nonlinearities
experienced in each repeated excitation becomes smaller. A
similar effect can be observed for excitation using thermal
light. However, the effect differs significantly from the one
predicted for coherent excitation. Here the relative magnitude
of the excess noise peak is on the order of ∼45% and is
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thus larger. Also, the 〈nin〉 at which the peak is reached is
shifted to much smaller values. Here the peak is located at
〈nin〉 = 14, which is approximately one third of the threshold
photon number. Basically this effect can be explained similarly
to the case of coherent excitation. However, the much larger
variance of 〈nin〉 causes the output photon number noise to
be much larger. The large input photon number variance also
means that the nonlinear region is reached in a non-negligible
percentage of repeated excitations already at 〈nin〉 far below
the threshold of the nonlinearity. Also it should be noted that
thermal excitation shows an effect way beyond the threshold
region. While for linear systems g

(2)
out saturates at values of 2 or 4

depending on the response of the system, g(2)
out decreases further

down to values of ∼1.8 or 3.6 beyond the threshold region for
the nonlinear system considered here. This drop in the output
photon number noise is a consequence of the nonlinearity,
effectively increasing the probability of intermediate and
high output photon numbers slightly and therefore shifting
the output photon number distribution toward an uniform
distribution for which g(2)

uni = 4
3 − 1

〈nout〉 would be the expected

outcome. It should further be noted that g
(2)
out for the nonlinear

system reaches the value of the linear system exactly at the
upper end of the threshold region.

IV. EFFECT OF NONLINEARITY PARAMETERS

This peculiar behavior opens up the interesting possibility
of identifying nonlinearities in a system at low excitation
densities far before the nonlinear threshold is reached on
average using excitation with thermal light. At this point,
it is worthwhile to study to what extent the position and
magnitude of those excess fluctuations depend on the choice
of parameters. To this end, we also studied a system with
a lower threshold photon number. The parameters used are
L = 1, S = 50, and N = 20. The results are shown in Fig. 4.
Qualitatively, the curves are similar to the ones shown before,
but quantitative differences are present. For coherent and
thermal excitation, excess peaks in g

(2)
out can be seen again.

For coherent excitation the maximum of the peak is still
located at the lower border of the threshold region, and the
peak value is enhanced approximately by 50% compared
to a linear system. For thermal excitation these effects are
even more pronounced for this set of parameters. The relative
magnitude of the noise enhancement is slightly larger than
100%. The peak is reached at 〈nin〉 = 5, which is one third
of the onset of the nonlinearity and one quarter of its middle.
For thermal excitation and large 〈nin〉, g

(2)
out decreases even

further down to values of 1.6 and 3.2, respectively. The 〈nin〉 at
which the values of 4 and 2 expected for the linear system are
reached for the nonlinear system again correspond to the upper
limit of the threshold region. The results remain qualitatively
similar for any choice of S, as shown in Fig. 5, which shows
the peak excess bunching g

(2)
out(S) − g(2)(S = 0) as a function

of the nonlinear step size. The black solid and red dashed
lines correspond to coherent excitation and a Poissonian or
thermal nonlinearity, respectively. The blue dotted and green
dash-dotted lines correspond to thermal excitation and a
Poissonian or thermal nonlinearity, respectively. As expected,
this difference gets larger for any combination of excitation

FIG. 4. (Color online) Output photon statistics for nonlinear
systems with parameters of L = 1, N = 20, and S = 50 and varying
excitation conditions. The upper panel shows excitation with Fock
states, the middle panel represents excitation using coherent states,
and the lower panel corresponds to excitation with thermal states. The
black solid lines represent systems giving a Fock distribution, the red
dashed lines represent Poissonian distributions, and the blue dotted
lines mark Bose-Einstein distributions.

and system statistics, with increased S showing a slightly
superlinear slope. Irrespective of the excitation statistics used,
g

(2)
out(S) − g(2)(S = 0) is twice as large for a system giving a

Bose-Einstein distribution than for one giving a Poissonian
distribution, still allowing one to distinguish between thermal
and coherent systems in experiments.

The amount of noise introduced by a nonlinearity will
of course also depend on the input photon number at the
threshold. Figure 6 shows g

(2)
out(S) − g(2)(S = 0) for varying

N and fixed values of S = 30 and L = 1. It is not surprising
that the effect is most pronounced for small N and disappears
for large N as S

N
is a good measure of the relative strength of

the nonlinearity. While the excess noise indeed vanishes for
large N and coherent excitation, it disappears much slower
for thermal excitation and still shows a magnitude of ∼0.4 if
S
N

= 0.25, which should be measurable. The reason for this
enduring effect at large N can be seen clearly in Fig. 7. Here
the input photon number 〈nin,max〉 at which the peaks shown in
Fig. 6 occur are displayed as a function of N for coherent
excitation (black solid line) and thermal excitation (red
dashed). While for coherent excitation 〈nin,max〉 is almost as
large as N , it increases with a much smaller slope for thermal
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FIG. 5. (Color online) Maximum difference between g
(2)
out for

systems with varying S and g
(2)
out for a system giving a linear

response for N = 20. The black solid and red dashed lines correspond
to coherent excitation and a Poissonian or thermal nonlinearity,
respectively. The blue dotted and green dash-dotted lines correspond
to thermal excitation and a Poissonian or thermal nonlinearity,
respectively.

excitation. This outcome is in full agreement with the earlier
result that, for thermal excitation, a peak in the output photon
number occurs way below the threshold region. Now it is
obvious that this overshoot in g

(2)
out will be large when S is large

compared to 〈nin,max〉 and will vanish as 〈nin,max〉 becomes
larger than S, which requires very large values of N for thermal
excitation.

