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In this work we report a quantum interference mediated control of the resonance profiles in a generic three-
level system and investigate its effect on key quantum interference (QI) phenomena. Namely in a three-level
configuration with doublets in the ground or excited states, we show control over enhancement and suppression
of the emission (absorption) profiles. This is achieved by manipulation of the strength of QI and the energy
spacing of the doublets. We analyze the application of such QI-induced control of the resonance profile in the
framework of two limiting cases of lasing without inversion and photodetection.

DOI: 10.1103/PhysRevA.84.053803 PACS number(s): 42.50.Gy, 42.50.Lc, 73.21.−b, 78.56.−a

I. INTRODUCTION

Study of quantum interference (QI) had led to the discovery
of numerous fascinating phenomena in various types of
systems ranging from atoms to biomolecules [1–3]. In atomic
systems, for example, one of the earliest known effects
of QI is the modification of the absorption profiles that
comes about due to interference among the bound-bound and
bound-continuum transitions, a phenomenon now called Fano
interference [4]. Agarwal [5] later showed how QI among
decay pathways can lead to generation of coherence and
population trapping in a multilevel atomic configuration. A
counterintuitive application of such Agarwal-Fano QI was
discovered by Harris in the form of inversionless lasing (LWI)
[6]. This nonenergy-conserving phenomena had thereof led
to several theoretical investigations [7–9] and experimental
demonstration [10–12]. Furthermore, during the past decade
study of QI effects has been extended to tailored semiconductor
nanostructures like quantum wells and dots due to coherent
resonant tunneling owing to their potential applications in
photodetection [13,14], lasing [15,16], quantum computing,
and quantum circuitry [17,18].

In the seminal work of Scully [19] it was shown that
coherence induced by an external source can break the detailed
balance between emission and absorption and enhance, in
principle, the quantum efficiency of a photovoltaic cell.
Reference [19] demonstrated the role of quantum coherence
in a simple way. In a recent work we showed that coherence
induced by QI can enhance the power of the Photocell and
Laser Quantum Heat Engines [20,21] following the earlier
work on the Photo-Carnot Engine enhanced by quantum
coherence [22]. The main idea is that the quantum coherence
induced by either an external drive or QI among the decay paths
alters the detailed balance between emission and absorption
and can enhance the efficiency of the system compared to
that without quantum coherence. In the case of photovoltaic
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cells, quantum coherence leads to suppression of radiative
recombination [19] or enhancement of absorption [21] and
thus, an increase in the efficiency. Furthermore, the results
of Ref. [19] have initiated debates about the principle issues.
In his article, Kirk [23] attempts to investigate the limits of
Ref. [19] and, in particular, argues that Fano interference does
not break detailed balance of the photocell. Note that noise-
induced coherence via Fano interference was later shown to
indeed enhance the balance breaking in photovoltaics where it
leads to an increase in power [20,21,24,25].

These investigations have hence generated renewed interest
in the fundamental question of noise-induced interference ef-
fects on the emission and absorption profile of an atom or atom-
like system (excitons in quantum wells or dots) [26]. As such,
we in this paper undertake a thorough theoretical investigation
of the vacuum-induced interference effects on the resonance
line profiles of a three-level system with doublets in ground
(excited)-state configuration (see Fig. 1). Our analysis is quite
general and applies to atoms, molecules, as well as quantum
wells and dots. We study the time profile of absorption and
emission probabilities and derive its close form expression in
the steady-state regime. In the present work we use a simple
probability amplitude method to calculate the resonance pro-
files since the states involved in calculation have a zero-photon
occupation number. The latter is equivalent to the density
matrix formalism usually used in this type of problem [20,21].

