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Quantitative study of the enhancement of bulk nonlinearities in metamaterials
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Artificially structured metamaterials offer a means to enhance the weak optical nonlinearities of natural
materials. The enhancement results from the inhomogeneous nature of the metamaterial unit cell, over which
the local field distribution can likewise be strongly inhomogeneous, with highly localized and concentrated field
regions. We investigate the nonlinear enhancement effect in metamaterials through a numerical study of four
nonlinear metamaterial designs comprising arrays of metallic structures embedded in nonlinear dielectrics and
operating around 10 THz. Through full-wave simulations and by employing an extended version of the transfer-
matrix-based nonlinear parameter retrieval method, we confirm and quantify the enhanced nonlinearities, showing
bulk quadratic nonlinear properties that are up to two orders of magnitude larger, and cubic nonlinear properties
that are up to four orders of magnitude larger than the bulk nonlinear dielectric alone. Furthermore, the proposed
nonlinear metamaterials support a variety of configurable nonlinear properties and regimes, including electric,
magnetic, broadband, and low loss, depending on the particular geometry chosen. Finally, we use the retrieved
parameters in a coupled-mode theory to predict the optimal crystal lengths and conversion efficiencies of these
structures, displaying the possibility of efficient and subwavelength nonlinear devices based on metamaterials.
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I. INTRODUCTION

Metamaterials, artificially structured mediums, engineered
on the subwavelength scale from arrays of polarizable
elements, have the potential to support nearly complete
control over the entire set of macroscopic electromagnetic
properties [1]. This flexibility, inherent to metamaterials, has
been exploited to develop unusual and unprecedented optical
media and devices, such as negative-index materials [2,3] and
“invisibility cloaks” [4]. These media are formed by varying
the linear effective constitutive parameters of the metamaterial
throughout space, such that the propagation of waves through
the medium is strongly and uniquely modified.

Nonlinear metamaterials (NLMMs) extend the range of op-
portunities for artificial electromagnetic materials, supporting
nearly independent control of both the linear and nonlinear
properties of the effective medium. Moreover, it was predicted
early on that NLMMs could provide an avenue not just
for adopting the nonlinearities of their constituent materials
but also for enhancing them by orders of magnitude [5,6].
Fast-growing research in NLMMs has given glimpses of their
potential in nonlinear optics, including demonstrations of
frequency generation [7–10], parametric amplification [11,12],
self-phase modulation and bistability [13–16], and several
unique nonlinear processes with no analog in natural materials
[17]. Alongside this research, a set of fundamental tools and
techniques, similar to those that have been applied to the
precise design of linear metamaterials, have been developed
for NLMMs [18–20].

Enhancing the otherwise weak optical nonlinearities asso-
ciated with natural materials is one of the most enticing ca-
pabilities of NLMMs. Metamaterials naturally support highly
inhomogeneous field distributions, where electromagnetic en-
ergy can be concentrated into small, critical volumes [5]. Any
nonlinear element placed in these volumes experiences a local
field strength much greater than the average field. Enhance-
ment of nonlinearities through light localization is well known
and has been exploited in plasmonic media [21–25], photonic

crystals [26,27], and resonant cavities [28,29]. However, there
is a fundamental difference between the field localization in
these structures and that associated with NLMMs: cavities
and electromagnetic “hot spots” localize fields to tiny spatial
volumes, restricting configurations to surfaces or similarly
small fractions of the whole medium. Wave behavior in such
systems is typically described in terms of scattering rather
than propagation since the density and distribution of the
enhancement regions are so sparse. In contrast, the field
localization in NLMMs is distributed periodically throughout
a volume with no fundamental constraint on wave propagation;
in other words, the enhancement associated with NLMMs is
inherently a bulk effect, imbuing the metamaterial composite
with an effective, continuous nonlinear susceptibility many
times greater than that of any of the constituent materials.
This important distinction renders NLMMs an approach to
the design of a new generation of materials with the potential
for unprecedented bulk nonlinearities. Indeed, once designed,
artificial materials of this type can subsequently be used in
many of these same advantageous setups that are currently
employed for natural materials, allowing for cumulative
mechanisms of enhancement.

The basic analytic and experimental characterization of
NLMMs has been achieved at microwave frequencies [18,30],
where the nonlinearities are derived from packaged compo-
nents, such as varactor diodes, integrated into metamaterial
circuits. For these effective media, excellent agreement for
both the linear and the nonlinear properties has been demon-
strated between the designed and measured media. However, in
designing NLMMs in the terahertz (THz) to visible wavelength
range, it is far more reasonable to achieve the nonlinear
properties through the inclusion of natural nonlinear materials.
While the same theoretical and experimental approaches used
in the design and characterization of microwave NLMMs
can be applied to NLMMs composed of natural nonlinear
materials, the magnitude of the enhancement has yet to be
rigorously determined in these systems.
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In this paper, we provide a quantitative, numerical analysis
of the bulk nonlinear properties of four common metamaterial
designs, each embedded in a generic nonlinear dielectric
and operating around 10 THz. To begin with, we describe
our method of analysis, namely, the transfer-matrix-based
nonlinear retrieval method [19,20], and extend it to include
both electric and magnetic nonlinearities. Next, we present
the results of full-wave simulations of second-harmonic
generation (SHG) and self-phase modulation (SPM) in each
of the four proposed NLMMs, where SHG and SPM are
intended to be representative of general second- and third-order
nonlinear processes, respectively. Employing the extended
nonlinear retrieval method, we use the resulting simulated
spectrums to calculate the effective quadratic and cubic
susceptibilities. The predicted enhancements are confirmed
in the resonant structures, with values of up to two orders of
magnitude in the quadratic processes and up to four orders
of magnitude in the cubic processes. In addition, broadband
enhancements of more than one and two orders of magnitude
are demonstrated in the nonresonant structures. Next, using
the retrieved parameters and coupled-mode theory, the optimal
crystal lengths and maximum efficiencies of the NLMMs are
calculated. Finally, we discuss the benefits, limitations, and
fabrication feasibility of the proposed NLMMs, including the
potential impact of NLMMs on the efficiency and compactness
of nonlinear devices. The Appendix shows the derivation of
the second-harmonic generation in a medium with a nonlinear
response in both its electric polarization and magnetization.

