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Nonequilibrium and local detection of the normal fraction of a trapped two-dimensional Bose gas
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We propose a method to measure the normal fraction of a two-dimensional Bose gas, a quantity that generally
differs from the noncondensed fraction. The idea is based on applying a spatially oscillating artificial gauge field
to the atoms. The response of the atoms to the gauge field can be read out either mechanically from the deposited
energy into the cloud or optically from the macroscopic optical properties of the atomic gas. The local nature
of the proposed scheme allows one to reconstruct the spatial profile of the superfluid component; furthermore,
the proposed method does not require having established thermal equilibrium in the gas in the presence of the
gauge field. The theoretical description of the system is based on a generalization of the Dum-Olshanii theory of
artificial gauge fields to the interacting many-body context. The efficiency of the proposed measurement scheme
is assessed by means of classical field numerical simulations. An explicit atomic level scheme minimizing
disturbing effects such as spontaneous emission and light shifts is proposed for 87Rb atoms.
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I. INTRODUCTION

One of the most striking features of degenerate Bose gases
in two dimensions is the possibility of having a superfluid
behavior in the absence of a macroscopically populated Bose-
Einstein condensate. The transition to the superfluid state is of
the Berezinskii-Kosterlitz-Thouless (BKT) type, characterized
by a sudden jump of the superfluid density from 0 to the
universal value 4 (in units of the inverse square of the de
Broglie thermal wavelength), independent from the details
of the system [1,2]. At the transition point, the asymptotic
behavior of the field correlation function changes from an
exponential to a power-law decay at large distances. In contrast
to the three-dimensional case, superfluidity is then not related
to the appearance of a macroscopically occupied Bose-Einstein
condensate in the thermodynamic limit.

Pioneering experiments have addressed the mechanical
properties of two-dimensional layers of liquid Helium ad-
sorbed on a substrate [3] and have characterized the universal
jump of the superfluid fraction at the BKT critical point. On the
other hand, liquid helium experiments have limited access to
the momentum distribution and the correlation functions of the
fluid. The situation of ultracold-atom experiments is almost the
opposite: Evidence of the BKT transition has been obtained
from the coherence functions [4], the number of observed
vortices [5], and the density profile after time of flight [6],
while the macroscopic mechanical properties of the fluid have
not been characterized yet.

Recently, much effort has been devoted to the conceptual
problem of how to experimentally detect genuine superfluidity
in a quantum gas of ultracold atoms and not simply Bose-
Einstein condensation [7]. A possibility explored in Ref. [8]
is to look at the response of a gas in a toroidal trap to a static
azimuthal artificial gauge field: A spectroscopic signature is
proposed which should provide direct information on the total
superfluid mass of the system. A different strategy proposed in
Ref. [9] consists of looking at the evolution of the equilibrium
density profile of a trapped gas when it is set into rotation.

In the present article we propose two experimental protocols
to measure the normal fraction of a gas in a local way to

extract its spatial dependence in a trapped geometry. This
feature is most relevant for atomic samples, as the superfluid
core coexists with an external ring of normal gas [10]. In
particular, the proposed diagnostic technique does not require
us to relate experimental observations after time of flight to
in-trap quantities. Furthermore, in contrast to Ref. [9], our
technique does not require thermodynamic equilibrium in the
gas in presence of rotation [11] and may be applied to more
general, nonequilibrium conditions.

The idea of our proposal is based on the definition of
normal and superfluid fractions of a quantum fluid in terms
of its current response to a transverse gauge field in the
low-frequency and long-wavelength limit [14,15]. A spatially
oscillating artificial gauge field [16–19] with a spatially
localized envelope can be applied to the atomic gas using
a suitable combination of laser beams. The response of the
fluid to the gauge field can be detected either mechanically or
optically. In the former case, one has to measure the amount
of energy that is deposited in the atomic gas at the end of a
suitable temporal sequence of gauge field. In the latter case,
one can observe, e.g., the phase shift that is experienced by the
laser fields while crossing the atomic cloud.

The structure and the main results of the article can be
summarized as follows. In Sec. II, we review the definition of
the normal and superfluid fractions that we adopt throughout
the whole article. A strategy to generate the artificial gauge
field with the suitable spatial geometry is presented in Sec. III
using three laser beams, namely a coupling beam and two
probe beams.

The first method to measure the normal fraction is by
mechanical means. It is discussed in Sec. IV: A pulse of
spatially modulated gauge field is suddenly applied to the
gas and then slowly switched off according to an exponential
law in time. An analytical calculation within the linear
response theory and local-density approximation shows that
the energy that is deposited in the gas at the end of the
gauge-field pulse is indeed proportional to the normal (total)
density in the small fraction of the gas where the probe
beam is focused, if the spatial modulation of the gauge field
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is orthogonal (parallel) to the coupling beam direction of
propagation. Some of the complications that naturally occur in
experiments are then numerically investigated: A Bogoliubov
theory is used to assess the conditions to be imposed to
the geometry and the temporal duration of the pulse, and a
classical field model is used to assess the conditions on the
amplitude of the gauge field for the linear response theory
to be valid. A main difficulty appears to be the relatively
small amount of energy that can be deposited in the gas before
nonlinear couplings become difficult to extrapolate out: The
resulting figure is on the order of 1% of the total energy of
the gas, which is, however, not far from the sensitivity of
state-of-the-art thermodynamic measurements of the energy
[20–24].

The second method to measure the normal fraction is
by optical means. It is discussed in Sec. V A. The spatially
modulated gauge field is imposed using the same laser beam
configuration in a continuous-wave regime to generate a
stationary current pattern in the gas. This current pattern can
be read out from the phase shift accumulated by the same
probe laser beams after crossing the atomic cloud. Analytical
calculations show that this phase shift is indeed proportional to
the normal (total) density if the spatial modulation of the gauge
field is orthogonal (parallel) to the coupling beam direction of
propagation. For realistic configurations, the amount of the
phase shift is anticipated to be of the order of a fraction of
10−3, i.e., small but still appreciable with present-day optical
techniques.

Another optical setup that is able to provide quantitative
information on the normal fraction is discussed in Sec. V B:
Analytical calculations are used to relate the angular dis-
tribution of the scattered light off a single probe beam to
the normal fraction of the gas. The main advantage of this
last configuration is the rapidity of the measurement but the
limiting factor is the relatively small number of photons (of
the order of a few units) that are expected to be scattered in
the useful directions.

In Appendix A we discuss how to cope with all those
spurious effects that arise from a realistic configuration of
atomic levels and laser fields, in particular, spontaneous emis-
sion and the mechanical effect of undesired light shifts. Even
though the underlying concepts are general, the discussion is
mostly focused on the most promising case of 87Rb atoms. The
generalization of the Dum-Olshanii theory of artificial gauge
fields to the many-body context is reported in Appendix B:
This development is required to put the gauge-field concepts
on firm ground in presence of atomic interactions and to
evaluate in a rigorous way the optical response of the atoms
to the combined coupling and probe beams. Appendix C gives
more details on the analytical derivation of the deposited
energy and clarifies some issues related to the local-density
approximation. The framework for calculating the deposited
energy using the Bogoliubov theory within the linear response
regime is discussed in Appendix D. The last Appendix,
Appendix E, discusses issues related to the statistical noise
on the deposited energy both in the numerical calculation and
in an actual experiment. In particular, it shows how useful
information on the normal fraction could be extracted from
the noise if a sufficiently precise determination of the initial
energy was possible. We conclude in Sec. VI.

II. DEFINITION OF SUPERFLUID AND NORMAL
FRACTIONS

Our proposal to quantitatively assess the superfluidity of
the two-dimensional atomic gas is based on the traditional
definition of the normal fraction fn in terms of the response to a
transverse gauge-field coupling to the atomic current operator
[14,15]. The Hamiltonian giving the coupling of the matter
current to an arbitrary vector potential A(r) is

V = −
∫

d2r A(r) · j(r), (1)

with the current operator defined as usual as

j(r) = h̄

2im
[φ̂†(r)∇φ̂(r) − H.c.] (2)

in terms of the bosonic field operator φ̂ for the two-dimensional
gas. For a spatially homogeneous system, the linear response
susceptibility relating the average current [25] to the applied
gauge field can be easily written in momentum space and
frequency domain as

〈j〉(q,ω) = χ (q,ω) A(q,ω). (3)

If the system is also invariant under reflection with respect to
the direction of q, the susceptibility tensor χ (q,ω) turns out
to be diagonal in the longitudinal/transverse basis with respect
to q, with diagonal matrix elements χL,T (q,ω), respectively.

For a system of surface density ρ, the normal fraction fn

of the system is then defined as the low-momentum, low-
frequency limit of the susceptibility to transverse gauge fields
as follows:

fn = lim
q→0

lim
ω→0

m

ρ
χT (q,ω). (4)

Note that the order of the limits is important. A well-known
sum rule based on gauge invariance imposes that the same
limit for the longitudinal susceptibility χL(q,ω) gives exactly
unity,

1 = lim
q→0

lim
ω→0

m

ρ
χL(q,ω). (5)

Equation (4) can then be extended to large but finite systems
using the standard local-density approximation.

III. HOW TO GENERATE THE GAUGE FIELD

We consider a three-dimensional gas of bosonic atoms in a
strongly anisotropic, pancake-shaped trap. The axial confine-
ment frequency ωz is much higher than the one ω‖ along the xy

plane; both the temperature T (times the Boltzmann constant
kB) and the chemical potential μ of the gas are assumed to
be smaller than h̄ωz. In this regime, the gas will be eventually
described in terms of a two-dimensional Hamiltonian.

Building on an idea originally introduced in Ref. [16], an
artificial gauge-field coupling to the atomic current can be
obtained by illuminating the atoms with several laser beams
with suitably chosen frequencies, wave vectors, and waist
profiles. Several schemes to generate artificial gauge fields for
neutral atoms have been proposed in the last years [16–18].
The last proposal [18] was recently implemented on an atomic
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FIG. 1. Scheme of the setup under consideration. (Left panel)
Generic sketch of the � configuration of atomic levels and laser beams
involved in the optical processes. (Center panel) View from above of
the two-dimensional atomic pancake (lying within the dashed circle)
and of the laser beams (the hatched disk is the spot of the probe
beams in the xy plane). (Right panel) Side view. kc and k±

p are
the wave vectors of the coupling and probe beams, respectively. In
practice, k±

p = (k2
p − q2/4)1/2 ez ± (q/2) ex with q � kp , where ei is

the unit vector along axis i.

Bose-Einstein condensate: For sufficiently strong gauge fields,
a disordered ensemble of vortices appeared in the gas [19].

In the present article, we focus our attention on the level
configuration shown in Fig. 1. Three internal atomic levels in a
� configuration are connected by three laser fields according
to the sketch given in the left panel of Fig. 1: A coupling
beam resonantly drives the |b〉 → |e〉 atomic transition, while
a pair of probe beams resonantly drive the |a〉 → |e〉 transition
with essentially the same detuning. The artificial gauge field
originates from the spatial and temporal dependence of the
resulting optically dark state [16]. All other atomic states are
assumed to be far-off resonance. A discussion of their effect
in the specific case of 87Rb atoms is given in Appendix A.
A summary of the suggested experimental parameters for this
specific atomic species is given in Table I.

The geometrical arrangement of the laser beams is sketched
in the central and right panels of Fig. 1. The continuous-wave
control beam propagates along the y direction with a wave
vector kc and a carrier frequency ωc close to resonance with
the |b〉 → |e〉 transition, with a detuning δ, and has a peak
Rabi frequency �o

c . Its waist profile is much wider than the
size of the atomic cloud, so it can be safely approximated by
a plane wave.

The two probe beams share the same carrier frequency
ωp close to resonance with the |a〉 → |e〉 transition. The
carrier frequencies of the coupling and probe beams are chosen
exactly on resonance with the Raman transition |a〉 → |e〉 →
|b〉, that is, ωp − ωc = ωb − ωa . The probe beams impinge on
the atomic cloud with wave vectors k±

p � kpez ± q/2 close to
the z direction and symmetrically located with respect to it.
The difference q = k+

p − k−
p lies along the xy plane and is in

magnitude q � kp = ωp/c. The probe beams spatial profile
is taken to be a Gaussian with a waist w, centered at r0 in the
z = 0 plane.