The probabilities of emission and absorption are found
to have strong functional dependence on the energy spacing
between the doublets (2�) and interaction strength p. In
the case of the atomic system, p is governed by a mutual
orientation of dipole moments. In semiconductor systems p

has a meaning of the phase shift acquired by the wave function
between two interfering pathways. This thus provides us with
two different parameters by which we can regulate the QI
in the system. For example, we show that depending on the
choice of energy spacing between the doublets compared to the
spontaneous decay rate we can use destructive interference to
achieve either LWI by enhancing the emission or photodetec-
tors and interferometers by reducing emission and enhancing
absorption. Moreover, depending on p we can manipulate the
interference type from destructive to constructive which can
significantly alter the resonance profiles (see Fig. 3).
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The outline of the paper is as follows. In Sec. II, we
present our theoretical model of the three-level system with the
doublet in the ground state and calculate the expression for the
probability of emission Pemiss and absorption Pabs in the long
time limit t � γ −1,�−1. Furthermore, we also give results
for emission and absorption probabilities for a three-level
configuration with the upper state doublet. In Sec. III, the
functional form of the ratio Pemiss/Pabs is presented to quantify
its dependence on the dipole alignment parameter p, energy
spacing (2�), and the radiative decay rates �,γ . We discuss
our results and propose a potential application of our model to
enhancement of emission in LWI configuration, enhancement
of absorption for photodetectors, and observation of QED
results on quantum beats in the semiclassical regime. Finally
in Sec. IV we conclude by summarizing our findings.

II. THEORETICAL MODEL

In order to investigate the effect of QI on the emission and
absorption profile of an atomic, molecular, or semiconductor
system we consider a three-level configuration with a ground-
state doublet |v1,2〉 and excited state |c〉 [see Fig. 1(a)]. The
three-level system is excited by the coherent field with the
central frequency ν so that the energies of state |v1,2〉 are
related to |c〉 as ν ± �, where � is half of the energy
spacing between the ground-state doublet. The ground-state
doublet |v1,2〉 decays to the reservoir state Rv with the
rate 2γ1,2, respectively, and the excited state decays to the
reservoir state Rc with the decay rate 2�. Furthermore,
states |v1,2〉 can represent either Zeeman sublevels in atoms,
vibrational levels within the electronic band in molecules or
intrasubband in semiconductors. Since the typical relaxation
rate of electronic (intersubband) transition is much smaller
than that of vibrational (intrasubband), we neglect the direct
decay process between level |c〉 and |v1,2〉. Note that the decay
of ground-state doublets |v1,2〉 to the same state |Rv〉 leads
to a vacuum-induced coherence among them. The physics of
this coherence is attributed to the Agarwal-Fano QI of the
transition amplitudes among the decay pathways. Note that
the analysis presented below is valid for the system with
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FIG. 1. (Color online) The scheme of the three-level system with
the doublet in the ground state (a) and in the excited state (b). Radiative
decay from the doublet states to the reservoir is 2γ while the excited
(ground) state to the reservoir is 2�.

the excited state doublet |c1,2〉 and single ground state |v〉
[as per Fig. 1(b); see discussion]. We will show later that
such QI plays a major role in the line profiles of an atomic
system [6,27]. The time-dependent amplitudes of the states
|v1,2〉 and |c〉 essentially exhibits the effect of coherence on
the dynamics of the system. The probability amplitude method
can be applied in the present system since states |v1,2〉 and
|c〉 have a zero-photon occupation number. Solving the time-
dependent Schrödinger equation, the dynamical evolution of
the probability amplitudes v1,2 and c of finding a system
in corresponding states |v1,2〉 and |c〉 (i.e., states with zero
photons) in Weisskopf-Wigner approximation is given by

v̇2(t) = −(γ2 + i�)v2(t) − p
√

γ1γ2v1(t) − i�2c(t), (1)

v̇1(t) = −(γ1 − i�)v1(t) − p
√

γ1γ2v2(t) − i�1c(t), (2)

ċ(t) = −i�2v2(t) − i�1v1(t) − �c(t), (3)

where �1,2 = ℘1,2E0/2h̄ and ℘1,2 are the respective Rabi fre-
quencies and dipole moments of the corresponding transitions
|v1,2〉 ↔ |c〉 with E0 being the amplitude of the applied electric
field. The term p