II. THE NONLINEAR RETRIEVAL METHOD FOR MEDIA
WITH NONLINEAR POLARIZATION

AND MAGNETIZATION

The enhancement of nonlinear properties in NLMMs relates
directly to the magnitude of the local field enhancement
within the metamaterial elements. Full-wave simulations can
offer direct measurements of the field-enhancement factor by
simulating the excitation of either metamaterial or plasmonic
structures; however, the results are specific to the setup
employed and do not constitute a general description of an
effective medium comprising such structures. The “enhance-
ment factors” quoted in such studies are, at best, indirect
measures of the resulting nonlinear properties [21,22,25].
Since it is our goal to demonstrate the enhancement of
nonlinear optical processes in a bulk NLMM medium, we
require a tool for the accurate computation of the NLMM’s
effective nonlinear properties, using the results of nonlinear
scattering simulations on a single unit cell.

Previously, a method for the retrieval of the effective
nonlinear susceptibilities from an inhomogeneous, nonlinear
unit cell was introduced [19]. This technique, based on
the nonlinear transfer-matrix method [31], takes as input
the fields scattered by a layer of NLMM, returning the
nonlinear susceptibility that exactly replicates the scattered
fields of an equivalent, homogeneous nonlinear slab. The
nonlinear retrieval method was extended to arbitrary three-
and four-wave mixing processes [20] and successfully applied
to several experiments [17,30], highlighting the applicability
of the method in characterizing NLMMs.

To apply the nonlinear retrieval method for the structures
studied here, however, some modifications are required. The
retrieval method, as first introduced, is constrained by the
assumption that only a nonlinear electric polarization or
magnetization, but not both simultaneously, is present. This
assumption fails explicitly for many mixed media NLMMs,
such as the magnetic split-ring resonator embedded in a non-
linear dielectric. Furthermore, even for unit cells containing
polarizable elements of only one type, a single nonlinear
polarizability can still fail to characterize the structure in
the presence of significant spatial dispersion [32]. In order
to completely characterize a generic nonlinear medium,
nonlinear dependences on the incident fields in the material’s
electric polarization and magnetization must be taken into
account. In this section, a brief extension to the nonlinear
retrieval method is outlined, allowing for the simultaneous
retrieval of the nonlinear magnetic and electric susceptibilities
contributing to any given wave-mixing process. For the full
details of the existing nonlinear retrieval method, the reader is
referred to [19,20].

It is well known that, for sufficiently weak excitations,
the higher-order terms in the power-series expansion of a
medium’s polarization,

P = ε0
(
χ (1)

e E + χ (2)
e E2 + χ (3)

e E3 + · · ·) , (1)

can be modeled simply as a radiating source, and likewise for
the magnetization,

M = χ (1)
m H + χ (2)

m H 2 + χ (3)
m H 3 + · · · , (2)

invoking what is known as the first Born approximation
[33]. A medium with a nonlinearity present in either its
polarization or its magnetization can thus be modeled as
having a distributed electric or magnetic source, respectively,
whose magnitude and phase depend on the distribution of the
exciting, or “fundamental,” fields along with the corresponding
higher-order susceptibility. For convenience, we will consider
explicitly the electric fields scattered by an electric nonlinearity
(denoted by subscript e) and the magnetic fields scattered by a
magnetic nonlinearity (denoted by subscript m). Furthermore,
because we are assuming weak excitations and neglecting
cascaded interactions, it follows that we can neglect coupling
between the electric and magnetic nonlinearities; i.e., the
scattering associated with each nonlinearity is assumed to have
no effect on the other.

As an example, we consider a one-dimensional three-layer
structure in which an arbitrary nonlinear slab is sandwiched
between semi-infinite regions of vacuum, as shown in Fig. 1(b).
Under excitation by a set of linearly polarized monochro-
matic plane waves (the fundamental fields) and in the first
Born approximation, the medium’s nonlinear polarization and
magnetization will produce radiating fields in the output and
input vacuum regions. Assuming knowledge of the linear
properties at the fundamental frequencies, the distribution of
the fundamental fields can be completely solved for by transfer
matrices. As such, the solution for the fundamental fields is
omitted here, and the rest of the analysis will only involve
the nonlinear scattered fields. We assume that the nonlinear
slab, at the scattered frequency of interest, can be completely
characterized by permittivity ε2, permeability μ2, and α-order
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FIG. 1. (Color online) Sketch of the nonlinear retrieval process for
metamaterials with simultaneous higher-order electric and magnetic
susceptibilities. (a) The nonlinear scattering from an inhomogeneous
unit cell, measured from simulation or experiment. (b) The equivalent
three-layer system composed of a homogenized nonlinear slab
sandwiched between regions of vacuum. (c) The magnetic (top) and
electric (bottom) subproblems.

electric and magnetic nonlinear susceptibilities χ (α)
e and χ (α)

m .
In keeping with the notation of the existing nonlinear retrieval
method, we split the fields into their forward (+) and backward
(−) propagating parts, keeping track of the complex field
amplitudes at the medium interfaces. Thus, the transmitted
electric field, produced by a nonlinear electric polarization
and located in the output medium at its interface with the
nonlinear slab, is denoted by E+

3e, while the reflected electric
field, located in the input medium at its interface with the
nonlinear slab, is denoted by E−

1e. Similarly, the nonlinear
magnetization generates H+

3m and H−
1m. If the nonlinear slab’s

higher-order susceptibilities are known, these fields can be
analytically calculated according to the nonlinear transfer-
matrix method. If, alternatively, the nonlinear susceptibilities
involved are unknown and instead the scattered fields have
been measured, as in the typical homogenization problem, the
existing nonlinear retrieval method can be used to determine
the effective nonlinearity if only one nonlinearity is non-
negligible. If nonlinearities in both the magnetization and
polarization simultaneously contribute to the scattered fields,
then the problem must be reduced to a superposition of two
independent homogenization problems: one considering only

an electric nonlinearity with the associated scattered fields E+
3e

and E−
1e and one considering only a magnetic nonlinearity with

the scattered fields H+
3m and H−

1m. Once the subproblems have
been properly defined, as in Fig. 1(c), the retrieval operation
can be performed in each case, yielding effective values for
both the electric and magnetic higher-order susceptibilities.