FIG. 6. (Color online) Maximum difference between g
(2)
out for

systems with varying N and g
(2)
out for a system giving a linear

response for S = 30. The black solid and red dashed lines correspond
to coherent excitation and a Poissonian or thermal nonlinearity,
respectively. The blue dotted and green dash-dotted lines correspond
to thermal excitation and a Poissonian or thermal nonlinearity,
respectively.

FIG. 7. (Color online) 〈nin〉 at the maximum difference between
g

(2)
out for systems with varying N and g

(2)
out for a system giving a linear

response for S = 30. The black solid and red dashed lines correspond
to coherent and thermal excitation, respectively.

V. EFFECTS ON LASERS

Let us now turn to the question under which circumstances
the described effects might be observed in experiments.
Considering, for example, lasers, the value N takes will depend
strongly on the spontaneous emission factor β and the quality
factor of that laser. For lasers with not too high β, S will
scale as β−1 under steady-state conditions [20] because at
the lasing threshold the fraction of all emission processes
guided to the lasing mode increases from β to almost unity.
A discussion of changes in the high-β regime, especially for
semiconductor lasers, can be found in Ref. [21]. However,
the onset of lasing occurs as the intracavity photon number
reaches unity. Accordingly, N will also scale as β−1 for not
too large β. Therefore, to get an impression for which kind of
system one would expect significant changes in g

(2)
out, it seems

reasonable to compare several systems where N and S are both
scaled in fixed proportion to each other. Figure 8 shows the
peak values of g

(2)
out(S) − g(2)(S = 0) for several systems with

T = S = β−1 that can be considered to be role models for
lasers showing different but still rather large β, but otherwise
similar characteristics. The black solid and red dashed lines
correspond to coherent excitation and a Poissonian or thermal
non-linearity, respectively. The blue dotted and green dash
dotted lines correspond to thermal excitation and a Poissonian
or thermal nonlinearity. All four curves show only a weak
dependence on β−1. For coherent excitation a slight decrease of
∼35% takes place over the two orders of magnitude examined
here. However, the magnitude of the excess fluctuations is
quite small. Taking into account the fact that for coherent
excitation the peak value will occur in the nonlinear region,
which is also the region where the system response statistics
change from thermal to Poissonian for a common laser, it
is very unlikely that these excess fluctuations can indeed be
observed and clearly identified. For thermal excitation the
excess fluctuations show an even weaker dependence on β−1

and a rather large magnitude. As these peak values occur far
before the nonlinear region and therefore in a region where
the system response statistics are assumed to be constant, it
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FIG. 8. (Color online) Maximum difference be-
tween g

(2)
out for systems with varying β−1 and g

(2)
out

for a system giving a linear response shown on a
double-logarithmic scale. The black solid and red
dashed lines correspond to coherent excitation and a
Poissonian or thermal nonlinearity, respectively. The
blue dotted and green dash-dotted lines correspond
to thermal excitation and a Poissonian or thermal
nonlinearity, respectively.

should be possible to measure these excess fluctuations. This
opens up the interesting possibility to identify and characterize
a nonlinearity in a system response without the mean input
photon number reaching the nonlinear threshold. Considering
measurements on real systems, lasers with moderate or high
values of β seem to be ideal candidates to examine these
effects. For these lasers the threshold excitation density is not
too high, which simplifies observation of the effects of thermal
excitation as it is not a trivial task to create single-mode thermal
light with high intensity. Application to real lasers should of
course also take other factors into account which have been
shown to have an influence on lasing operation. Examples
are the probably more complicated shape of the input-output
curves [21], the variation of the system response statistics
from thermal to coherent along the lasing threshold [22],
specific properties of the pumping process [23], nonstationary
conditions [24], and specifics of the type of laser considered
[25–27], which are out of the scope of this paper. We would like
to point out that the lasing threshold is intrinsically difficult to
identify in high-β lasers, which makes approaches in terms
of photon-statistics spectroscopy very interesting for such
systems. In fact, there exist several proposals and techniques
aiming at identifying the lasing threshold for such systems, but
most of them require complicated experimental setups [28], are
only suitable for stabilized continuous-wave operation [29], or
can only be applied under nonstationary excitation conditions
[30]. Using the excitation photon statistics as an additional
degree of freedom may help to characterize the response and
lasing transition in such systems in more detail. However,
clear-cut criteria to identify the lasing threshold, which is

not necessarily identical to the threshold in the input-output
curve, by means of photon-statistics excitation spectroscopy
still need to be found. Therefore, it might be worthwhile to
investigate the response of nonlinear systems to light fields
with different photon statistics, for example, squeezed light, in
further studies. Also, characterizing nonlinearities in terms
of higher-order correlation functions may provide further
insights.

VI. CONCLUSIONS

In conclusion, we studied the influence of the excitation
photon number statistics on the mean output photon numbers
and the output number photon statistics of linear and nonlinear
systems. We have shown that nonlinearities can introduce
additional noise which is very sensitive to the input photon
number distribution, and that it is possible to identify these
nonlinearities by changing the input photon statistics even
before the average input photon numbers reach the threshold.
Finally, we would like to stress that just as the most suitable
description of a light field is given in terms of the response
of an arbitrary number of detectors to the light field in terms
of correlation functions up to arbitrary order [31], the most
suitable description of the response of a system is given in
terms of its response (also up to arbitrary order) to a multitude
of input states.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft through research Grant No. DFG 1549/19-1.

[1] U. M. Titulaer and R. J. Glauber, Phys. Rev. B 140, 676 (1965).
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