√
γ1γ2 arises due to QI of the decay pathways

of the ground-state doublet. It is clearly seen from the above set
of equations that this term for p �= 0 couples the amplitudes of
the states v1 and v2. Such a coupling is known as Agarwal-Fano
coupling in the literature [28] and has several implications
ranging from superradiance [29,30] and entanglement [30]
to quantum solar cells [19–21]. The interference strength is
typically determined in terms of the relative orientation of
the dipole moments of the decay transitions and is given by
coefficient p as

p = �℘v1Rv
· �℘v2Rv

| �℘v1Rv
|| �℘v2Rv

| , (4)

where �℘v1Rv
and �℘v2Rv

are the dipole moment corresponding
to the transition |v1〉 ↔ |Rv〉 and |v2〉 ↔ |Rv〉, respectively,
with p = ±1 exhibiting the maximal interference among the
decay paths. Here p = 1 corresponds to the two dipole moment
vectors parallel to each other on the other hand when they
are antiparallel p = −1. Nonorthogonal dipole moments in
optical transition have been generated using superposition of
singlet and triplet states due to spin-orbit coupling in sodium
dimers [31]. More generally, interference strength p is a phase
shift acquired by wave function between initial and final states.
Equations (1)–(3) can be written and solved in the dressed basis
using the approach developed by Scully [32] as discussed in
Appendix A for general p and in the presence of additional
decay rates �,γ . The probability of emission Pemiss defined
as a sum of population of the doublet |v1〉, |v2〉 and of the
reservoir state |Rv〉 due to conservation of probability, can be
written in terms of populations of states |c〉 and |Rc〉 as

Pemiss(τ |c) = 1 − |c(τ )|2 − 2�̃

∫ τ

0
|c(τ ′)|2dτ ′. (5)

In the long time limit, τ � 1,1/�̃ and assuming γ1 = γ2 = γ

for simplicity, the probability of emission defined in Eq. (5)
(derived in Appendix B) yields

Pemiss(∞|c) = (�̃ + 1)
(
�̃2

1 + �̃2
2

) − 2p�̃1�̃2

�̃[(�̃ + 1)2 + �̃2 − p2]
, (6)

053803-2



QUANTUM-INTERFERENCE-CONTROLLED RESONANCE . . . PHYSICAL REVIEW A 84, 053803 (2011)

where the tilde signifies that all the parameters are now
dimensionless as they are normalized by γ . The probability
of absorption from level |v1〉 can be evaluated in a similar
manner. For the initial conditions v1(0) = 1, v2(0) = 0 and
c(0) = 0 the probability of absorption Pabs is given by the sum
of population on states |c〉 and |Rc〉:

Pabs(τ |v1) = |c(τ )|2 + 2�̃

∫ τ

0
|c(τ ′)|2dτ ′, (7)

which yields the following expression in the long time limit,
τ � 1,1/�̃ (see Appendix B):

Pabs(∞|v1) = 1

D
{
[2(1 + �̃2)(1 + �̃) − �̃p2]�̃2

1

− 2(�̃ + 2)p�̃1�̃2 + (�̃ + 2)p2�̃2
2

}
, (8)

where D = 2(1 + �̃2 − p2)[(�̃ + 1)2 + �̃2 − p2]. The prob-
ability of absorption from level |v2〉 can be derived in the same
way as for the level |v1〉 by interchanging v1 ↔ v2 in Eq. (7)
and �̃1 ↔ �̃2 in Eq. (8). Comparison of Eq. (6) with Eq. (8)
yields that probability of emission and absorption can vary
substantially in the presence (p �= 0) or absence (p = 0) of
interference.

So far we have discussed a model with the doublet in the
ground state. Let us now consider the doublet in the excited
state [as shown in Fig. 1(b)]. In practice this configuration
is commonly used in semiconductor systems like quantum
wells and dots. The expression for the probability of emission
and absorption in the case of the excited state doublet can be
obtained as follows. If we start with |c1〉, the probability of
emission is given by

Pemiss(τ |c1) = |v(τ )|2 + 2�̃

∫ τ

0
|v(τ ′)|2dτ ′. (9)

Similarly, the probability of absorption from |v〉 yields

Pabs(τ |v) = 1 − |v(τ )|2 − 2�̃

∫ τ

0
|v(τ ′)|2dτ ′. (10)

The expression for the emission and absorption probability can
be calculated by following a procedure similar to that outlined
in Appendix B for the ground-state doublet. In the long time
limit t � γ −1,�−1, we find that the expression for emission
and absorption probabilities obtained from Eqs. (9) and (10)
reduces to Eqs. (8) and (6), respectively.