Obviously, we cannot probe the field contributions from the
electric and magnetic nonlinearities individually since it is the
total scattered fields, E+

3 and E−
1 , given by

E+
3 = E+

3e + Z0H
+
3m, (3)

E−
1 = E−

1e − Z0H
−
1m, (4)

that will be measured in any experiment or simulation, as in
Fig. 1(a). Thus, our goal is to isolate the fields according to the
nonlinear source that produced them (electric or magnetic)
so that we can run each set of scattered fields through
an independent retrieval procedure. In the transfer-matrix
retrieval method the field-to-susceptibility ratios E+

3e/χ
(α)
e and

E−
1e/χ

(α)
e , and likewise for the magnetic terms, are needed. The

method for calculation of these quantities is given elsewhere
[20] and requires only the thickness of the sample and its
effective linear properties as inputs. Taking the ratio of these
two quantities, we can compute the ratios of the reflected to the
transmitted scattered fields for each process, which we denote
as

Re = E−
1e/E

+
3e, (5)

Rm = H−
1m/H+

3m. (6)

We reiterate that these ratios can be calculated analytically,
employing slightly modified equations from the nonlinear
transfer-matrix method and without any knowledge of the
nonlinear susceptibility involved. We thus arrive at four
equations and four unknowns, which can be rearranged to
give

E+
3e = RmE+

3 + E−
1

Re + Rm

, (7)

H+
3m = 1

Z0

ReE
+
3 − E−

1

Re + Rm

, (8)

and similarly for the reflected fields. Finally, we are able
to merge the above analysis with the preexisting nonlinear
retrieval method, yielding the following retrieval equations:

χ (α)
e =

RmE+
3 +E−

1
Re+Rm

E+
3e/χ

(α)
e

, (9)

χ (α)
m =

1
Z0

ReE
+
3 −E−

1
Re+Rm

H+
3m/χ

(α)
m

. (10)

These represent slight modifications to the former nonlinear
retrieval equations. In contrast to the previous method, these
equations make use of both the transmitted and reflected
spectrums but still require measurements from only a single
experiment or simulation. However, Eqs. (9) and (10) now
retrieve both electric and magnetic contributions in a given
nonlinear process, allowing for the complete characterization
of more general NLMMs. While the presence of both electric
and magnetic nonlinear susceptibilities is rare for naturally
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occurring materials, the situation is very common for NLMMs,
thus motivating the modifications considered here.

The modified retrieval procedure described above is suffi-
cient to analyze the structures in the following sections. We
note, however, that we ignore any effects due to magneto-
electric coupling between unit cells either in the fundamental
or the harmonics. The presence of magnetoelectric coupling
causes an intercell interaction that cannot be accounted for
in retrievals based on one unit cell of metamaterial. Because
magnetoelectric coupling appears to be of concern only when
both the electric and magnetic responses are simultaneously
resonant, its neglect here is reasonable for the configurations
we consider [32,34–36].

III. SIMULATIONS AND RETRIEVALS

In this section, we analyze the nonlinearity enhancement
effect in the context of four distinct types of NLMM struc-
tures: the electric-field-coupled resonator (ELC), the split-
ring resonator (SRR), the cut-wire medium, and the I-beam
medium. The nonlinearity in each case comes from a generic
nonlinear dielectric matrix in which the metallic structure is
embedded. Full-wave, frequency-domain simulations, using
the COMSOL multiphysics suite [37], are performed on a single
unit cell of each NLMM, with the appropriate nonlinear
equations evaluated in the dielectric matrix. Periodic boundary
conditions are used to simulate a metamaterial slab with
infinite extent in the transverse directions. The metal structures
are assumed to be silver, which is modeled with a Drude
dispersion using a plasma frequency of 2.179 × 1015 Hz and
a relaxation rate of 4.352 × 1012 Hz [38]. The dielectric
medium is modeled with a permittivity of 2.40ε0. Two
nonlinear processes, corresponding to two distinct NLMMs,
are considered for each metamaterial: SHG in the case of
embedding in a second-order nonlinear dielectric and SPM
in the case of a third-order nonlinear, or Kerr, dielectric.
The simulations consist of two distinct domains for the
fundamental and nonlinear scattered fields. The fundamental
fields are solved for first, neglecting the nonlinearity, consistent
with the nondepleted pump approximation. The distribution
of the fundamental fields is then used in the calculation of
the nonlinear polarization in the dielectric, which operates
as a distributed source in the second, nonlinear scattering
domain. This two-part design strictly enforces the first Born
approximation, prohibiting all cascaded and cyclic nonlinear
effects. This is true even in the case of SPM, where, despite
the degeneracy in frequency, the nonlinear scattered fields are
kept separate from the fundamental fields. The validity and
self-consistency of these simulations have been verified on
simple, homogeneous slabs of nonlinear dielectric.

For each simulation, the unit cell is excited by a plane
wave traveling in the positive z direction, with the electric
field polarized along the x axis. The linear properties are
retrieved using the standard scattering-parameter retrieval
techniques [39–41], while the fields scattered by the presence
of the appropriate nonlinearity are measured at the output
and input ports and fed into the above nonlinear retrieval
equations. For the simulations of SHG, the retrieval equations
yield the effective electric and magnetic second-order suscep-
tibilities χ (2)

e,xxx(2ω; ω,ω) and χ (2)
m,yyy(2ω; ω,ω), respectively.

For SPM, the retrieved parameters are the effective electric
and magnetic third-order susceptibilities χ (3)

e,xxxx(ω; ω, − ω,ω)
and χ (3)

m,yyyy(ω; ω, − ω,ω), respectively. Though the local
fields will inevitably contain multiple field components, the
boundary conditions at the ports enforce the scattered waves
to be the same polarization as the incident wave. Thus,
even though the local fields will probe all elements of the
local nonlinear tensor in the dielectric, the simulations will
ultimately investigate just a single element of each of the
NLMM’s effective nonlinear tensors. The polarization and
orientation used in the following simulations were chosen to
ensure maximum coupling between the incident wave and the
structure. Though it is not presented here, the full effective
linear and nonlinear tensors can be retrieved by the same pro-
cedure, provided that the appropriate polarizations of the
various contributing waves are enforced. In the following
sections, the tensorial notation in the material properties is
omitted for brevity.