In what follows, we will need the condition w 	 q−1,
where q is small enough for the limit in Eq. (4) to be almost
reached. In the numerical examples to come, this requires qξ <

1, where ξ is the healing length of the gas. This automatically
shows that the concept of normal fraction can be used only
when the portion of the gas within the waist is “macro-
scopic” [26], here w 	 ξ , which was physically expected. At

TABLE I. Suggested values of the physical parameters for an ex-
perimental measurement of the normal fraction of a two-dimensional
Bose gas of 87Rb using an artificial gauge field produced by laser
(coupling and probe beam) excitation on the D1 line with an optical
wavelength λc = 795 nm. The first block characterizes the thermal
equilibrium of the gas. The second block determines the gauge field.
The third block deals with the issues of spontaneous emission and
spurious light shift for two atomic level schemes: The “first choice” is
Fig. 6(a), and the “second choice” is Fig. 6(b). For this second choice,
the indicated value |�c|2/�2 = 0.5 corresponds to a compromise
between minimization of the fluorescence and of the spurious light
shift, the truly minimal Pfluo being < 0.01, see (A18). Note that Pfluo

and �EU/�E2 are basically unchanged if one takes qξ = 1/2 and
γ /(csq) = 0.4. The three-dimensional scattering length a3D � 100
Bohr radii is related to the two-dimensional coupling constant by
Eq. (20). A useful relation is m�/(h̄k2

c ) � 792; cs = (ρg/m)1/2 is the
Bogoliubov sound velocity.

2D density ρλ2
c = 9 ρ = 14 μm−2

Degeneracy kBTd ≡ 2πh̄2ρ/m Td = 500 nK
temperature

Temperature T = 0.1 Td T = 50 nK
2D interaction g̃ = mg/h̄2 g̃ = 0.1

constant
Transverse h̄ωz = 0.23 h̄2k2

c /m
ωz

2π
= 1.65 kHz

confinement = 0.16 kBTd

Healing length ξ ≡ (ρg̃)−1/2 ξ = 0.84 μm

Reduced gauge ε̃gauge ≡ εgauge

(mkBTd )1/2 ε̃gauge = 0.15
field amplitude

Probe beam
(|�+

p |2+|�−
p |2)t=0+

2|�c |2 0.09
Rabi frequencies

Gauge field γ = 0.2 csq 1/γ = 4.8 ms
switch-off rate with q = 1/ξ q = 0.15kc

Level schemes First choice Second choice
of Fig. 6

Level |a〉 |F = 1, −1〉 |F = 2, −2〉
Level |b〉 |F = 2, −2〉 |F = 1, −1〉
Level |e〉 |F ′ = 2, −1〉 |F ′ = 2, −2〉
Squared 0.21 0.5

coupling Rabi
frequency |�c|2/�2

Minimum 1 1.5
detuning δ/�

Fluorescence 0.22 0.045
atom probability
per Pfluo

Spurious deposited 33 0.16
energy �EU/�E2

(for fn = 0.2)

the same time, the waist w is assumed to be much smaller than
the atomic cloud radius, to allow for a local measurement of the
normal fraction. The peak Rabi frequencies of the two probe
beams are �±

p (t), respectively (see Appendix B for the precise
definition of the Rabi frequencies). The spatial dependence of
the Rabi frequencies of both the coupling and the probe beams
is then summarized by the following expressions [27]:

�c(r,t) = �(0)
c e−i�ct eikc ·r, (6)
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�p(r,t) � [�+
p (t) eik+

p ·r + �−
p (t) eik−

p ·r]

× e−[(x−x0)2+(y−y0)2]/w2
, (7)

where we have allowed for the coupling beam to have a
small detuning �c from Raman resonance on top of its
carrier frequency at ωc. On the contrary, �p does not have
a time-dependent phase factor but contains only the square
root of a purely real non-negative switch-on and switch-off
function f (t), common to the two probe beams as follows:

�p(r,t) = �0
p(r)[f (t)]1/2. (8)

In what follows, we shall restrict our attention to the nonsat-
urating regime |�c|,|�±

p | � |δ + i�/2|, where � is the decay
rate of |e〉 due to spontaneous emission and δ is the common
detuning of the probe and control beam carrier frequencies
from the transitions |a〉 → |e〉 and |b〉 → |e〉, respectively.
We shall also concentrate on the limit |�±

p | � |�c| where the
structure of the gauge field is the simplest.

As the transitions driven by the probe and control beams
share the excited state |e〉, there exists for each spatiotemporal
coordinates (r,t) an internal noncoupled state, for which the
two excitation channels interfere destructively. In terms of the
local Rabi frequencies �p(r,t) and �c(r,t), this noncoupled
state reads

|NC(r,t)〉 = |a〉 − �p(r,t)/�c(r,t) |b〉
[1 + |�p(r,t)|2/|�c(r,t)|2]1/2

. (9)

Adiabatically eliminating the excited state |e〉, one sees that
the bright orthogonal state, the so-called coupled state,

|C(r,t)〉 = [�p(r,t)/�c(r,t)]∗|a〉 + |b〉
(1 + |�p(r,t)|2/|�c(r,t)|2)1/2

, (10)

is separated from |NC(r,t)〉 by a (complex) energy gap

h̄[δ′(r,t) − i�′(r,t)/2] ≡ h̄[|�c(r,t)|2 + |�p(r,t)|2]

4(δ + i�/2)
, (11)

where δ′ and �′ are the light shift and the decay rate of the
coupled state. If the energy gap is large enough as compared
to both the motional coupling between |NC〉 and |C〉 due to
the spatiotemporal dependence of �c and �±

p [28], and to
the quantum of oscillation h̄ωz along the tightly confined z

direction, we can restrict the dynamics to the |NC〉 internal
state.

Generalizing the single-particle theory of Ref. [16] to
the many-body context in Heisenberg picture, one gets to
an effective Hamiltonian for the component φ̂3D(r,t) of the
three-dimensional atomic field operator in the (spatially and
temporally dependent) noncoupled state |NC(r,t)〉,

φ̂3D(r,t) = 〈NC(r,t)|a〉 �̂a(r,t) + 〈NC(r,t)|b〉 �̂b(r,t) (12)

in the simple form [29]:

H =
∫

d3r
{
φ̂
†
3D

[
−h̄2∇2

2m
+ U3D(r) + W3D(r,t)

]
φ̂3D

− j3D(r) · A3D(r,t) + 1

2
g(r,t) φ̂

†
3Dφ̂

†
3Dφ̂3Dφ̂3D

}
, (13)

where U3D is the three-dimensional trapping potential (sup-
posed to be common to the internal states |a〉 and |b〉) and the
vector gauge potential

A3D(r,t) = ih̄

2
{〈NC(r,t)|[∇|NC(r,t)〉] − c.c.} (14)

couples to the three-dimensional atomic current operator

j3D(r) = h̄

2im
[φ̂†

3D(r)∇φ̂3D(r) − H.c.], (15)

and the scalar potential

W3D(r,t) = − ih̄

2
{〈NC(r,t)| [∂t |NC(r,t)〉] − c.c.}

+ h̄2

2m

∑
i=x,y,z

[∂ri
〈NC(r,t)|][∂ri

|NC(r,t)〉] (16)

couples to the three-dimensional density

n3D(r) = φ̂
†
3D(r) φ̂3D(r). (17)

The derivation of Hamiltonian (13) is based on the quantum
stochastic differential equations formalism [30]; the details are
given in Appendix B.

The spatial and temporal dependence of the weights of the
noncoupled state (9) in the internal states |a〉 and |b〉 reflects
into a similar variation of the coupling constant describing the
atomic interaction within the internal state |NC〉:

g3D(r,t) = |�c|4 gaa + 2|�p(r,t)|2 |�c|2 gab + |�p|4 gbb

(|�c|2 + |�p(r,t)|2)2
,

(18)

where the coupling constants gaa , gab, and gbb originate from
the a-a, a-b, and b-b elastic s-wave interactions. In what
follows, we shall be interested in isolating the response of
the system to the gauge field A3D . To this purpose, it will
be useful to minimize the effect of all unwanted couplings
to the density introduced by the scalar potential W3D and
by the spatiotemporal dependence of the interaction constant
g3D . This latter effect is minimized if one chooses states a,b

with similar scattering properties gaa � gab � gbb. In the limit
|�p/�c| � 1, one simply needs to have gaa � gab, as it is
assumed from now on.

The atomic field along z is assumed to be frozen in the
ground state of the harmonic confinement of wave function
φ0(z). This allows us to express the three-dimensional bosonic
field φ̂3D in terms of the bosonic field for a two-dimensional
gas, setting

φ̂3D(x,y,z) = φ0(z)φ̂(x,y). (19)

Correspondingly, the two-dimensional coupling constant g has
the expression

g = h̄2

m
g̃ = g3D√

2π az
ho

(20)

in terms of the three-dimensional coupling constant g3D =
4πh̄2a3D/m, where a3D is the s-wave scattering length in the
state |a〉, and the size az

ho = √
h̄/mωz of the ground state along

z. Note that the dimensional reduction (19) does not require us
to be in the Lamb-Dicke limit kp,ca

z
ho � 1; it is sufficient that

the typical energy per particle corresponding to the various
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terms in H (other than the harmonic oscillator Hamiltonian
along z) is � h̄ωz.

The effective two-dimensional gauge and scalar potentials
A and W then result from an average of the Hamiltonian (13)
over the motional ground state along z. Including in Eqs. (14)
and (16) the explicit form of the beam profiles and restricting
ourselves to zeroth order in the small parameters q/kp,c and
1/wkp,c, and to second order in �±

p /�c, the resulting two-
dimensional gauge potential turns out to be directed along the
y axis and to have the form

Ay(r) � h̄kc

|�+
p eiq·r/2 + �−

p e−iq·r/2|2
|�c|2 e−2|r−r0|2/w2

= h̄kc

|�+
p |2 + |�−

p |2 + [�+
p �−∗

p eiq·r + c.c.]

|�c|2
× e−2|r−r0|2/w2

. (21)

To the same level of approximation, the scalar potential has
the form

W (r) =
[

h̄2
(
k2
c + k2

p

)
2m

+ h̄�c

]
|�+

p eiq·r/2 + �−
p e−iq·r/2|2

|�c|2

× e−2|r−r0|2/w2
, (22)

which can be made to vanish by choosing a detuning �c that
exactly compensates the recoil of the atoms after the Raman
process a → e → b:

W ≡ 0 for �c = −h̄
(
k2
c + k2

p

)
2m

. (23)

It is worth pointing out that the temporal derivative df (t)/dt

of the real switch-on and switch-off function f (t) of the probe
beam of Eq. (8) has an exactly vanishing contribution to the ∂t

term in the right-hand side of Eq. (16), so it does not contribute
to the scalar potential W to all orders in �p/�c [31]. The same
conclusion holds for the gauge field, since there is no temporal
derivative in Eq. (14).

After expansion of the squared modulus as done in the
second line of Eq. (21), two kinds of terms are immediately
identified: (i) a slowly varying Gaussian term of size w and
peak amplitude |�+

p |2 + |�−
p |2 that follows the laser envelopes

and (ii) an oscillating term at wave vector q with a Gaussian
envelope of size w and peak amplitude |�+

p �−
p |. This spatially

modulated term is indeed the one that we need to probe the
normal fraction of the gas according to Eq. (4): When q is
taken along the x axis (y axis), it provides an almost purely
transverse (longitudinal) contribution to the gauge field A.
On the other hand, the slowly varying term always includes
both longitudinal and transverse vector field components.
Experimental procedures to subtract the effect of this unwanted
term will be discussed in the next sections.

IV. DEPOSITED ENERGY MEASUREMENT

A. General idea

In this section we shall present a method to extract the
value of the normal fraction from a measurement of the energy
that is deposited in the system by a suitably designed gauge-
field sequence. The coupling beam is assumed to be always

switched on. On the other hand, both probe beam intensities
|�±

p |2 are varied in time according to the (dimensionless) real
envelope function f (t). This function is chosen to be 0 for
t < 0 and to rapidly tend back to 0 at long times.