III. DISCUSSION

A. Applications to lasing without inversion
and photodetectors

The model discussed in the previous section is relevant
for the design of systems with a nonreciprocal relation
between emission and absorption. For instance, suppressed
absorption or/and enhanced emission in the laser systems
allows for operating without population inversion. On the
other hand enhanced absorption with suppressed emission
can result in the photodetector or photovoltaic (solar) cell
system with enhanced power output [20,21]. Both LWI and
photodetector schemes can be realized in atomic molecular
and semiconductor systems. In atoms Agarwal-Fano type QI
can arise between decay channels from magnetic sublevels.

In molecular systems on the other hand, decay pathways of
different vibrational and rotational levels lead to asymmetric
absorption and emission profiles due to interference. In the case
of semiconductors, Agarwal-Fano interference comes about
quite naturally in a system of two quantum wells or dots
grown at nanometer separations [15,16]. The tunneling and
Förster interactions among the wells and dots renormalizes the
bare energies and bare states of the system thereby creating
new eigenstates, which then reveals the interference in decay
channels through tunneling to the same continuum [32,33].
Note that QI and coherence effects in semiconductors are
strongly effected by the presence of the dephasing environment
and hence experiments in these systems are carried out at very
low temperatures (10 K). This thereby restricts their practical
feasibility for various applications involving QI. However,
recently a quantum dot photodetector enhanced by Fano-type
interference assisted with a metallic hole array was reported
operating at 77 K [14]. Hence in the near future realization
of Fano-like QI effects in nanostructures and its various
applications might be achievable even at room temperatures.

To put the above ideas into perspective, we discuss
the functional dependence of the emission and absorption
probabilities on the interference strength p and the level
spacing � in the steady-state and transient regime. We show
in Fig. 2 the steady-state behavior and temporal evolution
of emission and absorption probabilities for different values
of p and �. Figures in the upper panels [Figs. 2(a)–2(c)]
correspond to large level spacing compared to spontaneous
decay rate � � γ (�̃ � 1). The steady-state emission profile
is seen to be strongly influenced by the strength of QI. It
varies from its minimum at p = 1 to maximum at p = −1 [see
Fig. 2(a)]. The enhancement in emission is found to be almost
tenfold. However, for absorption the effect of interference is
not significant as p varies from −1 to 1. Therefore, for p = −1
one can achieve the regime with the largest emission, which
can be useful in inversionless lasing schemes. On the other
hand at p = 1, as emission reaches its minimum, it is attractive
in realization of photodetectors and photovoltaic devices. Note
that in the semiconductor double quantum well system, control
over p can be achieved by manipulating the width of the
shallow well [16]. The time evolution of the resonance profiles
shown in Figs. 2(b) and 2(c) exhibits oscillatory behavior
in the emission and absorption probabilities. The period of
oscillations is determined by the frequency

√
�2 − γ 2 and

thus strongly depends on the level spacing. We see further that
the oscillations get damped with time and the probabilities
eventually reach the steady state.

For small level spacing � 
 γ (�̃ 
 1), the situation
becomes less trivial. In this case the behavior of emission and
absorption profiles is depicted in the lower panel of Figs. 2(d)–
2(f). In the steady state both the probabilities vary significantly
with the interference strength p [see Fig. 2(d)]. We find that
while absorption probability increases monotonically from
p = 1 to p = −1, emission is seen to first increase until
about p = −0.5 beyond which it rapidly decreases to reach
the minimum value at p = −1. This is in sharp contrast to
the behavior of the emission probability for large �. In the
time-dependent profiles [Figs. 2(e) and 2(f)] we find that in
comparison to the case of large splitting both emission and
absorption probabilities show no oscillations and reach their
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FIG. 2. (Color online) Steady state (a) and (d) and temporal evolution (b), (c), (e), and (f) of the emission and absorption probability for
the three-level model with the doublet in the ground state. (a)and (d) Show the effect of the parameter “p” on the steady-state values of the
probability of emission and absorption. (b) and (e) Show the temporal behavior of the probability of emission for three choices of “p.” (c) and
(f) Show the temporal behavior of the probability of absorption for the same choices of p as in (b) and (e). For numerical simulation we took
�1 = �2 = 0.3γ , � = 0.4γ , and � = 10γ for (a)–(c) and � = 0.01γ for (d)–(f).