The higher-order susceptibility alone, however, is not an
adequate measure of the enhancement over the bulk embedding
medium due to the simultaneous effect of the periodic
inclusions on the medium’s impedance. Instead, we define
the material figure of merit (see the Appendix),

κ (2) = Z(ω)
√

Z(2ω)

Z0
χ (2)

e + Z0

Z(ω)
√

Z(2ω)
χ (2)

m , (11)

where Z(ω) =
√

μ(ω)
ε(ω) is the effective impedance of the NLMM

and Z0 is the impedance of free space. This is a slight
modification to the usual definition in a purely electric
medium (see [42], p. 445). With this definition, the corre-
sponding material figure of merit of the nonlinear dielectric
alone is

κ
(2)
d = Z

3/2
d

Z0
χ

(2)
d , (12)

where the subscript d refers to the properties of the dielectric.
For consistency, we define an analogous material figure of
merit for SPM,

κ (3) = Z(ω)2

Z0
χ (3)

e + Z0

Z(ω)2
χ (3)

m , (13)

with units of m2/W. It can be shown that the first-order
correction in the power-dependent refractive index is directly
related to this figure and given by �n = 3

4κ (3)I , where I is the
field intensity. The material figure of merit in the third-order
nonlinear dielectric alone is given by

κ
(3)
d = Z2

d

Z0
χ

(3)
d . (14)

We reiterate here that the deviations of the NLMM’s
effective nonlinearities from that of the embedding medium
are not due to the addition of nonlinearities, as we neglect
the nonlinearity of the metal structures themselves, but rather,
they come from the induced localization of the fundamental
fields within the embedding dielectric. Additionally, since the
retrieved properties are necessarily a sort of average over the
whole unit cell, it may seem that the small volumes in which
the majority of the field localization occurs will have the effect
of counterbalancing the enhancement. Indeed, the additional
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nonlinear activity in the areas of high field concentration will
be accompanied by reduced nonlinear activity in the areas of
low field concentration. However, since the local nonlinear
effects scale as higher-order powers of the local fields, the
field localization is in effect weighted more strongly than the
effective reduction in contributing volume, and consequently,
the bulk nonlinear susceptibility must take on a larger value
than the background medium alone. To measure the degree
of field localization, we introduce the localization factor,
analogous to the enhancement factors employed in previous
plasmonic studies [21,22],

L(|E|α) =
∫
V

|EMM(�r)|αd�r3∫
V

|Ehom(�r)|αd�r3
, (15)

where the numerator is a volume integral of the fundamental
electric-field norm raised to the α power, integrated over
the metamaterial unit cell. The denominator is the same
integral but for a homogeneous slab with equivalent linear
properties. Thus, L(|E|α) is a direct measure of the degree
of inhomogeneity in the fields within the metamaterial,
normalized by an otherwise equivalent homogeneous medium.
As we show in the following sections, the deviations of the
NLMM’s effective nonlinearities from that of the embedding
medium can be quite dramatic, especially when the structures
are operated near resonance, where the second- and third-order
localization factors reach their maximums.

A. The nonlinear electric-field-coupled resonator

The ELC is a resonant metamaterial structure designed to
exhibit an electric resonance [43]. The dominant coupling of
the incident fields into and out of this structure is capacitive,
and thus it is classified as an electric resonator. At resonance,
the incident electric fields become highly confined in the
capacitive gaps, as shown in Fig. 2(b), making this an ideal
structure for the resonant enhancement of the nonlinearities of
any medium placed in these gaps.

The ELC employed here, displayed in Fig. 2(a), is
composed of 50-nm-thick, 100-nm-wide silver with two
100-nm gaps. The outer dimensions of the silver pattern are
1.6 μm, while the ELC itself is arranged in a cubic lattice
with a lattice constant of 2 μm. For the SHG simulation,
the nonlinear dielectric is given a nonzero second-order
electric susceptibility for both fundamental and harmonic
fields polarized in the x direction. All other elements of
the nonlinear tensors, both second and third order, are zero.
For SPM, the dielectric’s nonlinearity takes the form of a
nonzero third-order electric susceptibility for fields polarized
in the x direction. The retrieved linear properties are shown
in Fig. 2(c). The retrieved values of the second-order and
third-order susceptibilities and material figures of merit,
normalized by the nonlinear dielectric, are displayed in
Figs. 2(e)–2(j). The higher-order magnetic susceptibilities
are normalized by the impedance of free space where
appropriate.

As expected, the retrieved nonlinearities of the ELC
show massive enhancements near the ELC’s resonance. The
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FIG. 2. (Color online) (a) An ELC embedded in a nonlinear dielectric. (b) The electric-field norm at the resonance frequency. (c) The
retrieved linear properties. (d) Log-scale plot of the second- and third-order electric-field localization factors [Eq. (15)]. (e)–(j) The retrieved
electric and magnetic higher-order susceptibilities and corresponding material figures of merit, normalized by the nonlinear bulk dielectric:
(e)–(g) are the second-order properties corresponding to SHG, and (h)–(j) are the third-order properties corresponding to SPM. The real (solid
blue curve) and imaginary (dashed green curve) parts are shown for the higher-order susceptibilities.
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ALEC ROSE, STÉPHANE LAROUCHE, AND DAVID R. SMITH PHYSICAL REVIEW A 84, 053805 (2011)

0 5 10 15 20
10

0

10
1

10
2

ω (2π×THz)

L
(|E

|α )

 

α = 2
α = 3

0

2

4

6

8

 

μ
μ

-10

-5

0

5

χ
(2

)
e

/
χ

(2
)

d

-5

0

5

10

χ
(2

)
m

/
χ

(2
)

d
Z

0

4 6 8 10
0

10

20

30

40

ω (2π×THz)
|κ(

2
)
/
κ

(2
)

d
|

-500

0

500

1000

1500

χ
(3

)
e

/
χ

(3
)

d

-3000

-2000

-1000

0

1000

χ
(3

)
m

/
χ

(3
)

d
Z

2 0

4 6 8 10
0

5000

10000

15000

ω (2π×THz)

|κ(
3
)
/
κ

(3
)

d
|

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

y
x

z

H
E

k

high

low

FIG. 3. (Color online) (a) An SRR embedded in a nonlinear dielectric. (b) The electric-field norm at the resonance frequency. (c) The
retrieved linear properties. (d) Log-scale plot of the second- and third-order electric-field localization factors [Eq. (15)]. (e)–(j) The retrieved
electric and magnetic higher-order susceptibilities and corresponding material figures of merit, normalized by the nonlinear bulk dielectric:
(e)–(g) are the second-order properties corresponding to SHG, and (h)–(j) are the third-order properties corresponding to SPM. The real (solid
blue curve) and imaginary (dashed green curve) parts are shown for the higher-order susceptibilities.

second-order and third-order figures of merit show peak values
that are two orders and four orders of magnitude larger than
the embedding nonlinear dielectric, respectively. The retrieved
nonlinear susceptibilities themselves also show the expected
Lorentzian features in their real and imaginary parts. It is
noteworthy that the second-order properties show weaker (one
order of magnitude) enhancements when the fundamental
frequency corresponds to half the resonance frequency. This
behavior has been predicted before in several analytical
studies [18,33]. The nonlinear ELC also seems to support
a non-negligible magnetic nonlinearity in both the SHG
and SPM retrievals. However, the excitation of a magnetic
moment in this structure for this particular polarization is
impossible, and so these nonlinearities must be attributed to
spatial dispersion. While spatial dispersion in the nonlinear
properties of metamaterials will be treated elsewhere [44], we
content ourselves here by noting that the magnetic properties
have roughly a π phase relation with the corresponding electric
properties, akin to the “antiresonance” features common to
linear metamaterial retrievals [45].