As already mentioned, we assume that the atomic interac-
tion constants satisfy gaa � gab [32]. As soon as qw 	 1, the
deposited energy is the sum of two independent contributions
�E1,2 corresponding to the decomposition (21) of the gauge
field as the sum of a nonmodulated term and a modulated one
at the wave vector q. Using standard linear response theory
within the local-density approximation as discussed in the
Appendix C, the contribution �E2 of the modulated term can
be written in the simplified form

�E2 � π

4
w2

(
εgauge

2

)2 ∫ +∞

−∞

dω

π
ω |f (ω)|2 Im[χyy(q,ω)],

(24)

where we have introduced the amplitude of the spatially
modulated part of the gauge field,

εgauge = 2 h̄kc

|�+
p �−

p |(t = 0+)

|�c|2 . (25)

A similar expression for the contribution �E1 of the non-
modulated term is given in the Appendix C as (C8). The
susceptibility χyy appearing in expression (24) is the one
(as defined in Sec. II) of the fictitious spatially homogeneous
two-dimensional Bose gas that approximates the state of the
trapped gas around the center r0 of the probe beams’ spot.

The expression (24) for the deposited energy involves the
imaginary part of that susceptibility, while the normal fraction
[Eq. (4)] involves the real part. To relate the two, one can
make use of the well-known Kramers-Kronig relation of linear
response theory,

lim
ω→0

Re[χ (q,ω)] =
∫ +∞

−∞

dω′

π

Im[χ (q,ω′)]
ω′ . (26)

For a suitably chosen envelope of the form

f (t) = e−γ t �(t), (27)

where �(t) is the Heaviside step function, the Fourier
transform is equal to f (ω) = i/(ω + iγ ), and the integral
in expression (24) indeed reduces to the real part of the
susceptibility [Eq. (26)] in the γ → 0 limit.

As a consequence, the deposited energy �E2 for small q
perpendicular (parallel) to kc can be related to the normal
(total) density ρn (ρ) of the trapped gas at position r0 by

�E2 � π

4

w2

m

(
εgauge

2

)2 {
ρn(r0) for q ⊥ kc

ρ(r0) for q ‖ kc
. (28)

For intermediate angles α between q and kc, �E2 is propor-
tional to ρ cos2 α + ρn sin2 α [34].

In an actual experiment, the undesired contribution �E1

can be eliminated by noting its independence on the relative
orientation of q and kc [see Eqs. (C8) and (C9)], as well
as its different dependence on the probe amplitudes �±

p ,
proportional to [|�+

p |2 + |�−
p |2]2 rather than |�+

p �−
p |2. By

measuring the deposited energy for at least two different
values of the �+

p /�−
p ratio, one is able to isolate the relevant

contribution (28).
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B. How fast is the q,γ → 0 limit reached?

An important point in view of experiments is to characterize
how small the wave number q and the switch-off rate γ

of the gauge-field spatial modulation have actually to be
taken to obtain a quantitatively accurate measurement of the
normal fraction fn. To answer this question, we consider in
this subsection the simplest case of a spatially homogeneous
two-dimensional system in a square box of size L with periodic
boundary conditions, excited by the gauge field in a plane-wave
form, i.e., in the limit w → ∞. We also limit ourselves to the
case of a transverse gauge field with q = q ex perpendicular
to kc = kc ey ,

Aideal(r,t) = e−γ t�(t)ey

εgauge

2
(eiqx + e−iqx). (29)

The deposited energy at the end of the gauge-field sequence
can be evaluated by means of the Bogoliubov theory of dilute
Bose gases. The main steps of the calculation are outlined in
Appendix D. The final result reads

�E2 =
(

εgauge

2

)2
N

m
f eff

n (30)

in terms of the wave vector- and γ -dependent effective normal
fraction f eff

n :

f eff
n = 1

N

∑
k �=0,−q

h̄2k2
y

m
Re

[
nk − nk+q

εk+q − εk − ih̄γ
(UkUk+q

−VkVk + q)2 + 1 + nk + nk+q

εk+q + εk − ih̄γ
(UkVk+q − VkUk+q)2

]
.

(31)

Here N is the total particle number, ρ = N/L2 is the surface
density,

εk =
[
h̄2k2

2m

(
h̄2k2

2m
+ 2ρg

)]1/2

(32)

is the usual Bogoliubov dispersion relation and the amplitudes
of the Bogoliubov modes satisfy

Uk + Vk = 1

Uk − Vk
=

(
h̄2k2/2m

h̄2k2/2m + 2ρg

)1/4

. (33)

The nk are the thermal mean occupation numbers of Bogoli-
ubov modes, nk = 1/[exp(εk/kBT ) − 1].

The thermodynamic limit L → ∞ at fixed density N/L2

can be worked out analytically by first taking the γ → 0 limit
and then the q → 0 limit in the expression (31) for f eff

n . In
this way one recovers the usual Bogoliubov expression for the
normal fraction, which in dimension 2 reads:

fn = 1

ρ

∫
d2k

(2π )2

h̄2k2
y

m
(−∂εknk). (34)

For a finite-size system, the dependence of f eff
n on γ and q

is explored in Fig. 2. For the smallest nonzero wave-vector
value allowed by the chosen quantization box, the relative
error on f eff

n is already as small as 10% for γ /csq = 0.15,
where cs = (ρg/m)1/2 is the Bogoliubov sound velocity. For
γ /(csq) fixed, in particular to the relevant value 0.2, and over
the relevant range qξ � 1, we have also found that f eff

n is to a

0 0.1 0.2 0.3 0.4 0.5
γ/(c

s
q)

0.14

0.16

0.18

0.2

0.22

0.24

f n e
ff

18%
28%

(a)

11.5%

0 0.2 0.4 0.6 0.8 1

(q ξ)
2

0.184

0.186

0.188

0.19

f nef
f

(b)

FIG. 2. Quantum Bogoliubov prediction (31) for the effective
normal fraction f eff

n . In (a), dependence of f eff
n on the switch-off

rate γ of the gauge field for three different values of the gauge-field
spatial-modulation wave vector q = (2π/L) ex (solid line, qξ � 0.1),
q = 7 × (2π/L) ex (dotted line, qξ � 0.7) and q = 10 × (2π/L) ex

(dashed line, qξ � 1). System parameters: square box (with periodic
boundary conditions) of size L/ξ � 63 containing N � 40 000
particles with interaction constant g = 0.1 h̄2/m at a temperature
T/Td = 0.1. kBTd = 2πh̄2ρ/m is the degeneracy temperature. The
healing length ξ of the gas is defined by h̄2/(mξ 2) = ρg and the
Bogoliubov sound velocity is defined as cs = (ρg/m)1/2. The dashed
curve corresponds to the same value of qξ � 1 as in Fig. 4 and the
vertical dotted lines indicate the values of γ /(csq) considered in that
figure. The thin horizontal line is the prediction (34) of the quantum
Bogoliubov theory in the thermodynamic limit. Interestingly, for
the considered atom number, the finite-size thermodynamic formula
[Eq. (39)] evaluated with the quantum Bogoliubov theory gives
already the same value at the scale of the figure [35]. The quadratic
rather than linear dependence of f eff

n on γ for small values of γ is a
finite-size effect. The fact that in (a), the values of f eff

n for the dotted
curve are close to the arithmetic mean of the solid and dashed curves,
for common values of γ /(csq), suggests that f eff

n is roughly an affine
function of (qξ )2 for fixed γ /(csq). This guess is substantiated in
panel (b) where the dependence of the effective normal fraction on
the modulation wave vector q = q ex is shown for γ /(csq) = 0.2 [the
crosses are the Bogoliubov predictions and the line is a linear fit of
f eff

n as a function of q2].

good approximation an affine function of (qξ )2, see Fig. 2(b),
which was not obvious.

Another interesting result of Bogoliubov theory applied
to our system is a sufficient condition on the amplitude of
the gauge field to be within the linear response regime. To
this purpose, we can write the equations of motion for the
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Bogoliubov mode operators bk in the interaction picture in
the presence of the time-dependent gauge field and impose
that the amplitude change is small as compared to the initial
value. The expression of this amplitude change, which we do
not give here, involves, as usual, energy denominators such as
εk − εk±q + ih̄γ .

In the limit γ → 0, the condition of linear response is, thus,
most stringent for modes of wave vector k such that εk = εk±q,
where the real part of the energy denominator can vanish. For
the maximal value of k set by the thermal occupation, this
leads to the sufficient condition

εgauge

(mkBTd )1/2
�

(
Td

T

)1/2 2h̄γ

kBTd

, (35)

in terms of the degeneracy temperature kBTd = 2πh̄2ρ/m.
This naive argument is, however, not able to determine to
which extent this condition is actually necessary. This would
require a higher-order calculation which falls beyond the scope
of the present work [36].

C. Numerical investigation

To further assess the validity and accuracy of our proposed
scheme we have performed full scale numerical simulations
of the response of a two-dimensional Bose gas at finite
temperature to the complete gauge field (21), including the
Gaussian envelope of the gauge field and a circular well
trapping potential. A very useful tool to this purpose is the
classical field model developed and applied in a number
of recent works [37,38]. For this model, both the thermal
equilibrium state and the temporal dynamics can, in fact,
be easily addressed with standard numerical tools and pro-
vide reliable results for the physics of the degenerate Bose
gas.

We consider a classical (c-number) complex field de-
fined on a square grid. The real space lattice constant
b is chosen in terms of the thermal de Broglie wave-
length λ =

√
2πh̄2/mkBT as b/λ = √

π/(4ζ ). The specific
value ζ � 0.80 [39] of the numerical coefficient is such
that the classical field model correctly reproduces the to-
tal number of noncondensed particles for an ideal gas at
zero chemical potential in the thermodynamic limit. This
choice corresponds to setting the ultraviolet momentum
cutoff kmax = π/b at h̄2k2

max/2m = ζkBT in the classical field
theory.

In the canonical ensemble, the thermal probability distri-
bution for the interacting classical field follows a Boltzmann
law δ(‖�‖2 − N ) exp(−E[ψ]/kBT ) with the norm-squared
‖�‖2 = b2 ∑

r |�(r)|2 fixed to the total atom number and the
discrete Gross-Pitaevskii energy functional [40] given by

E[�] = b2
∑

r

�∗
[
− h̄2

2m
� + U (r) + g

2
|�|2

]
�, (36)

where U (r) is the trapping potential seen by the bidimensional
gas. This probability distribution can be sampled by the long
time limit of an Ito stochastic differential equation with drift
terms and a noise term [41,42], including projectors in order

to keep the norm-squared constant, ‖�‖2 = N :

d� = −1

2
dτ Q�

[
− h̄2

2m
�� + U � + g|�|2 �

]

+
√

kBT

b
Q�dξ − M − 1

2N
kBT dτ �, (37)

where M is the number of grid points, Q� is the projector
onto the subspace orthogonal to the classical field �, dξ is
a complex Gaussian, zero-mean, δ-correlated and temporally
white noise such that dξdξ = 0 and

dξ ∗(ri) dξ (rj ) = dτ δri ,rj
. (38)

Our numerical procedure simply consists in, first, generating
a number nreal of independent wave functions distributed
according to the thermal Boltzmann law with energy functional
(36) and then to let them evolve in real time according to the
discrete time-dependent Gross-Pitaevskii equation, including
the gauge potential (21) [43].

As a first application of the classical field method, we have
determined the normal fraction of a spatially homogeneous
two-dimensional interacting gas at thermal equilibrium. This
is done using the thermodynamic formula, applicable to finite-
size systems with periodic boundary conditions,

f thermo
n = 〈P 2

y 〉
NmkBT

(39)

which involves the thermal variance of the total momentum Py

of the gas [44,45]. The temperature dependence of the normal
fraction is shown in Fig. 3 for increasing system sizes. The
sudden variation around T/Td � 0.13 becomes sharper and
sharper as the system size is increased and should eventually
correspond to a discontinuous jump in the superfluid fraction
at the BKT transition [1,2,46]. The slow decrease for larger
values of T/Td is instead an artifact of the ultraviolet cutoff
that has to be imposed to the classical field model in any
dimension d � 2. Indeed, the same decrease is visible also in
the case of an ideal gas, for which one can show that fn =
1 − T/Td + O(e−Td/T T /Td ) in the thermodynamic limit.

The experimental estimation of the normal fraction ob-
tained by the deposited energy method discussed in Sec. IV A
is simulated in Fig. 4. The value of the deposited energy is
extracted from the classical field simulation by taking the
energy difference at the end of two evolutions using the same
value of |�+

p |2 + |�−
p |2 but different relative magnitudes of

�±
p , �−

p = 0 and |�+
p | = |�−

p |, respectively. This protocol
aims at isolating the effect of the spatially modulated gauge
potential: In the linear response limit, it is able to provide the
exact value of �E2 alone. The effective normal fraction is
then extracted from the deposited energy via expression (28),
and it is plotted in Fig. 4 as a function of the gauge-field
amplitude for different values of the switch-off rate γ /(csq) =
0.4,0.2,0.1 (in black, in red, and in blue from bottom to
top) [cs = (ρg/m)1/2 is the Bogoliubov sound velocity] and
different geometries (open squares and dashed lines for the
spatially homogeneous case with periodic boundary conditions
and solid circles and solid lines for the circular potential
well).