steady-state values that depend strongly on the interference
strength. Furthermore, an interesting case arise at p = −1
where emission profile first reaches its maximum and then
drops down to the steady state that has the smallest value
compared to other p �= −1. In the same time absorption profile
at p = −1 reaches its maximum value at steady state. Note that
in contrast to that, for large splitting at p = −1 emission has
its maximum [see Fig. 2(b)]. Therefore, not only interference
strength determines the emission and absorption profile, but
the level spacing itself has a strong impact. Namely, for a
fixed value of p, for example, p = −1, large level spacing
� yields the strongest emission [see Fig. 2(b)] which is in
favor of the lasing process. In the same time for small level
spacing the emission is strongly suppressed while absorption
reaches its maximum [see Figs. 2(e) and 2(f)], which is the
perfect situation for photodetection and photocell operation.
Furthermore, it is worth noting that despite the asymmetry
between curves for p = ±1 in Fig. 2, results for p = 1 can
be derived from the p = −1 case by changing the sign of the
Rabi frequency, for instance, �1 → −�1.

To study further the effects of p and � and to understand
the special case of antiparallel alignment p = −1 consider the
ratio of emission and absorption given by Eqs. (6) and (8):

Pemiss

Pabs
= 2(1 + �̃ − p)(1 + �̃2 − p2)

�̃[�̃2(1 + �̃) + �̃(1 − p) + (1 − p)2]
, (11)

where for simplicity we assume �1 = �2. Figure 3 shows
the ratio in Eq. (11) as a function of interference strength p

for the case of small and large level spacing. If the spacing
is small, � 
 γ , then the ratio in Eq. (11) monotonically
increasing from p = −1 to p = 1, while for large spacing
� � γ , the behavior is essentially the opposite (i.e., it is
a monotonically decreasing function as we mention above).
Furthermore, in the limit of weak field �1 = �2 = � 
 1

Eq. (11) yields for p = 0,1 a result that is independent of �.
Namely for no interference (i.e., p = 0), Eq. (11) yields 2/�̃,
while for parallel alignment p = 1 it yields 2/(1 + �̃). On
the other hand the case of antiparallel alignment (p = −1) is
special. In particular, for small spacing � 
 � 
 γ Eq. (11)
gives �̃2/�̃ 
 1, while for � � γ and � 
 γ the result is
4/�̃ � 1. Therefore, the present analysis not only confirms
that destructive interference can alter the detailed balance but
also exhibits that by controlling two parameters. Namely by
adjusting the interference strength p and energy spacing �,
one can regulate the ratio between emission and absorption
probabilities in the system. This possible manipulation of
p and � hence also suggest that in the same system with
two lower (upper) levels one can induce either suppression of
emission [20,21] or absorption [15,16], respectively. The later
choice governed by level spacing � can be also controlled
externally either by adjusting the current through the junction,
or by manipulating the magnetic field in hyperfine splitting
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053803-4



QUANTUM-INTERFERENCE-CONTROLLED RESONANCE . . . PHYSICAL REVIEW A 84, 053803 (2011)

0.000

0.005

0.010

0.015
P e

m
is

s

Δ = 5γ

Δ = 7γ
Δ = 10γ

1 2 3 40 τ
FIG. 4. (Color online) Probability of emission in the three-level

model lower doublet for different choices of �. For numerical
simulation we took �1 = �2 = 0.3γ , � = 0.4γ,γ = 1,τ = γ t,

p = 1.