B. The nonlinear split-ring resonator

The second structure we consider is the SRR, displayed
in Fig. 3(a), which also exhibits an LC-type resonance. In
contrast to the ELC, however, the dominant coupling in this
structure is inductive, coming from magnetic flux passing
through the interior of the metallic ring. As such, the SRR
is a magnetic resonator, and on resonance the electric fields,
shown in Fig. 3(b), become highly confined in the capacitive

gap. Though the only nonlinearity present is the electric
nonlinearity of the dielectric medium, the coupling of the
generated electric fields to the magnetic resonance of the SRR
makes the dominant effective nonlinearity magnetic in nature.

Like the ELC, the SRR is composed of 50-nm-thick,
100-nm-wide silver, but with a single 100-nm gap. The outer
dimensions and lattice constant are identical to the ELC.
However, since the capacitive gap is rotated compared to
the ELC, the highly localized electric fields of the SRR are
dominant in the z direction. Thus, the dielectric’s nonlinearities
considered in these simulations only involve fields polarized
in the z direction, and, again, all other elements of the
dielectric’s nonlinear tensors are set to zero. The retrieved
linear, second-order, and third-order properties are displayed
in Figs. 3(c)–3(j).

Again, for excitation near the resonance frequency of
the SRR, the retrieved nonlinearities are highly enhanced
compared to the bulk nonlinear dielectric. Many of the same
features in the retrieval of the ELC are present, but with
the difference that the effective nonlinearities are mostly
magnetic in nature. The spatial dispersion effects are also
slightly mitigated due to the lower resonance frequency of
the SRR. Furthermore, while the SPM material figure of
merit is slightly larger for the SRR, the ELC shows roughly
double the enhancement in SHG. This can be explained in
terms of the necessary overlap of the field distributions at the
fundamental and second-harmonic frequencies required for
efficient conversion in a bulk material, similar to the nonlinear
coupling between different modes in a waveguide. Because
the x component of the local electric field is dominant at
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FIG. 4. (Color online) (a) A cut-wire medium embedded in a nonlinear dielectric. (b) The electric-field norm at 10 THz. (c) The retrieved
linear properties. (d) Log-scale plot of the second- and third-order electric-field localization factors [Eq. (15)]. (e)–(j) The retrieved electric
and magnetic higher-order susceptibilities and corresponding material figures of merit, normalized by the nonlinear bulk dielectric: (e)–(g) are
the second-order properties corresponding to SHG, and (h)–(j) are the third-order properties corresponding to SPM. The real (solid blue curve)
and imaginary (dashed green curve) parts are shown for the higher-order susceptibilities.

all frequencies in the ELC, the coupling between the field
distributions at different frequencies is more efficient than
in the SRR, where the z component of the local electric
field is only strong for frequencies sufficiently close to the
resonance. For SPM, where all involved frequencies are
degenerate, the mode overlap is identically unity in both
structures.

C. The nonlinear cut-wire medium

The cut-wire medium, on the other hand, can be employed
as a nonresonant metamaterial, often to provide a relatively
broadband electric response. Though this medium will lack
the dramatic resonance-induced enhancements of the SRR
and ELC, it supports an inhomogeneous field distribution,
as seen in Fig. 4(b), with electric fields weakly confined to
the capacitive gap between neighboring cut wires. Like the
ELC, coupling between this structure and the incident fields is
capacitive in nature.

The cut-wire structure, shown in Fig. 4(a), is composed
of a silver rectangular rod, 100 nm thick and 200 nm
wide, with a gap of 100 nm between neighboring cut wires.
These dimensions are thicker than the previous structures in
order to reduce the cut wire’s effective inductance, ensuring
operation well below the structure’s resonance. The lattice
constant is 2 μm in all directions. For the SHG simulation,
the embedding dielectric is given a nonzero second-order
electric susceptibility for both fundamental and harmonic
fields polarized in the x direction. For SPM, the dielectric’s
nonlinearity takes the form of a nonzero third-order electric

susceptibility for fields polarized in the x direction. The
retrieved linear, second-order, and third-order properties are
displayed in Figs. 4(c)–4(j).

The retrieved nonlinearities of the cut-wire medium are
very different from the previous two resonant structures. For
a fundamental frequency of 10 THz, roughly the frequency
of interest for this analysis, the enhancement in SHG is
fivefold, while the nonlinearity for SPM is 56 times greater
than the nonlinear dielectric alone. While these enhancements
are much less dramatic than the resonant SRR and ELC, they
deserve some discussion. Unlike its resonant counterparts, the
cut-wire medium shows fairly broadband enhancements of the
material figures of merit, asymptoting at low frequencies to
values greater than unity. Moreover, these enhancements are
not accompanied by significant losses. In fact, the effective
loss tangents at 10 and 20 THz in the cut-wire medium
are just 1.1 × 10−3 and 2.8 × 10−3, respectively. Spatial
dispersion effects are also much less prominent. Thus, there
exists a significant trade-off between resonant and nonresonant
metamaterial structures in terms of enhancing nonlinear
phenomena.

D. The nonlinear I-beam structure

The I-beam structure belongs to the same category of
nonresonant electric metamaterials as the previous cut-wire
medium, but with the extended arms providing additional
capacitance. Due to the increased capacitance, the I beam
supports a stronger electric response and confines a greater
fraction of the incident field to the gaps between neighboring
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FIG. 5. (Color online) (a) An I-beam structure embedded in a nonlinear dielectric. (b) The electric-field norm at 10 THz. (c) The retrieved
linear properties. (d) Log-scale plot of the second- and third-order electric-field localization factors [Eq. (15)]. (e)–(j) The retrieved electric
and magnetic higher-order susceptibilities and corresponding material figures of merit, normalized by the nonlinear bulk dielectric: (e)–(g) are
the second-order properties corresponding to SHG, and (h)–(j) are the third-order properties corresponding to SPM. The real (solid blue curve)
and imaginary (dashed green curve) parts are shown for the higher-order susceptibilities.

structures than the cut-wire medium, as seen in Figs. 5(b)
and 5(d). Thus, this medium can be expected to show a
strong, broadband enhancement of the embedding medium’s
nonlinearities.