The εgauge dependence in that figure allows us to estimate the
interval where the linear response approximation is reasonable,
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FIG. 3. (Color online) Classical field simulation of the normal
fraction fn for a finite-size two-dimensional, spatially homogeneous
interacting Bose gas as a function of temperature. The calculation
has been performed using the thermodynamic expression (39) for
the normal fraction. The coupling constant is g = 0.1 h̄2/m. The
different curves refer to simulations performed with different system
sizes L, resulting in different numbers of grid points M = 162 (dotted
green line), 322 (dashed red line), and 642 (solid black line) [the grid
spacing is b � 0.99λ, where λ is the thermal de Broglie wavelength;
see the text]. The number of classical field realizations is nreal =
1000. The dot-dashed line is the classical field prediction for the
normal fraction fn of an ideal gas in the thermodynamic limit: As
discussed in the text, the decrease at high temperatures is an artifact
of the classical field model. The blue circle indicates the result of a
numerical simulation of the deposited energy scheme as in Fig. 4 for
a homogeneous system with an infinite beam waist w = ∞ (in which
case we simply dropped the nonmodulated term in the gauge field), a
number of grid points M = 322, a gauge-field modulation wave vector
q = (2π/L) ex � (0.2/ξ ) ex , and including a careful extrapolation
of εgauge → 0 [numerics down to εgauge/(mkBTd )1/2 = 0.01] and of
γ → 0 [numerics down to γ /(csq) = 0.05, where cs = (ρg/m)1/2 is
the Bogoliubov sound velocity].

e.g., for εgauge/
√

mkBTd � 0.08 the deviation due to nonlinear
effects is less than 5% . As expected, the estimate (35) gives a
more pessimistic bound around 0.04 for γ /(csq) = 0.4. From
an experimental point of view, we expect that values of the
gauge-field amplitude as high as εgauge/(mkBTd )1/2 = 0.15
should be well achievable; see Table I. As shown in the figure,
for εgauge/(mkBTd )1/2 � 0.2, the effective normal fraction fn

empirically has, within the error bars, a linear dependence
with ε2

gauge. This could be expected from the fact that the
first-order correction to the linear response theory scales as
ε4

gauge in the deposited energy �E, the term of order ε3
gauge

in �E being zero due to the odd parity of the matter-wave
coupling to the gauge field. Assuming this linear dependence
of the effective normal fraction, a fit was performed over
the range (0.05)2 � ε2

gauge/(mkBTd ) < (0.2)2 to extrapolate to
εgauge = 0; see the solid and dashed lines in Fig. 4. Note that
this extrapolation procedure also eliminates the contribution
to the effective normal fraction of the energy �EUp deposited
by the undesired light shifts; see the end of Appendix A. For
larger values of the gauge-field amplitude εgauge, more serious

0 0.1 0.2 0.3

ε
gauge

/(mk
B
T

d
)
1/2

0.05

0.1

0.15

0.2

f n

thermodynamic result

0.146(2)

ΔE
2
/E=0.7%

0.120(2)

0.161(2)

FIG. 4. (Color online) Classical field simulation of the deposited
energy measurement scheme. Initial thermal equilibrium state at
T/Td = 0.1 with g = 0.1 h̄2/m and a system size L/ξ � 63 (the
number of grid points is M = 642, and nreal = 1000 independent
realizations of the classical field are used). Gauge-field modulation
wave vector q � (1/ξ ) ex . The real-time evolution is followed during
τ = 3/γ . The complete form Eq. (21) of the gauge field is considered,
with r0 located in the center of the system, and a beam waist w = 30ξ .
For each value of the gauge-field intensity εgauge of Eq. (25), two
calculations are performed to extract the energy change �E2 due
to the spatially modulated component, from which an approximate
value of the normal fraction fn is obtained (see text): the first
calculation with |�+

p |2(0+)/|�c|2 = εgauge/(h̄kc) and �−
p ≡ 0 and the

second one with |�±
p |2(0+)/|�c|2 = εgauge/(2h̄kc). (Open squares

with error bars) Spatially homogeneous system of size L (with
periodic boundary conditions), which corresponds to N � 40 000
atoms. (Solid circles with error bars) System in a circular potential
well (see text), with a total atom number N � 30 000 adjusted
to have the same central density ρ, hence, the same degeneracy
temperature Td and healing length ξ as in the homogeneous case. The
suggested experimental values of Table I correspond to the circled
point indicated by the oblique arrow and require the measurement of
a relative energy change of �0.7%. (Thin lines) Quadratic fit (with
no linear term; see the text) of the effective fn as a function of εgauge,
over the interval 0.05 � εgauge/(mkBTd )1/2 < 0.2 (dashed lines for
the spatially homogeneous system and solid lines for the system in
the potential well). Black, red, and blue lines and points (from bottom
to top) correspond to an excitation sequence with γ /(csq) = 0.4, 0.2,
and 0.1, respectively, with cs = (ρg/m)1/2 the Bogoliubov sound
velocity. The extrapolated zero-εgauge values of the effective normal
fraction are indicated in the figure. The region between the horizontal
dotted lines indicates the confidence interval of the thermodynamic
prediction shown in Fig. 3. The residual 14% deviation of fn from the
thermodynamic value (after linear extrapolation to γ = 0) is a finite
qξ effect (see text).

nonlinear effects set in in the effective normal fraction and it
becomes less clear how to extrapolate them down to εgauge = 0.

For the sake of completeness, it is important to note that
for the weak gauge-field amplitudes that are required to be in
the linear regime, or at least in the regime of the numerically
suggested linear dependence of the effective normal fraction
with ε2

gauge, the deposited energy �E2 is at most a few
percentage points of the total energy of the system, which may
be experimentally challenging to measure [47]. This value is,
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however, larger than the statistical uncertainty of the energy
in the canonical ensemble with nreal = 1000 realizations.
As explained in the Appendix E, such a large number of
realizations turned out to be necessary in the small εgauge

regime to compensate the fluctuations of the current j(t = 0) at
the initial time. The resulting statistical error for the effective
normal fraction is about 2% for the parameters of Table I. In
the numerical results of Fig. 4, this issue was circumvented
by a simulation trick so nreal = 1000 is a sufficiently large
number of realizations to keep error bars below 2% in the
limit εgauge → 0 [48]. It is also shown in Appendix E that a
measurement of the variance of the deposited energy (rather
than its mean value), in principle, also allows us to access the
normal fraction, if one knows experimentally the initial energy
of the gas.

After linear extrapolation to γ = 0 from the lowest two
values of γ in Fig. 4, which gives fn � 0.176, the residual
disagreement of fn with the thermodynamic result indicated
by the dotted lines is about 14%, of the same order as the finite
q correction predicted by Bogoliubov theory; see Fig. 2(a).
We have, thus, performed simulations for qξ = 1/2 for a
spatially homogeneous system having the same parameters
as in Fig. 4 and for a gauge-field switch-off rate γ /(csq) = 0.2
(not shown). It is found that the range of linearity of the
effective normal fraction with ε2

gauge is of the same order,
up to εgauge/(mkBTd )1/2 � 0.27. Repeating the zero-εgauge

extrapolation procedure as in Fig. 4, we find for qξ = 1/2
an effective normal fraction of 0.164(3) rather than 0.146(2)
for qξ = 1. Assuming a quadratic dependence of the effective
normal fraction with q at fixed γ /(csq), as predicted by
Bogoliubov theory, see Fig. 2(b), this leads to an additive
correction to fn close to 0.024. We finally reach fn � 0.20,
which is within the statistical error bars of the thermodynamic
value [49]. On a smaller system with M = 322 modes, we
have reached a similar conclusion, taking even smaller values
of qξ and γ /(csq); see the blue circle in Fig. 3 and the figure
caption. The deviation observed in Fig. 4 is, therefore, not a
systematic error of the proposed method.

As a final check, we have tested the locality of the proposed
measurement scheme by performing the simulation for two
different geometries. Open squares and dashed lines in Fig. 4
correspond to a spatially homogeneous system with periodic
boundary conditions, while the solid disks and solid lines
correspond to a system trapped in a circular well with steep
walls of the form U (r) = ζkBT {tanh[(r − L/2)/(ξ/2)] + 1},
where the numerical parameter ζ determines the energy cutoff
in the classical field model [39]. The probed region is at the
center of the potential well, r0 = 0. Even in the nonlinear
regime, where linear response theory fails, the effective normal
fractions are almost the same in both geometries.

V. OPTICAL MEASUREMENT

The proposal that we have illustrated in the previous section
was based on the measurement of atomic quantities, namely
the deposited energy in the atomic cloud at the end of the
gauge-field sequence. The present section is devoted to the
presentation and the characterization of an alternative, all-
optical route to measure the normal fraction fn: Information
on the response of the atomic cloud to the gauge field can

z

x

k
p

k
scθ

sc

FIG. 5. Scheme of the scattering geometry under examination
in Sec. V B. Probe light is incident at wave vector kp = kpez

and the scattered light is collected at a wave vector ksc = (k2
p −

Q2)1/2 ez + Q.

be retrieved from the transmitted probe beams once they have
crossed the atomic cloud. Recent works have in fact pointed out
that the strong frequency dependence of the dielectric constant
of an optically dressed medium in the electromagnetically
induced transparency (EIT), already used experimentally to
strongly reduce the light group velocity [50–52], can be
exploited for velocimetry experiments: Information on the
current profile of an atomic cloud was predicted to be imprinted
onto the phase of the transmitted probe beam [53,54].

In the present case, the gas is illuminated by probe light of
angular frequency ωp and coupling light of angular frequency
ωc. As in Sec. IV the coupling light is a plane wave propagating
along the y axis. In the Sec. V A, where it is proposed to
measure the transmitted mean electric field amplitude, the
probe light consists, as in Sec. IV, of two beams with wave
vectors k±

p at a small angle with the z axis, as shown in Fig. 1;
differing from Refs. [53,54], the matter-wave current pattern
is generated by the same laser beams that are then used for
probing. The configuration differs slightly in Sec. V B, where
it is proposed to measure the pattern of the scattered light
intensity: In this case, the probe light consists of a single beam
with a wave vector kp directed along the z axis, as shown
in Fig. 5. Even though no spatially modulated matter-wave
current is generated by the laser beams, still one can extract
information on fn from the zero-mean matter-wave currents
induced by thermal fluctuations in the gas.

A. Extracting fn from the amplitude of transmitted light

The transmission and reflection of probe light from the
two-dimensional atomic cloud can be described in terms of
Maxwell equations. In particular, the dipole polarization of
the atoms provides a source term for the probe electric field Ep

at angular frequency ωp: For the positive frequency parts, one
has, in the paraxial approximation with respect to the z axis,

(
� + k2

p

)
Ep = −k2

p

ε0
Pp, (40)

where kp = ωp/c and the Laplacian operator is three dimen-
sional. In the considered � atomic configuration, see Fig. 1,
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one may think that the atoms occupy in each point of space
the noncoupled state |NC(r)〉, leading to a vanishing mean
atomic polarization Pp. This is actually not exactly the case:
Due to the atomic motion, the atomic internal state does not
follow adiabatically and there exists a small coupling between
the position-dependent coupled state |C(r)〉 and noncoupled
state |NC(r)〉, the so-called motional coupling [28]. This leads
to a small nonadiabatic atomic polarization, which we now
evaluate.