[34,35]. In Fig. 4. we have plotted the effect of � on the
temporal evolution of the probability of emission. The results
show that the oscillations in the probability varies with the
increase of �. Furthermore, for fixed � and γ the number of
oscillations is governed by rate � since probability decays as
exp(−�t). For interference strength p, control can be achieved
by a tailored variation of the quantum well widths [16].
Summarizing the proposed scheme with lower doublet can
be applied to the system that requires emission (absorption)
suppression or enhancement and thus is very attractive for
both: light emitting devices, such as LWI and light absorbing
photodetector systems.

B. Quantum beats in semiclassical picture

Besides a broad range of applications, interference effects
and in particular its sensitivity to the level spacing discussed
in the present work are related to fundamental question about
the applicability of semiclassical theory in quantum problems.
Semiclassical description (SCT) can predict self-consistent
and physically acceptable behavior of many physical systems
and explain almost all quantum phenomena. However, it is
not always correct. For instance, the phenomena of quantum
beats has a substantially different result if considered in the
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FIG. 5. (Color online) Probability of emission Pemis as a function
of dimensionless time τ for three-level system with doublet in excited
state (dashed line) and for three-level system with doublet in ground
state (solid line) calculated numerically according to Eqs. (5) and (7)
based on the solution of Eqs. (1)–(3). For numerical simulations we
took �1 = 0.1γ,�2 = 0.08γ,� = 10γ,� = 0.1γ .

framework of quantum electrodynamics (QED) [1], namely,
for different configurations of three-level systems: for instance,
V and 	 schemes (see Fig. 5) that are initially prepared in
a coherent superposition of all three states SCT description
predicts the existence of quantum beats for both schemes,
whereas QED theory predicts no quantum beats in the case of
the 	 scheme. The explanation of the phenomenon is quite
straightforward and based on quantum theory of measure-
ments. In the case of the V scheme the coherently excited
atom decays to the same final state |v〉 starting from |c+〉 and
|c−〉 and one cannot determine which decay channel was used.
Therefore this interference that is similar to the double-slit
problem leads to the existence of quantum beats. However, in
the case of the 	 scheme that has also two decay channels,
|c〉 → |v+〉 and |c〉 → |v−〉, after a long time the observation
of the atom’s final state (|v+〉 or v−〉) will determine which
decay channel was used. In this case we do not expect quantum
beats. Three-level systems with the doublet in the ground state
or excited state is in a way similar to the 	 and V types of
atom, respectively. Therefore we can also study the quantum
beat’s effect in those systems. Note that in the model of Fig. 1
we have additional radiative decays of states, which guarantees
that the system can reach a steady state within a finite amount of
time. Figure 5 illustrates that in the case of the doublet in the
excited state (V scheme) with large spacing between levels
|c+〉 and |c−〉 �̃ � 1, the probability of emission oscillates
as a function of time and reaches the steady state at the time
scale determined by radiative decay 1/�̃ � 1. However, for
the case of the doublet in the ground state (	 scheme) with
small spacing �̃ 
 1, the probability of emission does not
process any quantum beats and smoothly reaches the steady
state. Therefore, the phenomenon of Fano interference has
the potential to resolve the fundamental question about the
applicability of the semiclassical description to the problem of
quantum beats.

IV. CONCLUSION

To conclude, in this paper we investigated the effect
of vacuum-induced QI on the emission (absorption) profile
of a three-level system with a doublet in the ground or
excited state [see Fig. 1(a)]. We show that QI can enhance
the balance breaking between emission and absorption. We
use the probability amplitude method, since the states in-
volved in calculation have a zero-photon occupation number.
Furthermore, our findings are in full agreement with the
results obtained by density matrix formalism. We observed
that the interference strength p governed by the phase shift
between the decay pathways play a crucial role on the
emission(absorption) dynamics of the system. For the closely
spaced doublet (� 
 γ ), for which the vacuum-induced QI
becomes important, the behavior of the emission (absorption)
profile of our model appears counterintuitive. For p ∼ −1, the
ratio of probability of emission to probability of absorption
is very small, a condition favorable for applications like
photovoltaics. On the other hand for p ∼ 1, the ratio is large
thus favorable for amplification without population inversion
in steady state (see Figs. 2(b) and 2(e)]. In addition to these
applications we found that Agarwal-Fano QI can also predict
the occurrence of fundamental phenomena like quantum beats
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in the semiclassical framework, which fully agrees with the
QED description.
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APPENDIX A: THE SCULLY DRESSED STATE ANALYSIS