The I beam, displayed in Fig. 5(a), consists of
100-nm-thick, 200-nm-wide silver in the shape of an I,
with arms that extend 1.6 μm from tip to tip. The lattice
constant and gap between neighboring I beams are 2 μm and
100 nm, respectively. The embedding dielectric used is the
same as the nonlinear cut-wire and ELC mediums. The
retrieved linear, second-order, and third-order properties are
displayed in Figs. 5(c)–5(j).

As expected, the I-beam structure shows similar features
to the cut-wire medium, but with much larger overall en-
hancements. For a fundamental frequency of 10 THz, the
SHG and SPM material figures of merit are enhanced by
a factor of 55 and 400, respectively, both roughly an order
of magnitude larger than the cut-wire medium. However, the
usable frequency range of the I-beam structure is significantly
reduced: the capacitance is so large that the resonance
frequency of this structure is brought into view. The massive
spatial dispersion in both the linear and nonlinear properties
call into question the validity of the SHG retrieval at 10 THz, as
the second-harmonic frequency passes through the resonance
frequency well below the 10-THz target frequency for the
fundamental. However, the low-frequency asymptotic value
for SHG is still valid along with the SPM results, which do
not suffer from involving a frequency at twice the fundamental
frequency. Additionally, at 10 THz, the effective loss tangent
is 1.1 × 10−2, more than small enough to consider the nearly

three orders of magnitude enhancement in the SPM material
figure of merit a low-loss, nonresonant effect. Thus, there
exists a trade-off between the cut-wire and I-beam structures,
where the operational frequencies, the loss tangent, and the
magnitude of the enhancement can be weighed against one
another for a given application.

IV. CALCULATION OF THE NONLINEAR
CONVERSION EFFICIENCIES

The retrieved parameters of the previous section fully
characterize the four nonlinear metamaterials, allowing for
the metamaterials to be analyzed as if they were perfectly
homogeneous materials. Thus, we are in a position to give
a more thorough analysis of the NLMMs in terms of their
applicability in realistic nonlinear devices. In particular,
the NLMMs presented here offer competing effects in the
enhancement of nonlinear phenomena: on the one hand,
they show nonlinearities that are orders of magnitude larger
than the embedding medium alone; on the other hand, the
periodic metallic inclusions are a major source of ohmic losses,
constraining the maximum lengths of any resulting devices.
Before NLMMs can be endorsed as an avenue to improving
on existing nonlinear devices, the NLMM enhancement effect
must be weighed against the accompanying losses in the
context of realistic device specifications. In this section, using
a coupled-mode theory derived for homogeneous materials,
we calculate the figures of merit and conversion efficiencies
for nonlinear devices based on slabs of the four NLMMs,
analyzing both the second- and third-order processes. We
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show that, despite the severe constraints imposed by material
losses, the NLMMs are able to support reasonable conversion
efficiencies in the form of compact, even subwavelength,
devices.

A. Second-harmonic generation

SHG from a monochromatic, planar wave, traveling in
a homogeneous second-order nonlinear medium, can be
described by a coupled-mode analysis. Using the simplifying
assumptions of nondepleted pump and slowly varying ampli-
tude, the following expression can be derived for the output
second-harmonic intensity [42]:

Iout(2ω) = ω2

2c2
|κ (2)|2[Iin(ω)]2L2h(L), (16)

where L is the total interaction length, Iin(ω) is the input
intensity of the fundamental wave, and

h(L) = exp

[
−

(
α(2ω)

2
+ α(ω)

)
L

]
[sinh(�αL/2)]2

(�αL/2)2
(17)

contains the contributions from the absorption coefficients
α(ω) at both frequencies, where �α is given by

�α = α(2ω)

2
− α(ω). (18)

Note that, for the sake of narrowing the focus of the analysis,
the terms dependent on the phase mismatch between the
interacting waves have been removed.

From the above, we can define the system’s conversion
efficiency as

η(2) = Iout(2ω)

Iin(ω)
= ω2

2c2
|κ (2)|2L2h(L)Iin(ω). (19)

In determining the maximum efficiency and the corresponding
device length for SHG, we find the quantity L2h(L) to be
maximized by an optimum interaction length

Lopt = 2

�α
tanh−1

(
�α

α(2ω)/2 + α(ω)

)
. (20)

For interaction lengths longer than Lopt, linear absorption
begins to dominate, and the conversion efficiency declines.

We use Eqs. (19) and (20), together with the retrieved
parameters of the four NLMMs, to calculate realistic device
sizes and efficiencies. For the ELC and SRR, we choose
optimum fundamental frequencies close to the respective
resonance frequencies to maximize the resonant enhancement.
A fundamental frequency of 10 THz is used for the cut-wire
medium, while the I-beam structure, to avoid significant spatial
dispersion, is operated at 5 THz, noting that the efficiencies
of these nonresonant structures are characteristic of broad
frequency bands. The ratio of the efficiencies of the NLMMs
to the nonlinear dielectric alone is given by

F (η(2)) = η(2)

η
(2)
d

= h(L)

∣∣∣∣∣
κ (2)

κ
(2)
d

∣∣∣∣∣
2

. (21)

This quantity directly compares devices of the same lengths,
operating frequencies, and input powers, while taking into
account both the enhancement effect and the additional losses

TABLE I. Optimal lengths, efficiencies, and normalized effi-
ciencies for SHG in each NLMM. The conversion efficiencies are
calculated using the value χ

(2)
d = 20 pm/V for the nonlinear dielectric

and assuming an input intensity of 40 MW/cm2.

NLMM ω (2π×THz) Lopt (μm) η(2)/10−6 F (η(2))

ELC 11.4 4 8.65 1170
SRR 8.6 4 1.07 253
Cut wire 10 650 456.12 3.03
I beam 5 216 132.32 31.9

introduced by the periodic metallic inclusions. Thus, F (η(2))
represents a complete, albeit simplistic, measure of the relative
performances of NLMMs and natural materials as frequency
doublers. The optimum lengths and efficiencies for all four
NLMMs are displayed in Table I, assuming a value of χ

(2)
d =

20 pm/V for the embedding nonlinear dielectric and an input
intensity of Iin(ω) = 40 MW/cm2.