Within a perturbative picture, we simply need to calculate
the mean atomic polarization Pp induced by the unperturbed
laser fields. In terms of the three-dimensional atomic field
operators, this reads

Pp(r) = dae 〈�̂†
a(r) �̂e(r)〉. (41)

With the usual adiabatic elimination of state |e〉, as shown in
Appendix B, the atomic field in the excited state can be written
in terms of the atomic field operator χ̂3D in the coupled |C〉
state

χ̂3D(r,t) = 〈C(r,t)|a〉 �̂a(r,t) + 〈C(r,t)|b〉 �̂b(r,t) (42)

as

�̂e � �c

2(δ + i�/2)
[1 + |�p/�c|2]1/2 χ̂3D + �1/2B̂e. (43)

From the explicit form of the noise term B̂e given in
Appendix B, it is immediate to see that it gives a zero
contribution to the mean in Eq. (41). Since the atoms are
mostly in the uncoupled |NC〉 state, we can approximate the
atomic field �a in the |a〉 state by its |NC〉 component. To
lowest order in �p/�c we then have

Pp(r) � dae �c

2(δ + i�/2)
〈φ̂†

3D(r) χ̂3D(r)〉. (44)

The next step is to perturbatively evaluate the field χ̂3D that is
created in the coupled |C〉 state by the motional coupling [28]
of |C〉 to |NC〉. The details of the procedure are given in the
Appendix B. To first order in �p/�c and for the magic choice
Eq. (23) of �c, one obtains after adiabatic elimination

χ̂3D � −4h̄(δ + i�/2)

m|�c|2 ∇ φ̂3D · ∇ �p

�c

+ �
′1/2B̂χ . (45)

An explicit expression for the noise term B̂χ is given in
Appendix B: Again, the noise term has a zero expectation
value and does not contribute to the optical polarization.
The final form of the optical polarization in terms of the
three-dimensional atomic density and current operators (17)
and (15) reads, to zeroth order in q/kp,

Pp(r) = −4 |dae|2
h̄ |�c|2 (kp − kc) ·

[
〈j3D(r)〉 + h̄

2im
∇〈n3D(r)〉

]
× Ep(r), (46)

where the Rabi frequency of the probe beam has been
eliminated in favor of the electric field using the definition
−deaEp = h̄�p/2 and the detuning δ has disappeared from
the formula. The first term proportional to the atomic current
operator has a simple semi-classical interpretation in terms of
the reduced group velocity in the EIT regime, as anticipated
in Refs. [53,54]: In this regime, the refractive index strongly

depends on the Raman detuning, which, in turn, depends on
the atomic speed because of the Doppler effect.

However, the expression (46) differs from the semiclassical
one that was used in Ref. [54] in two ways. First, the current
operator in Eq. (46) differs from the physical current of atoms
by the gauge field

jphys = j3D − 1

m
n3D A3D. (47)

As the proposal in Ref. [54] addressed a pre-existing current
profile and the weak probe beam induced a vanishingly small
gauge field, the difference was irrelevant in that case. Here,
on the contrary, the mean current is itself proportional to the
gauge field so the difference between the two operators really
matters. Second, Eq. (46) contains an extra term proportional
to the average density gradient. In contrast to the first term, this
one is purely imaginary. As a result, it affects only the intensity
of the transmitted light via a combination of absorption and/or
amplification effects. In particular, as it does not induce any
phase shift on the light, it does not interfere with the proposal
of Ref. [54].

In order to calculate the modification δEp induced by
the atoms on the transmitted electric field of the probe, one
has to insert the polarization (46) as a source term into the
Maxwell equation (40). Within a standard approximation, we
can neglect diffraction effects stemming from the in-plane
part of the Laplace operator in Eq. (40) and integrate the
z dependence across the atomic cloud. Taking into account
the appropriate boundary conditions for δEp, this leads to the
expression

δEp(x,y,z) � eikpz ikp

2ε0

∫ ∞

−∞
dz′ e−ikpz′ Pp(x,y,z′) (48)

for the transmitted field in the z > 0 region. In order for the
approximation to be accurate, z has to be much larger than
the thickness az

ho of the atomic pancake but, at the same time,
much smaller than the diffraction length kp/q2, where q is the
characteristic wave vector of the in-plane modulation of the
atomic density and current.

Along z, the atomic field varies as the harmonic oscillator
ground-state wave function φ0(z); see Eq. (19). Performing the
integral over z′, this gives the final expression for the variation
of the transmitted field

δEp(r) = 2ikp |dae|2
h̄ε0 |�c|2 kc ·

[
〈j(r)〉 + h̄

2im
∇〈n(r)〉

]
Ep(r)

(49)

in terms of the two-dimensional density n(r) and current j(r)
operators. The first contribution proportional to the atomic
current gives a phase shift, while the second contribution
proportional to the atomic density gradient is responsible for
absorption and amplification of the probe beam.

The atomic current profile created by the gauge field is
evaluated using the linear response formulas (3) and (4) as
discussed in detail in the previous sections. The gauge field
is assumed to be switched on slowly enough as compared to
the characteristic frequencies of all the excitation modes of
the gas at wave vector q. Within the linear response regime,
the contribution to the current due to the spatially modulated
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gauge field at q may be isolated by a suitable combination of
measurements with different values of �±

p , which gives

〈j〉2(r) = h̄ρkc

mq|�c|2 (q cos α + fnez × q sin α)

× (�+
p �−∗

p eiq·r + �+∗
p �−

p e−iq·r)

× e−2|r−r0|2/w2
, (50)

where r is now in the xy plane and α is the oriented angle that
kc makes with q [34]. Inserting this expression into Eq. (49)
and recalling the form (7) of the incident probe field, one can
extract the phase shift experienced by the central part of the
probe beams after crossing the atomic pancake,

�φ±
2 = 6πh̄ρ

m

|�∓
p |2

|�c|4 B� [cos2 α + fn sin2 α], (51)

where we have assumed kp � kc. The total decay rate of
the e state by spontaneous emission is indicated by � and
B is the branching ratio for the decay to the a state, so
B� = |dae|2k3

c /(3πh̄ε0). As already mentioned above, the
density gradient term in Eq. (49) only introduces an intensity
modulation and is not responsible for any phase shift.

From a nonlinear optics point of view, the phase shift (51)
can be interpreted as arising from a χ (3) optical nonlinearity
of optomechanical origin similar to the one demonstrated
in the experiment [55]: The nonlinear modulation of the
optical response of the atoms is determined by the mechanical
distortion of the cloud by the optical forces.

Inserting into Eq. (51) the values of Table I for the 87Rb case,
for the first choice of level scheme reported in Appendix A,
one has a branching ratio B = 1/4 and one finds a small, yet
appreciable, phase shift on the order of

�φchoice 1
2 � 6 × 10−4[cos2 α + fn sin2 α]. (52)

For the second choice of level scheme in Appendix A,
the branching ratio is slightly larger, B = 1/3, but for the
compromise choice, Eq. (A25), |�c|2/�2 is larger so one finds
a smaller phase shift,

�φchoice 2
2 � 3 × 10−4[cos2 α + fn sin2 α]. (53)

In addition to the phase shift of the transmitted beam that
we have discussed so far, Bragg diffraction on the spatially
modulated current profile produces a pair of additional beams
of in-plane wave vector, respectively, ±3q/2 via a sort-of four-
wave mixing process. The relative intensity of these beams
as compared to the incident probe beams is on the order of
|�φ2|2. For transverse gauge fields such that q · kc = 0, the
contribution of the induced density gradient term of Eq. (49)
vanishes by symmetry. In the case of longitudinal gauge fields,
the relative correction is on the order of qξ .

B. Current fluctuations and the angular distribution of
scattered light

All the calculations presented in the previous subsection
aimed at evaluating the expectation value of the transmitted
field amplitude. At this level of the theory, we were allowed
to describe the probe beam as a coherent, classical field and
we could neglect the fluctuations around the expectation value

of both the light field amplitude and the atomic current and
density operators. The formalism can be straightforwardly
extended to quantum optical fields to include the fluctuations of
the atomic density and current. This is crucial when one aims at
investigating the spontaneous scattering of light off the current
fluctuations in the atomic gas. In this subsection, we shall in
particular show how information on the normal fraction of the
gas can be inferred from the angular distribution of scattered
light. We shall make the approximation of replacing temporal
derivatives of the electromagnetic field ∂tE by −ickpE in
Maxwell’s equation. In particular, this misses retardation
effects in the expression of the scattered fields in terms of
the atomic dipoles, which is accurate since the system size is
much smaller than c/�.

We consider the geometry sketched in Fig. 5: a single
Gaussian probe beam is incident onto the atoms with a wave
vector kp exactly orthogonal to the atomic plane, waist w

centered at r0, and a weak peak amplitude E0
p. Inserting this

form into Eq. (49) and taking the Fourier transform along the
xy plane, one obtains the following operator equation for the
scattered field component at the in-plane wave vector Q [56]:

E(Q,z) � 2i kp |dae|2
ε0 h̄ |�c|2 π w2 E0

p

∫
d2q

(2π )2
e−q2w2/4 e−iq·r0

×
{

kc ·
[

jQ−q + h̄(Q − q)

2m
nQ−q

]}
eikz(Q) z. (54)

Here, jQ and nQ are the spatial Fourier transforms of the two-
dimensional current j(r) and density n(r) operators; the Fourier
transform of a product of two functions has been rewritten in
terms of the convolution of their Fourier transforms. The z

component of the propagation wave vector is determined by
the photon dispersion as kz(Q) = (k2

p − Q2)1/2.
The intensity of the scattered light at in the plane wave

vector Q is quantified by [56]

〈E†(Q)E(Q)〉 =
[

2πkp |dae|2 w2
∣∣E0

p

∣∣
ε0 h̄ |�c|2

]2

×
∫

d2q

(2π )2

∫
d2q ′

(2π )2

×
〈{

kc ·
[

j†Q−q + h̄(Q − q)

2m
n
†
Q−q

]}

×
{

kc ·
[

jQ−q′ + h̄(Q − q′)
2m

nQ−q′

]}〉

× ei(q−q′)·r0e−(q2+q ′2) w2/4. (55)

Since the system size is much larger than the waist w of
the probe beam, we can for simplicity assume an effective
translational symmetry along the xy plane. As a consequence,
the correlation function that appears in Eq. (55) has a δ-
distribution shape around equal wave vectors Q − q = Q − q′
[see, e.g., the next Eq. (56)].

In contrast to the schemes proposed in the previous sections,
where the duration 1/γ of the experiment had to be at least on
the order of 1/(csq), where cs = (ρg/m)1/2 is the Bogoliubov
sound velocity, the light-scattering experiment discussed here
can be performed on a much faster time scale, only limited by
the characteristic rate �′ of the internal atomic evolution time,
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Eq. (B7). As a result, the experiment can be performed in the
small wave-vector region Qξ � 1, where the contribution to
Eq. (55) of the terms involving the density fluctuations nQ is
negligible [57]. Of course, efficient isolation of the scattered
light from the incident beam requires that the scattering angle
θsc � Q/kp be much larger than the diffraction cone of the
probe beam, i.e., Q 	 1/w.

The instantaneous correlation function of the current in
the y direction parallel to kc can be evaluated applying the
fluctuation-dissipation relation (E5) to the current operator jq
in an infinite space geometry. This gives

〈j †
Q,y jQ′,y〉 = (2π )2 δ2(Q − Q′)kBT Re[χyy(Q′,ω = 0)]

�
Q→0

(2π )2 δ2(Q − Q′)
kBT ρ(r0)

m

× [cos2 φsc + fn sin2 φsc], (56)

where φsc is now the azimuthal angle between kc and
Q. Inserting this expression into Eq. (55) and taking the
thermodynamic limit, one gets to the final expression for the
scattered intensity in the momentum Q space [56],

〈E†
QEQ〉 =

[
kp kc |dae|2
ε0 h̄ |�c|2

]2

2πw2
∣∣E0

p

∣∣2 kBT ρ(r0)

m

× [cos2 φsc + fn sin2 φsc]. (57)

To estimate the relative intensity of scattered light, it is
useful to rewrite Eq. (57) for the momentum-space intensity
〈E†

QEQ〉 in terms of physically more transparent quantities such
as the angular distribution I (θsc,φsc) of scattered intensity.
For small scattering angles |θsc| � 1, the infinitesimal solid
angle and momentum-space volume elements are related by
d� = sin θsc dθsc dφsc � θsc dθsc dφsc � d2Q/k2

p, so

Isc(θsc,φsc) � k2
p

(2π )2
〈E†

QEQ〉. (58)

This immediately leads to the final expression for the angular
distribution of the scattering intensity [56]

Isc(θsc,φsc)

Iinc
=

[
k2
p kc |dae|2

πε0 h̄ |�c|2
]2

kBTρ(r0)

m

× [cos2 φsc + fn sin2 φsc] (59)

in units of the incident intensity,

Iinc =
∫

d2r |Ep(r)|2 = πw2

2

∣∣E0
p

∣∣2
. (60)

From this expression, it is immediately evident that infor-
mation on the normal fraction of the gas can be retrieved
from the azimuthal dependence of the scattered intensity. In
terms of the total spontaneous emission decay rate � of the
e state and the |e〉 → |a〉 branching ratio B [we recall that
B� = |dae|2k3

c /(3πh̄ε0)], Eq. (59) can be rewritten in the more
transparent form [56],

Isc(θsc,φsc)