We start with evolution of amplitudes in Eqs. (1)–(3) for
γ1 = γ2 = γ ,

v̇2 = −(γ + i�)v2 − pγ v1 − i�2c, (A1)

v̇1 = −(γ − i�)v1 − pγ v2 − i�1c, (A2)

ċ = −i�2v2 − i�1v1 − �c, (A3)

Writing Eqs. (A1)–(A3) in matrix form, we obtain

d

dτ

⎛
⎝ v2

v1

c

⎞
⎠ = −�0

⎛
⎝ v2

v1

c

⎞
⎠ − iV

⎛
⎝ v2

v1

c

⎞
⎠ , (A4)

where τ = γ t , and the Fano decay matrix is defined by

�0 =
⎛
⎝ 1 + i�̃ p 0

p 1 − i�̃ 0
0 0 �

⎞
⎠ , (A5)

and probe-field interaction is given by

V =
⎛
⎝ 0 0 �̃2

0 0 �̃1

�̃2 �̃1 0

⎞
⎠ , (A6)

with �̃ = �
γ

and �̃1,2 = �1,2

γ
.

It is intuitive to introduce a basis in which the Fano coupling
is transformed away. We proceed from the bare basis via the
U , U−1 matrices of diagonalization.

U−1 = 1√
2p

⎛
⎝ p p 0

x − i�̃ −x − i�̃ 0
0 0

√
2p

⎞
⎠ , (A7)

U = 1√
2x

⎛
⎝x + i�̃ p 0

x − i�̃ −p 0
0 0

√
2x

⎞
⎠ . (A8)

Here x =
√

p2 − �̃2, so that the transformed state vector is
defined by

U

⎛
⎝ v2

v1

c

⎞
⎠ =

⎛
⎝V+

V−
C

⎞
⎠ , (A9)

which implies

V± = (x ± i�̃)v2 ± pv1√
2x

, (A10)

and thus,⎛
⎝ V̇+

V̇−
Ċ

⎞
⎠ = −�t

⎛
⎝V+

V−
C

⎞
⎠ − iVt

⎛
⎝V+

V−
C

⎞
⎠ , (A11)

in which the diagonal �t operator is

�t = U�0U
−1 =

⎛
⎝ 1 + x 0 0

0 1 − x 0
0 0 �

⎞
⎠ , (A12)

and the transformed interaction potential is

Vt = UV U−1 = 1√
2p

⎛
⎝ 0 0 p[�̃2(x + i�̃) + p�̃1]/x

0 0 p[�̃2(x − i�̃) − p�̃1]/x
�̃2 + �̃1(x − i�̃) �̃2 − �̃1(x + i�̃) 0

⎞
⎠ . (A13)

The equation of motion in terms of V± and C are then found
to be

dV+
dτ

= −(1 + x)V+ − i√
2x

[�̃2(x + i�̃) + p�̃1]C,

(A14)
dV−
dτ

= −(1 − x)V− − i√
2x

[�̃2(x − i�̃) − p�̃1]C,

(A15)

dC

dτ
= −�̃C − i√

2
[p�̃2 + �̃1(x − i�̃)]V+

− i√
2

[p�̃2 − �̃1(x + i�̃)]V−, (A16)

APPENDIX B: DERIVATION OF EMISSION AND
ABSORPTION PROBABILITIES IN DRESSED BASIS

We start with amplitude equations in dressed basis (A14)–
(A16). The initial conditions corresponding to the emission
from the state C are V±(0) = 0, C(0) = 1. Assuming the
driving fields to be weak (�̃1,2 << 1 we can solve Eqs. (A14)–
(A16) by expansion in perturbation series over �̃1,2. The
lowest order solution for B(τ ) of Eq. (A16) yields C(0)(τ ) =
e−�̃τ . The latter can be substituted in Eqs. (A14) and (A15) to
find V