Though the above analysis ignores the role of phase match-
ing, this interesting and crucial factor deserves a few words.
In principal, conventional approaches to phase matching [33]
should be largely applicable to NLMMs based on periodic
inclusions in a nonlinear dielectric by applying the same tech-
niques to the embedding medium itself. However, due to the
range and configurability in their linear properties, NLMMs
may offer unique advantages in overcoming phase mismatch.
For example, a number of recent studies have revealed
unique configurations for phase matching and quasiphase
matching (QPM) that are singular to NLMMs [11,17,46,47].
Furthermore, the relatively small interaction lengths proposed
in Table I have the added effect of relaxing the constraints
imposed by phase mismatch. As a numerical example, the
coherence length in the nonlinear ELC for a fundamental
frequency of 11.4 THz is Lcoh = 2π/�k = 14.9 μm, which
is actually larger than the optimum interaction length, making
phase mismatch essentially a nonfactor in this structure. Thus,
phase matching should not pose a significant challenge to the
implementation of NLMMs in nonlinear devices and could
ultimately prove to be an advantage. A detailed analysis of
phase matching in NLMMs will be treated in a subsequent
study [48].

B. Self-phase modulation

Among third-order nonlinear processes, SPM has unique
applications with its own set of definitions and figures of
merit. However, since it is our intention to investigate the
enhancement properties of NLMMs on third-order processes
in general, we omit a discussion of the particulars of SPM
and instead describe the process through a coupled-mode
analysis, analogous to SHG. Specifically, we continue to
invoke the nondepleted pump approximation and calculate
the intensity of the nonlinear scattered fields. Though the
nondepleted pump is inappropriate for describing most devices
involving SPM, such as directional couplers, the following
analysis and figures of merit have the advantage of being
readily applicable to third-order processes in general, such as
nondegenerate four-wave mixing. For a more detailed analysis

053805-9
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TABLE II. Optimal lengths and conversion efficiencies for SPM
in each NLMM. The conversion rates are calculated using the value
χ

(3)
d = 10−20 m2/V2 for the nonlinear dielectric.

NLMM ω (2π×THz) Lopt (μm) η(3)/10−7 F (η(3))

ELC 11.5 2 4.25 8.25 × 106

SRR 8.7 2 8.70 2.95 × 107

Cut wire 10 1124 51.28 417
I beam 10 66 9.39 2.21 × 104

of metamaterials for optical switching and related applications,
the reader is referred to Ref. [49].

Let us consider a monochromatic, planar wave traveling
in a homogeneous third-order nonlinear medium. In the non-
depleted pump limit and taking the slowly varying amplitude
approximation, we can describe the SPM process in terms of
the intensity of the nonlinear scattered fields, given by

INL
out (ω) = 9

16

ω2

c2
|κ (3)|2L2g(L)

[
I FF

in (ω)
]3

, (22)

where

g(L) = exp [−2α(ω)L] (23)

contains the effect of propagation losses on efficiency. It
follows that the conversion efficiency is given by the ratio
of the nonlinear scattered intensity to the input intensity,

η(3) = INL
out (ω)

I FF
in (ω)

= 9

16

ω2

c2
|κ (3)|2L2g(L)

[
I FF

in (ω)
]2

. (24)

As before, we find an optimum interaction length by maxi-
mizing the quantity L2g(L), so that maximum efficiency is
obtained for a slab of length

Lopt = 1

α(ω)
. (25)

Normalizing Eq. (24) by the efficiency of the dielectric alone,
we arrive at the figure of merit describing the enhancement of
third-order nonlinear process in the four NLMMs:

F (η(3)) = η(3)

η
(3)
d

= g(L)

∣∣∣∣∣
κ (3)

κ
(3)
d

∣∣∣∣∣
2

. (26)

The optimum lengths and conversion efficiencies for SPM in
the four NLMMs are displayed in Table II, assuming a value
of χ

(3)
d = 10−20 m2/V2 for the embedding nonlinear dielectric

and an input intensity of Iin(ω) = 40 MW/cm2.
In the resonant structures for both the second-order and

third-order nonlinear processes, however, the linear absorption
in the metamaterials is strong enough to potentially invalidate
the slowly varying amplitude approximation. In order to verify
the above results, the conversion efficiencies of the ELC and
SRR were calculated directly using the nonlinear transfer-
matrix method [31], finding the error to be less than 25% in
all cases.

V. DISCUSSION AND CONCLUSION

The resonant ELC and SRR structures showed the largest
enhancements to the nonlinearities of the embedding medium,

roughly two and four orders of magnitude for SHG and SPM,
respectively. However, the resonant nature of these structures
brings with it a narrow band of operation as well as extreme
losses. Thus, applications utilizing these structures will likely
be constrained to slabs only a handful of unit cells thick, as is
demonstrated in Tables I and II. Still, the sheer magnitude of
the enhancement makes these structures intriguing, allowing
even subwavelength slabs to support reasonable conversion
efficiencies. The cut-wire and I-beam structures, on the other
hand, can operate in the nonresonant regime with low losses.
By varying the capacitance in these metamaterials, a trade-off
can be found between the operating frequency range and
the magnitude of the effective nonlinearity, with potential
enhancements of over one and two orders of magnitude in
SHG and SPM, respectively. Due to the low losses, even
higher efficiencies are supported in these structures, though
with a less dramatic reduction in device length than the ELC
and SRR mediums. Furthermore, the structures presented here
were not optimized, and improved figures of merit should be
achievable by varying the geometries and materials [50].

The SHG and SPM simulations and retrievals performed
here are intended to be indicative of second-order and third-
order nonlinear processes in general. That is to say, similar
enhancements can be expected in the material figures of merit
of any three-wave mixing and four-wave mixing processes,
including those involving mixed polarizations, with the mag-
nitudes depending on the amount of field localization and the
mode overlap of the various interacting waves. However, it
should be noted that deviation of one or more of the interacting
frequencies from the resonant frequency will tend to reduce
the overall enhancement in the resonant structures.

While the nonlinear dielectrics employed in these simula-
tions were not modeled after any particular known substance,
there are an abundance of materials that could be envisioned
in this role. These include ferroelectrics, semiconductors,
and the various glasses and polymers possessing relatively
large nonlinearities [51,52]. Alternatively, the nonlinearities of
metals themselves have been shown to be significant [53–57].
For certain structures, it may be that the nonlinearities of the
metal are comparable to or even larger than the nonlinearities
of the embedding medium. For metamaterials composed of
nonlinear metallic nanostructures, the same principles and
techniques employed here can be used to calculate the effective
bulk nonlinearities, using an appropriate model for the local
nonlinear processes in the metal components [58].

For fabrication concerns, no transverse feature sizes smaller
than 100 nm were considered, and as such, these structures
should be realizable by current techniques. In fact, for more
accurate fabrication methods, these structures can be scaled to
smaller dimensions and thus moved to higher operative fre-
quencies while maintaining similar enhancement properties.
However, for frequencies approaching the plasma frequency
of silver, the effective losses will tend to increase, lowering the
quality factors of the resonant structures [50]. The broadband
structures, in contrast, should scale better, owing both to their
simplified design and nonresonant nature.