Iinc
= 9k2

BT Td

2πh̄2

B2�2

|�c|4 [cos2 φsc + fn sin2 φsc]. (61)

To estimate the feasibility of the proposed light scattering
experiment, we now derive an upper bound on the number

of useful scattered photons in a single shot of duration τ .
Calculating the Poynting’s vector of the probe beam, and
using Eq. (60), we find an incident flux of probe photons
�inc = (kpw)2|�0

p|2/(12B�). Integrating in Eq. (59) the term
proportional to fn over solid angles in the cone θsc � 1/(kpξ ),
we obtain the flux �use

sc of useful scattered photons. As a
maximal duration, we take τ = 1/�non−ad

fluo , where the fluo-
rescence rate of the atoms due to motional coupling between
the noncoupled and the coupled states is given by Eq. (A2)
(with 2|�+

p |2 replaced here with |�0
p|2). The number of single

shot useful scattered photons is, thus, bounded by

Nuse
ph � 3πB

16

kBT

h̄ωz

ρw2fn

1

(kcξ )2
. (62)

Remarkably, the Rabi frequencies �c and �0
p have canceled

out in the ratio of the scattered flux to the fluorescence rate.
One recognizes in the right-hand side of expression (62)
the effective mean number of atoms N eff

at = πρw2fn/4 in
the normal component illuminated by the probe beam, as in
Eq. (28). There is, however, a severe geometrical reduction
factor, 1/(kcξ )2, due to the small aperture of the useful
scattering cone. For the parameters of Table I, with B = 1/3,
and taking a waist w = 30ξ and fn = 0.2 as in Fig. 4, we find
N eff

at � 1400, 1/(kcξ ) � 0.15, which leads to Nuse
ph � 5. This

remains accessible to current quantum optics experiments. For
fixed kBT /h̄ωz, the upper bound in Eq. (62) scales as ρ2, since
1/ξ 2 scales as ρ, so larger values of photon numbers for a
given waist may be obtained by increasing the density ρ of the
two-dimensional Bose gas.

VI. CONCLUSIONS AND PERSPECTIVES

In this article we have proposed and validated two methods
to measure the superfluid fraction of a quantum fluid of
ultracold atoms. The idea is to apply an artificial gauge
field to the atoms with spatial oscillations within a localized
envelope and to detect, within the linear response regime, the
matter-wave current pattern that is generated in the fluid. This
can be done in a mechanical way by measuring the energy that
is deposited in the fluid at the end of a gauge-field sequence.
This can also be done in an all-optical way by observing the
phase shift experienced by the same laser beams that are used
to generate the artificial gauge field or the angular pattern of
scattered light. We have shown that, by a careful choice of
the parameters and of the atomic level scheme for 87Rb, two
experimental obstacles, the spontaneous emission and (in the
case of the mechanical method) undesired light shifts, can be
put to an acceptable level. The experimental challenge remains
in the required high sensitivity of the measurements, that is, a
detection of small energy changes in the mechanical method,
and a detection of small optical phase shifts or small photon
numbers in the all-optical methods.

The interest of the proposed methods is twofold: They do
not require that the gas reaches thermal equilibrium in presence
of the gauge field, and, furthermore, they give the possibility of
reconstructing in a local way the spatial profile of the superfluid
fraction of a trapped gas, independently from the presence or
the absence of a Bose-Einstein condensate. This last feature is
attractive in the study of the Berezinskii-Kosterlitz-Thouless
transition to a superfluid state in two-dimensional Bose gases
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FIG. 6. Scheme of the internal levels of 87Rb atom involved in the D1 transition (J = 1/2 → J ′ = 1/2). The hyperfine splitting of the
ground (excited) state is �hf,g = 2π6.834 GHz (�hf,e = 2π814 MHz). The natural linewidth of the excited state is � = 2π5.75 MHz. Thin
(thick) lines indicate transitions that are induced by the probe (coupling) beams. Solid (dashed) lines indicate the desired (main undesired)
transitions. The relevant dipole matrix elements are shown in units of the reduced dipole element 〈J = 1/2||er||J ′ = 1/2〉 of the D1 line, in
bold for the desired transitions and in italic for the undesired ones. Our first choice for the � system |a〉,|e〉,|b〉 states is shown, in the left
(a) panel, with |a〉 = |F = 1,mF = −1〉, |e〉 = |F ′ = 2,mF ′ = −1〉, |b〉 = |F = 2,mF = −2〉. The second choice is shown in the right (b) panel,
with |a〉 = |F = 2,mF = −2〉, |e〉 = |F ′ = 2,mF ′ = −2〉, |b〉 = |F = 1,mF = −1〉. Note that we have taken the y axis as the quantization
axis of angular momenta.

and of the superfluidity properties of Bose gases in disordered
environments. It would also be interesting to extend the
method to the study of superfluidity in multicomponent atomic
fermionic gases, which may require identification of suitable
level schemes.
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APPENDIX A: EXPERIMENTAL ISSUES

In this Appendix we review some issues that may hinder an
experimental implementation of our proposal. Our attention
will be concentrated onto the most relevant case of 87Rb
atoms considered in the experiment of Refs. [58,59] and, in
a two-dimensional context, in Ref. [4]. The level structure
of this atomic species is sketched in Fig. 6. A possibly
important advantage of this atom in view of an experimental
implementation of the present proposal is that the singlet
and triplet scattering lengths of ground-state atoms are equal
within a few percentage points [60]. We, thus, expect that all
scattering lengths between arbitrary F = 1 or F = 2 sublevels
of the ground state have all almost the same values [61],
which leads to gaa � gab and, therefore, to a suppression
of the spatiotemporal variation of the effective interaction
constant g3D(r,t) defined in Eq. (18). In the deposited energy
method proposed in Sec. IV, this is important to reduce
the emission of phonons in the atomic gas by the temporal

modulation of the interaction constant. In the optical detection
scheme of Sec. V, this is also important to suppress the
contribution of the interaction term to the field χ̂3D and
then to the optical polarization. Other atomic species such
as Yb [17] or metastable He [62,63] and/or different laser
beam configurations [18,19,64] are expected to be useful for
other purposes, e.g., to suppress spontaneous emission and/or
generate artificial gauge fields with different geometries [65].

Two possible choices for the three states |a〉,|b〉,|e〉 forming
the � system on the D1 line of 87Rb are considered, as shown
in Figs. 6(a) and 6(b). For each choice, we determine the
undesired effects (spontaneous emission, light shifts, Raman
leaks) stemming from deviations from the perfect adiabatic
following of the noncoupled state by the moving atoms and
from optical transitions to other levels not included in the �

system. An eye will also be kept on trying to maximize the |e〉
to |a〉 branching ratio to reinforce the optical signal of Sec. V.
To minimize spontaneous emission within the low saturation
regime, we shall allow for a small detuning δ of both the probe
and coupling beam carrier frequencies from the |a〉 → |e〉 and
|b〉 → |e〉 transitions, respectively. The Raman detuning of the
two beams is taken in a way to always fulfill the magic Raman
condition (23).

1. First choice

The coupling beam propagates along the y axis and is taken
with a σ+ polarization with respect to the y quantization
axis. The probe beam is taken as linearly polarized along
y. For the three atomic levels forming the � system, we
take |a〉 ≡ |F = 1,mF = −1〉, |b〉 ≡ |F = 2,mF = −2〉, and
|e〉 ≡ |F ′ = 2,mF ′ = −1〉 [68]. This scheme of levels and
lasers is illustrated in Fig. 6(a). To estimate the importance
of the nonadiabatic coupling between the |NC〉 and the |C〉
states due to the atomic motion, we can evaluate the ratio
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ρC/ρNC of the two-dimensional densities in the two states
close to the center of the laser spot. This is done using the
explicit formula (45) for the field in the |C〉 state [69]. Using
the fact that for quasi-2D samples the gradient is mostly along
the harmonically trapped z direction and assuming �+

p = �−
p ,

we obtain for kp � kc:

ρC

ρNC
�

∣∣∣∣∣4(δ + i�/2)kc �+
p

�3
c

∣∣∣∣∣
2

h̄ωz

m
. (A1)

Accuracy of the adiabatic approximation requires that this ratio
is much smaller than unity.

The finite population that is present in the |C〉 state as a
consequence of nonperfect adiabaticity is responsible for the
spontaneous emission of photons at a single atom rate:

�non−ad
fluo = �′ ρNC

ρC

= 4�
|�+

p |2
|�c|4

h̄k2
c

m
ωz, (A2)

where the fluorescence rate �′ of the coupled state |C〉 is
defined by Eq. (11) and a spatial average has been performed.
Remarkably, �non−ad

fluo does not depend on the detuning δ.
Other contributions to the fluorescence rate come from

nonresonant excitation processes. Dominating among these are
the excitation of the |a〉 state to the states |F ′ = 1 or 2,mF ′ =
0〉 by the coupling beam at a rate

�c
fluo = �

|�c|2
4�2

hf,g

, (A3)

and the excitation of the noncoupled state |NC〉 to |e′〉 =
|F ′ = 1,mF ′ = −1〉 by the total probe plus coupling field
with an effective Rabi frequency −2�p/

√
3, which results

in the fluorescence rate on the parasitic �′ configuration
|a〉 → |e′〉 → |b〉:

��′
fluo = 2

3
�

|�+
p |2

�2
hf,e

. (A4)

In these expressions, we have taken into account the tabulated
hyperfine dipole matrix elements of the various optical transi-
tions, and we have introduced the hyperfine splittings �hf,g and
�hf,e given for 87Rb in the caption of Fig. 6. Limiting ourselves
to the most relevant regime where |�+

p /�c|2 > 1/100, we see

that in the present case of 87Rb atoms, ��′
fluo 	 �c

fluo.
The total fluorescence rate can then be approximated as

the sum of ��′
fluo and �non−ad

fluo . For a given value of the gauge
field (proportional to |�+

p /�c|2), the total fluorescence rate is
minimized to

�min
fluo � 4

√
6

3

∣∣∣∣�
+
p

�c

∣∣∣∣
2

�

�hf,e

(
h̄k2

cωz

m

)1/2

(A5)

by a careful choice of the coupling beam Rabi frequency

∣∣�opt
c

∣∣2 = �hf,e

√
6h̄k2

c ωz

m
=

√
3�hf,e

2π1/2

h̄kc

ma3D

g̃. (A6)

Here, we have expressed ωz in terms of the three-dimensional
scattering length a3D and the reduced two-dimensional cou-
pling constant as given by Table I and Eq. (20). Inserting the
actual parameters of the 87Rb atom, and taking g̃ = 0.1, we
obtain |�opt

c |2/�2 � 0.21. It remains to adjust the detuning δ

to be in the weak saturation regime,

s ≡ |�c|2/2

|δ + i�/2|2 � 1

10
. (A7)

Let us take the same values of the gauge-field sequence
as in Fig. 4: γ /(csq) = 0.2 and qξ = 1 and εgauge �
0.15(mkBTd)1/2, cs = (ρg/m)1/2 being the Bogoliubov sound
velocity. This choice of εgauge leads to |�+

p (0+)/�c|2 �
0.03(ρλ2

c)1/2: As this quantity has to be much smaller than
1 in order for the gauge-field description of Sec. III to be valid,
it is safe to impose ρλ2

c < 10. Integrating over the exponential
switch-off ramp of �p and eliminating g in terms of ωz and
a3D , this gives for the total fluorescence probability per atom,

Pfluo =
√

6

2

�

�hf,e

(
kBTdh̄ωz

ρ2g2

)1/2

=
√

6

4

�

�hf,e

1(
ρa2

3D

)1/2 .

(A8)

For 87Rb with the choice ρλ2
c = 9, we obtain the following

result, which is not very impressive:

Pfluo � 0.22 . (A9)

For the sake of completeness, it is important to note that for
this choice, kBT = 0.1kBTd remains smaller than h̄ωz, so the
Bose gas retains a two-dimensional character.

The existence of other atomic levels in addition to the ones
strictly needed to create the gauge field not only is responsible
for dissipative effects, such as fluorescence, but also creates
reactive effects such as a spatially and temporally dependent
light shift of the noncoupled state |NC〉. Among the dominating
processes, the parasitic �′ scheme creates a modulated light-
shift potential

U�′
(r) = h̄ |�p(r)|2

3�hf,e
. (A10)

A shift of the same order of magnitude arises from the coupling
of the |a〉 state to the |F ′ = 2 or 1,mF ′ = 0〉 by the coupling
beam.