(0)
± (τ ):

V
(0)
± (τ ) = −i

�̃2(x ± i�̃) ± p�̃1√
2x(1 ± x − �̃)

(e−�̃τ − e−(1±x)τ ). (B1)

The exponential approximation or C(τ ) gives relatively good
agreement with numerical simulations only for small time.
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For large time the behavior of the system is far from
being exponential. Therefore, we should consider next-order
correction for C(τ ). It can be done by substituting functions
V

(0)
± from Eq. (B1) to Eq. (A16) which yields

C(1)(τ ) =
[

A+
1 + x − �̃

+ A−
1 − x − �̃

− (A+ + A−)τ

]
e−�̃τ

+ e−�̃τ − A+
1 + x − �̃

e−(1+x)τ − A−
1 − x − �̃

e−(1−x)τ ,

(B2)

where

A± = [p�̃2 ± (x ∓ i�̃)�̃1][�̃2(x ± i�̃) ± p�̃1]

2px(1 ± x − �̃)
. (B3)

Using the definition for emission probability from Eq. (5) at
large time τ � 1,1/�̃, neglecting higher order terms in �̃1,2

the probability of absorption yields

Pemiss(∞|b) = (�̃ + 1)(|�̃1|2 + |�̃2|2) − 2p�̃1�̃2

�̃[�̃2 + (�̃ + 1)2 − p2]
. (B4)

Similarly one can derive the probability of absorption. We
start from absorption from level v1. The initial conditions for
the system with population on v1 in dressed states are V±(0) =
±p/

√
2x, C(0) = 0 [see Eq. (A10)]. In lowest order of �̃1,2,

Eqs. (A14) and (A15) yield

V
(0)
± (τ |v1) = ± p√

2x
e−(1±x)τ . (B5)

The corresponding zero-order solution of C(0)(τ ) of Eq. (A16)
is given by

C(0)(τ |v1)=B+e−(1+x)τ −B−e−(1−x)τ +(B− − B+)e−�̃τ , (B6)

where

B± = i
p�̃2 ± �̃1(x ∓ i�̃)

2x(1 ± x − �̃)
. (B7)

Therefore, probability of absorption from level v1 for large
time τ � 1,1/�̃ given by Eq. (7) reads

Pabs(∞|v1)

= (�̃ + 2)|�̃1 − p�̃2|2 + [�̃(1 − p2) + 2�̃2(�̃ + 1)] ˜|�1|2
2(1 + �̃2 − p2)[�̃2 + (�̃ + 1)2 − p2]

.

(B8)

The probability of absorption from level v2 can be derived in
the same way as for level v1. In this case, the initial conditions
according to Eq. (A10) read V±(0) = (x ± i�̃)/

√
2x, C(0) =

0. In the lowest order of �̃1,2, Eqs. (A14) and (A15) have the
following solution:

V
(0)
± (τ |a2) = x ± i�̃√

2x
e−(1±x)τ . (B9)

The corresponding zero-order solution of C(0)(τ ) of Eq. (A16)
yields

C(0)(τ |v1) = D+e−(1+x)τ + D−e−(1−x)τ + (D+ + D−)e−�̃τ ,

(B10)

where

D± = i
[p�̃2 ± �̃1(x ∓ i�̃)](x ± i�̃)

2px(1 ± x − �̃)
. (B11)

Therefore, probability of absorption from level v2 for τ �
1,1/�̃ given by Eq. (7) yields

Pabs(∞|v2)

= (�̃ + 2)|�̃2 − p�̃1|2 + [�̃(1 − p2) + 2�̃2(�̃ + 1)] ˜|�2|2
2(1 + �̃2 − p2)[�̃2 + (�̃ + 1)2 − p2]

,

(B12)

which becomes Eq. (B8) if �̃1 ↔ �̃2.
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