In conclusion, we have demonstrated here, through full-
wave simulations and by employing the transfer-matrix-based
nonlinear retrieval method, a quantitative analysis of the
enhancement of the effective nonlinearities of metamaterials
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composed of periodic metallic structures embedded in non-
linear dielectrics. Our results confirm the prediction that
nonlinear metamaterials can support drastically enhanced
nonlinearities compared to their constituent elements, with
improvements as high as two and four orders of magnitude
for the second- and third-order material figures of merit,
respectively. Such giant enhancements, together with the
unique and configurable properties of metamaterials, have the
potential to comprise the basis of a new generation of efficient
and compact nonlinear devices.
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APPENDIX: SECOND-HARMONIC GENERATION IN A
DOUBLY NONLINEAR MEDIUM

We present here a derivation of the second-harmonic inten-
sity in a medium with second-order nonlinear dependencies
on the incident fields in both the electric polarization and
magnetization. This analysis assumes plane waves with a
single polarization, no losses, and real material parameters but
can be extended to these more complex regimes by standard
perturbations [59]. A similar development can be employed
for other three- and four-wave mixing processes in a doubly
nonlinear medium.

Let us consider a linearly polarized plane wave traveling
with angular frequency ω through a homogeneous, isotropic
medium. We orient our axes such that the electric field is
along the x axis, magnetic field is along the y axis, and
propagation is in the positive z direction. Using the convention
that Z2 = √

μ2/ε2 and likewise for the other field variables,
the x component of the second-order electric polarization at
frequency 2ω is given by [33]

P (2)(2ω) = 1
2ε0χ

(2)
e (2ω; ω,ω) [E(ω)]2 , (A1)

where, owing to the linear polarization of the involved fields,
we have substituted scalars for the usual vectors and tensors.
The magnetization is defined in an analogous way:

M (2)(2ω) = 1
2χ (2)

m (2ω; ω,ω) [H (ω)]2 . (A2)

Thus, the material equations can be written as

D(2ω) = ε(2ω)E(2ω) + P (2)(2ω), (A3)

B(2ω) = μ(2ω)H (2ω) + μ0M
(2)(2ω), (A4)

where ε(ω) and μ(ω) are the absolute, frequency-dependent
permittivity and permeability, respectively. For brevity, the
frequency dependence of the field quantities will be denoted
through subscripts.

We start from Maxwell’s equations for time-harmonic
fields, considering a second-order polarization and magne-
tization,

�∇ × �H2 = −i2ω(ε2 �E2 + �P (2)), (A5)
�∇ × �E2 = i2ω(μ2 �H2 + μ0 �M (2)), (A6)

�∇ · �D2 = 0, (A7)
�∇ · �B2 = 0. (A8)

In the absence of the nonlinear terms and with the above
assumptions, Eqs. (A5)–(A8) have solutions of the form

�E2 = [e+
2 exp(ik2z) + e−

2 exp(−ik2z)]x̂, (A9)

�H2 = [h+
2 exp(ik2z) + h−

2 exp(−ik2z)]ŷ, (A10)

where k2 = 2ω
√

ε2μ2. We take the ansatz that the solutions in
the presence of the nonlinearities are simply a perturbation of
the solutions to the linear problem, where e±

2 and h±
2 are taken

to be spatially varying in z. Furthermore, we assume the slowly
varying amplitude approximation, such that the forward- and
backward-propagating terms can be considered decoupled
from each other and thus solved independently. Focusing
solely on the forward propagating terms, we substitute our
trial solutions into Eqs. (A5) and (A6), giving

−ik2H2 − dh2

dz
exp(ik2z) = −i2ω(ε2E2 + P (2)), (A11)

ik2E2 + de2

dz
exp(ik2z) = i2ω(μ2H2 + μ0M

(2)). (A12)

We solve Eq. (A11) for H2 and substitute this into Eq. (A12),

ik2E2 + de2

dz
exp(ik2z)

= i2ω

{
Z2

[
ε2E2+P (2)+ i

2ω

dh2

dz
exp(ik2z)

]
+ μ0M

(2)

}
,

(A13)

where Z2 = √
μ2/ε2 is the impedance of the medium. Re-

arranging and canceling terms, we arrive at the following
expression:(

de2

dz
+ Z2

dh2

dz

)
exp(ik2z) = i2ω(Z2P

(2) + μ0M
(2)).

(A14)

Next, we introduce the quantity γ = e2 + Z2h2 and use
Eqs. (A1) and (A2) to give

dγ

dz
= iω

(
Z2ε0χ

(2)
e e2

1 + μ0χ
(2)
m h2

1

)
exp(i�kz), (A15)

where �k = 2k1 − k2 is the phase mismatch.
For simplicity, we assume the nondepleted pump approxi-

mation, such that e1 and h1 are constants that satisfy the linear
form of Maxwell’s equations with e1 = Z1h1. Thus, the above
equation can be integrated over an interaction length L with
the boundary condition γ (0) = 0, giving

γ (L) = iω
√

Z2
e2

1

Z1

exp(i�kL) − 1

i�k

×
(

ε0Z1

√
Z2χ

(2)
e + μ0

1

Z1

√
Z2

χ (2)
m

)
. (A16)

If at the point z = L a significant amount of second-harmonic
field has built up, we can take the approximation that | de2

dz
(L)|

and |μ0ωχ (2)
m h2

1| are small compared to the other terms
in Eq. (A12), implying that ik2E2(L) = i2ωμ2H2(L), or
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equivalently e2(L) = Z2h2(L). Thus, in this limit, γ (L) =
2e2(L), and we find that

e2(L) = i
ω

2c

√
Z2

Z1
e2

1κ
(2) exp(i�kL) − 1

i�k
, (A17)

where we have introduced the material figure of merit

κ (2) = Z1

√
Z2

Z0
χ (2)

e + Z0

Z1

√
Z2

χ (2)
m (A18)

and Z0 is the impedance of free space. Looking at this equation,
it is clear that the electric field at the second-harmonic

is a phase-sensitive superposition of the contributions from
the electric and magnetic nonlinearities alone. Subsequently,
we define the fundamental and second-harmonic intensities
according to

I1 = 1

2Z1
|e1|2, I2(L) = 1

2Z2
|e2(L)|2, (A19)

and finally obtain

I2(L) = 1

2

ω2

c2
|κ (2)|2I 2

1 L2 sin2
(

�kL
2

)
(

�kL
2

)2 . (A20)
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