An estimate of the energy deposited in the system by the
U�′

term as compared to the one �E2 due to the gauge field
can be obtained with Bogoliubov theory: Using Eq. (D15)
with U0 = h̄(�+

p �−∗
p )(0+)/(3�hf,e), η = γ , and Q = q, one

gets for h̄γ � εq � ρg:

�EU�′

�E2
= |�c|4

9fn(kccs)2�2
hf,e

. (A11)

For actual parameters, the energy change due to �U�′
turns

out to be non-negligible. For the optimal value of the Rabi
frequency �

opt
c from Eq. (A6), the ratio is

�EU�′

�E2
= 2h̄ωz

3fn ρg
. (A12)

For 87Rb, one finds the discouraging result �EU�′ /�E2 �
600g̃/(ρλ2

cfn), which remains much larger than unity even for
ρλ2

c = 9.
Even if the deposited energy by the spurious potential U�′

is
much larger than the desired one of the gauge field, a suitable
extrapolation procedure may take advantage of the different
dependence on the laser intensities to isolate the effect of the
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gauge potential. An alternative possibility is to exploit the fact
that the �EU�′ contribution does not depend on the direction
of q: Within the regime of linear response, this contribution
can, therefore, be eliminated by taking the difference of the
energy changes for, respectively, longitudinal and transverse
gauge fields.

Another possible nuisance is the existence of stimulated
Raman processes that may outcouple the noncoupled |NC〉
state to atomic ground state sublevels |c〉 other than |a〉
and |b〉, via excited state sublevels other than |e〉 [70].
One may, however, check that, for the proposed scheme,
these leaky Raman couplings are detuned from resonance
by a frequency amount at least �hf,g in absolute value and,
therefore, harmless.

2. Second choice

Another possible choice for 87Rb atoms is to take a
σ− polarization for the coupling beam propagating along
the y axis. The probe beam is, again, linearly polarized
along y. The atomic levels forming the � system are
now |a〉 ≡ |F = 2,mF = −2〉, |b〉 ≡ |F = 1,mF = −1〉, and
|e〉 ≡ |F ′ = 2,mF ′ = −2〉. The strong two-body losses that are
generally experienced by the upper hyperfine manifold of the
ground state are here suppressed by the choice of a maximal
mF state for |a〉: as collisions between ultracold atoms mostly
occur in the s-wave scattering channel, conservation of the
sum of the mF ’s then prevents transition to the lower hyperfine
manifold.

The fluorescence rate per atom due to the motional coupling
between |NC〉 and |C〉 is still given by �non−ad

fluo as defined
in Eq. (A2). As there is no longer any parasitic �′ system,
the fluorescence due to laser excitation of |a〉 or |b〉 to
excited state sublevels other than |e〉 is now dominated by
the transitions |b〉 → |F ′ = 1 or 2,mF ′ = −1〉 due to the
probe beam. Thanks to the reduced occupation probability
� |�p|2/|�c|2 of sublevel |b〉 in the atomic state |NC〉 and
to the larger hyperfine splitting �hf,g of the ground state,
the fluorescence rate is strongly suppressed. After spatial
averaging it amounts to

�
p

fluo = 3

2
�

|�+
p |4

�2
hf,g|�c|2

. (A13)

Other fluorescence processes on the D2 line (e.g., the transition
|a〉 → |J ′ = 3/2,F ′ = 3,mF ′ = −3〉 excited by the coupling
beam) are several orders of magnitude weaker than �

p

fluo thanks
to the huge fine structure splitting of 2π7 THz.

Since the two terms in the sum �non−ad
fluo + �

p

fluo experience
different switch-off functions e−γ t and e−2γ t , we integrate over
time to calculate the total fluorescence probability:

Pfluo = 4�

γ

|�+
p (0+)|2
|�c|4

h̄k2
c

m
ωz + 3�

4γ

|�+
p (0+)|4

|�c|2�2
hf,g

. (A14)

After optimization over the coupling beam intensity, the
minimal fluorescence probability

P min
fluo = 2

√
3

γ

�

�hf,g

∣∣∣∣∣�
+
p (0+)

�c

∣∣∣∣∣
3 (

h̄k2
c

m
ωz

)1/2

(A15)

is obtained for a coupling beam Rabi frequency such that

∣∣�opt
c

∣∣4 = 16

3

|�c|2
|�+

p |2 �2
hf,g

h̄k2
c

m
ωz. (A16)

Introducing the reduced quantities γ̃ = h̄γ /(ρg) and ε̃gauge =
εgauge/(mkBTd )1/2, and eliminating ωz in terms of g and a3D ,
we, finally, obtain

P min
fluo =

(
9

128π

)1/4
ε̃

3/2
gauge

γ̃

�

�hf,g

λc

a3D

(
ρλ2

c

)−1/4
. (A17)

For the parameters of Table I, in particular ρλ2
c = 9, one finds

|�opt
c |2/�2 � 5.5 so a detuning |δ| > 5� is required to remain

in the weak saturation regime. This resulting probability
of spontaneous emission per atom in the deposited energy
measurement is very small,

Pfluo � 0.008. (A18)

As compared to the first one, this second choice then provides
a strong reduction of the spontaneous emission rate by a factor
of almost 30.

Another advantage of this second choice is that light-shift
effects are potentially smaller thanks to the absence of the
parasitic �′ scheme. The probe beam on the |b〉 → |F ′ =
1 or 2,mF ′ = −1〉 transitions produces a light shift which, after
averaging in the |NC〉 state, leads to the spurious potential

Up(r) = − h̄|�p|4
4|�c|2�hf,g

. (A19)

The amount of energy that is deposited in the gas by this
spurious potential can be estimated using Eq. (D15) twice, first
with U0 = −h̄|�+

p (t = 0+)|4/(|�c|2�hf,g), η = 2γ , Q = q,
and second with U0 four times smaller, η = 2γ , Q = 2q.
Neglecting 2h̄γ with respect to εq , and taking qξ = 1, we
obtain the following estimate for the spurious deposited
energy:

�EUp = 133

160

N

ρg

h̄2|�+
p (0+)|8

|�c|4�2
hf,g

. (A20)

For the coupling beam Rabi frequency (A16) minimizing
spontaneous emission, the ratio of the energies deposited by
the gauge field and the spurious potential amounts to

�EUp

�E2
= 133

√
2

960π3/2

g̃ ε̃gauge

fn

λc

ρ1/2a2
3D

. (A21)

For g̃ = 0.1 and ε̃gauge = 0.15 and using the 87Rb parameters
summarized in Table I, one finds the still quite unfortunate
result

�EUp

�E2
� 4

fn

	 1. (A22)

A possibility to overcome this difficulty and separate �E2

from �Up is to use the same strategy proposed to separate
�E2 from �E1 by exploiting the different dependence of
the two quantities on the ratio |�+

p /�−
p |(0+). This can be

combined with the choice of a compromise value of |�c|2/�2

that allows us to strongly suppress the light-shift potential
without introducing a too-large spontaneous emission rate.
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To this purpose, we fix ε̃gauge = 0.15, γ = 0.2ρg/h̄, qξ =
1, g̃ = 0.1 and we take as free parameters X = ρλ2

c and Y =
|�c|2/�2. Inserting the relevant parameters for 87Rb as in
Table I, we obtain

Pfluo = 6.86 × 10−2

X1/2Y
+ 7.46 × 10−4Y, (A23)

�EUp

�E2
= 0.132Y 2

fn

. (A24)

A reasonable compromise between the two competing effects
is to choose X = 9 and Y = 0.5, which corresponds to

ρλ2
c = 9 and

|�c|2
�2

= 0.5. (A25)

As a result, for the same parameters T/Td = 0.1 and fn = 0.2
used in the classical field simulations of Sec. IV, we obtain the
quite encouraging values

Pfluo � 0.045 (A26)
�EUp

�E2
� 0.16. (A27)

We have checked that at the resulting temperature kBT /h̄ωz =
0.62 the Bose gas retains a two-dimensional character and that
the validity of the gauge field model of Sec. III is guaranteed by
the resulting probe beam Rabi frequency |�+

p (0+)|2/|�c|2 =
0.03X1/2 = 0.09 � 1.

To conclude, we remark that the energy deposited by the
spurious light shift is suppressed in the extrapolation procedure
proposed in Sec. IV C to eliminate effects beyond the linear
response regime to the gauge field, that is, an extrapolation of
the effective normal fraction that is linear in ε2

gauge. Since �EUp

scales as |�+
p (0+)|8 with the probe beam Rabi frequency, it

varies as ε4
gauge with the amplitude of the gauge field, so it

indeed contributes to the effective normal fraction as ε2
gauge,

which extrapolates to zero. This works, of course, for εgauge

small enough for the mechanical effect of the spurious light
shift to be treatable in the linear response regime.

APPENDIX B: DUM-OLSHANII THEORY FOR
MANY-BODY SYSTEMS

In a seminal work [16], Dum and Olshanii have shown that
an effective gauge field appears in the theoretical description
of a three-level atom interacting with a laser field on a
� transition. Here we use the formalism of the quantum
stochastic differential equations (see, e.g., §8.3.2 of Ref. [30])
to extend this idea to an interacting Bose gas in second
quantized form.

We start with the master equation for the density operator
σ̂ of the many-body system, assuming for simplicity that
spontaneous emission corresponds to a net loss of atoms,

d

dt
σ̂ = 1

ih̄
[H,σ̂ ] + �

∫
d3r

[
�̂e(r)σ̂ �̂†

e (r)

− 1

2
{�̂†

e (r)�̂e(r),σ̂ }
]
, (B1)

where [,] ({,}) stands for the commutator (anticommutator).
The Hamiltonian H is the sum of the single-particle kinetic

and trapping terms, of the interaction terms (that we formally
model as local Dirac δ interactions), of the internal energy of
the atomic excited state, and of the coupling terms of the atoms
to the laser fields.

Since the loss rate h̄� greatly exceeds the kinetic, trapping,
and interaction energies, we can neglect the external dynamics
of the excited state and write

H �
∫

d3r
∑

α=a,b

[
− h̄2

2m
�̂†

α��̂α + U3D�̂†
α�̂α

]

+
∫

d3r

[
gaa

2
�̂†2

a �̂2
a + gbb

2
�̂

†2
b �̂2

b + gab�̂
†
a�̂

†
b�̂b�̂a

]

+
∫

d3r (−h̄δ)�̂†
e �̂e

+
∫

d3r

[
h̄�p

2
�̂†

e �̂a + h̄�c

2
�̂†

e �̂b + H.c.

]
. (B2)

As previously defined, δ is the common value of the detuning
of the probe and coupling beams from the |a〉 → |e〉 and |b〉 →
|e〉 transitions.

In a Heisenberg picture for the open atomic system, the
ground-state atomic field operators �̂α=a,b satisfy the usual
evolution equations ih̄∂t �̂α = [�̂α,H ]. On the other hand,
conservation of the canonical commutation relations of the
fields and of the Hermitian conjugation relation between �̂α

and �̂†
α requires including a quantum Langevin term F̂e in the

evolution equation for the excited state field �̂e,

∂t �̂e = 1

ih̄
[�̂e,H ] − 1

2
��̂e + �1/2F̂e(r,t). (B3)

Here, the quantum noise term F̂e is δ correlated in position
and time, e.g., [F̂e(r,t),F̂ †

e (r′,t ′)] = δ(r − r′)δ(t − t ′), and we
recall that the expectation value of normally ordered products
of noise operators vanish, e.g., 〈F̂ †

e F̂e〉 = 0, since the bath
does not provide an incoming flux of e atoms.

The only nonzero contributions to the commutator in
Eq. (B3) originate from the excited state internal energy and
from the atom-laser coupling term. This latter term can be
expressed solely in terms of the atomic field operator χ̂3D in
the coupled internal state |C〉, as defined in Eq. (42). Along
the lines of Ref. [71], we formally integrate [∂t + (−iδ +
�/2)]�̂e = Ŝ neglecting a transient of duration 1/� as

�̂e(r,t) =
∫ +∞

0
dτe−(−iδ+�/2)τ Ŝ(r,t − τ ). (B4)

The Rabi frequencies �c,p and the atomic field χ̂3D have a
negligible variation during 1/� and may be replaced by their
values at time t in the integrand. This leads to Eq. (43) of
the main text, where the noise term is defined as B̂e(r,t) =∫ +∞

0 dτ e−(−iδ+�/2)τ F̂e(r,t − τ ).
As explained in Sec. III, we are in a regime where the

atoms are mostly in the noncoupled state and the field χ̂3D

in the coupled state is small and a perturbation expansion in
powers of χ̂3D can be performed. The gauge-field formalism
discussed in Sec. III for the evolution of the atomic field φ̂3D in
the noncoupled state [defined in Eq. (12)] is already recovered
at zeroth order in χ̂3D . From this zeroth-order approximation
of φ̂3D , it is then easy to obtain the first-order contribution to
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the field χ̂3D that is required in Sec. V to evaluate the optical
polarization of the moving atoms.

From Eq. (12) the equation of motion for φ̂3D is

∂t φ̂3D = 1

ih̄
[φ̂3D,H ] +

∑
α=a,b

�̂α∂t 〈NC|α〉. (B5)

By the very definition of a noncoupled state, the excited-state
internal energy and the atom-laser coupling terms give an
exactly vanishing contribution to the commutator. In the other
terms of the Hamiltonian, as well as in the last sum in Eq. (B5),
we can perform the approximation �̂α � 〈α|NC〉φ̂3D, which is
accurate at zeroth order in χ̂3D . After an integration by part and
noting that 〈NC|∂t |NC〉 and 〈NC|∇|NC〉 are purely imaginary
quantities, we find that up to this order φ̂3D follows a purely
Hamiltonian evolution governed by Eq. (13).

The equation of motion of χ̂3D has the form

∂t χ̂3D = 1

ih̄
[χ̂3D,H ] +

∑
α=a,b

�̂α∂t 〈C|α〉. (B6)

The commutator with the internal excited-state energy term
introduces a �̂e term that we replace with Eq. (43): In this
way, both a noise term and a complex, position-dependent
energy term −(iδ′ + �′/2)χ̂3D appear in the equation. The
real quantities δ′ and �′ are given by Eq. (11) and correspond
to light-shift and damping effects, respectively.

Since h̄�′ is much larger than the kinetic, trapping,
interaction, and recoil energies of the atoms, we can neglect
these latter terms in the evolution equation of the coupled state
and only keep the coupling to φ̂3D . This amounts to keeping
in Eq. (B6) only the contributions to the kinetic, trapping, and
interaction terms of the Hamiltonian H that contain one single
factor χ̂

†
3D and an arbitrary number of φ̂3D and φ̂

†
3D factors. In

this way, we obtain

∂t χ̂3D � −
(

iδ′ + �′

2

)
χ̂3D + φ̂3D〈C|

[
− ∂t + ih̄

2m
�

]
|NC〉

+ ih̄

m
∇φ̂3D · 〈C|∇|NC〉 + 1

ih̄
Gφ̂

†
3Dφ̂2

3D + �
′1/2F̂χ ,

(B7)

where we have introduced a complex position and time-
dependent coupling constant

G = 〈C|a〉〈a|NC〉[(gaa − gab)〈NC|a〉〈a|NC〉 − a ↔ b]

(B8)

with the convention gba = gab. The noise term is defined by
F̂χ = −i|δ + i�/2|(�∗

c/|�c|)B̂e. Its correlation properties are
determined by the commutation relation [F̂χ (r,t),F̂ †

χ (r′,t ′)] �
|δ+i�/2|2

�
ei(t−t ′)δ−�|t−t ′ |/2δ(r − r′). Since we are working in a

low saturation regime in which � 	 �′, the time-dependent
factor in front of δ(r − r′) may be replaced with a Dirac of
t − t ′, so F̂χ is, in practice, a spatio-temporally δ-correlated
noise.

The last step is to expand Eq. (B7) to first order in �p/�c.
We also limit ourselves to zeroth order in q/kp and in 1/(kpw),
and we neglect the temporal derivative of the switch-off
function f (t). Then, (i) for gaa � gab, the fourth contribution
in the right-hand side of Eq. (B7) vanishes [72], and (ii) for

the magic choice Eq. (23), the second contribution in the
right-hand side of Eq. (B7) vanishes. With the same adiabatic
elimination technique adopted for �̂e and taking into account
the fact that δ′ and �′ vary very slowly on the scale of 1/�′, we
are finally led to the final equation, Eq. (45), with a noise term
defined by B̂χ (r,t) = ∫ +∞

0 dτe−[iδ′+�′/2](r,t)τ F̂χ (r,t − τ ).
We complete the discussion by giving the back-action of

the field χ̂3D on the field φ̂3D , a back-action that was already
considered for a specific single atom geometry in Ref. [28].
The linear coupling of φ̂3D to χ̂3D originates from terms in the
Hamiltonian that are linear in χ̂3D , leading to

(∂t φ̂3D)back = χ̂3D〈NC|
[

− ∂t + ih̄

2m
�

]
|C〉

+ ih̄

m
∇χ̂3D · 〈NC|∇|C〉 + 1

ih̄

[
Gχ̂

†
3Dφ̂2

3D

+ 2G∗φ̂†
3Dφ̂3Dχ̂3D

]
. (B9)

Expression of the back-action solely in terms of φ̂3D and
noise operators is obtained by replacing χ̂3D in the resulting
equations of motion with its adiabatic approximation derived
from Eq. (B7). This leads, in general, to a lengthy formula. For
simplicity, we give the result for gaa = gab to leading order in
�p/�c; we also neglect the contribution to 〈C|∂t |NC〉 of the
time derivative of the switch-off function f (t), and we use the
specific form �p/�c considered in this article, see Eqs. (6)
and (7), restricting to zeroth order in q/kp and 1/(kpw) so

(∂t φ̂3D)back � − ih̄2

m2

4(δ + i�/2)

|�c|2
∣∣∣∣�p

�c

∣∣∣∣
2

× [(kp − kc) · ∇]2 φ̂3D + noise terms. (B10)

After reduction to the xy plane, the deterministic term gives
rise to two corrections to the evolution of φ̂3D: (i) a complex
position-dependent energy shift,

h̄(δ′′ − i�′′/2) = −2(δ + i�/2)ωz

h̄2k2
c

m

|�p|2
|�c|4 , (B11)

and (ii) a complex correction to the mass along y, δmy =
8h̄k2

c |�p|2(δ + i�/2)/|�c|4. The quantity h̄δ′′ is the light-
shift potential experienced by the noncoupled bidimensional
field. The spatial average of the fluorescence rate �′′ of the
noncoupled field coincides with the �non−ad

fluo fluorescence rate
previously discussed in Eq. (A2), as it should be. For the
parameters of Table I, the reactive corrections δ′′ and δmy are
small provided that the detuning is not too large, |δ/�| < 5.
For instance, an estimate for the undesired energy deposited by
the h̄δ′′ potential can be obtained from the Bogoliubov theory
for a homogeneous system, see Eq. (D15), leading to

�Eh̄δ′′

�E2
≈ 5 × 10−5

fn

(δ/�)2, (B12)

where �E2 is the desired deposited energy giving access to
the normal fraction fn.
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APPENDIX C: DERIVATION OF THE EXPRESSION FOR
THE DEPOSITED ENERGY

We start from a two-dimensional system at thermal equi-
librium with no average current and we apply a gauge field of
the form

A(r,t) = f (t)ey |c+eiq·r/2 + c−e−iq·r/2|2e−(r−r0)2/(2σ 2), (C1)

where eα is the unit vector along direction α. The derivable
dimensionless envelope function f (t) is assumed to be zero
for t < 0 and to rapidly tend to zero for t → +∞. The time-
independent coefficients c± have the dimension of the square
root of a momentum.

We are interested in evaluating the energy change of the sys-
tem from t = 0− to t = +∞ at the lowest order in c±. We work
in the Schrödinger picture and we first use the exact relations:

�E ≡
∫ +∞

−∞
dt

d〈H (t)〉
dt

(C2)

=
∫ +∞

−∞
dt

∫
d2rA(r,t) · d

dt
〈j(r)〉(t), (C3)

where the second equality comes from a time-dependent
Hellmann-Feynman theorem and a temporal integration by
parts. Calculating 〈j(r)〉(t) by linear response theory gives

�E �
∫
R

dω

2π

∫
d2r

∫
d2r ′ ω

× Im

[ ∑
α,β

χ ex
αβ(r,r′; ω)Aα(r,ω)∗Aβ(r′,ω)

]
, (C4)

where χ ex is the exact current susceptibility in real space,
taking into account the spatial inhomogeneity of the trapped
cloud. Note that, contrarily to Eq. (C2), Eqs. (C3) and (C4)
still hold when f (t) = 0 for t < 0 and has a discontinuous
jump in t = 0.

We now use the particular form (C1) for A and consider
the relevant limiting case qσ 	 1, q min(ξ,λ) � 1, where ξ

is the healing length of the gas and λ is the thermal de Broglie
wavelength. We also assume that σ is much smaller than the
radius of the trapped cloud, so the density variation within a
region of radius σ around r0 may be neglected.

Within a local-density approximation, we then replace χ ex

with the susceptibility χ of a spatially homogeneous system
with a density equal to the one of the trapped gas at position r0

and with the same temperature, χ ex(r,r′; ω) � χ (r − r′; ω).
This local-density approximation leads to

�E �
∫
R

dω

2π
ω |f (ω)|2

∫
d2R

∫
d2u [|c+|2 + |c−|2

+ c∗
+c−e−iq·(R+u/2) + c+c∗

−eiq·(R+u/2)]

× [|c+|2 + |c−|2 + c∗
+c−e−iq·(R−u/2) + c+c∗

−eiq·(R−u/2)]

× Im[χyy(u; ω)] e−|R−r0|2/σ 2
e−u2/(4σ 2), (C5)

where we have performed the change of variables r = R +
u/2,r′ = R − u/2. As we work in the qσ 	 1 regime, we
have, for example,∫

d2R e−2iq·R e−|R−r0|2/σ 2= e−2iq·R0πσ 2 e−q2σ 2� πσ 2 (C6)

so all the oscillating terms in R may be neglected. Introducing
the Fourier transform of χyy(k; ω), which is an even function
of k due to parity or rotational invariance, we obtain

�E = �E1 + �E2, (C7)

�E1 �
∫ +∞

−∞

dω

2π
ω|f (ω)|2(2πσ 2)2

∫
d2k

(2π )2

× Im χyy(k; ω)(|c+|2 + |c−|2)2e−k2σ 2
, (C8)

�E2 �
∫ +∞

−∞

dω

2π
ω|f (ω)|2(2πσ 2)2

∫
d2k

(2π )2

× Im χyy(q + k; ω)2|c+|2|c−|2e−k2σ 2
. (C9)

The second contribution �E2 comes from the spatially
modulated gauge field at q, while the first contribution �E1

is due to the nonmodulated term which follows the broad
Gaussian envelope. Expression (24) in the main text is obtained
from (C9) by noting that the integration over k is effectively
limited by the Gaussian factor to a small region of radius 1/σ

in which one is allowed to neglect the k dependence of the
susceptibility.

Naively, one could guess that a necessary condition for
the accuracy of our local-density approximation is that the
switch-off time of the gauge field γ −1 is short as compared
to the characteristic time 2R/v for the induced mechanical
perturbation to cross the whole cloud, to be reflected by its
boundaries, and to turn back to the excitation zone where it
can interfere with the excitation process, v being the fastest
between the sound and thermal speeds in the cloud of radius R.

This condition is actually sufficient, but not necessary,
within linear response theory. We now show for f (t) =
�(t)e−γ t , as in Eq. (27), that the γ → 0 limit for the deposited
energy scheme exists and coincides with the perturbation
induced by the gauge field in the thermodynamic equilibrium
state. As one can show by inserting the explicit form of the
temporal Fourier transform of the gauge field into (C4) and
performing the integral over ω, the deposited energy can be
written in the form

�E � 1

2

∫
d2r d2r ′ ∑

α,β

Aα(r,t = 0+) Aβ(r′,t = 0+)

× Re
[
χ ex

αβ(r,r′; ω = iγ )
]
, (C10)

where we have introduced the Kubo formula for the exact
current-current susceptibility

χ ex
αβ(r,r′; ω) =

∑
λ,λ′

(πλ − πλ′)
〈λ|jα(r)|λ′〉〈λ′|jβ(r′)|λ〉
Eλ′ − Eλ − h̄ω − i0+ (C11)

in terms of the thermal equilibrium population πλ of quantum
state λ. This quantity can be simply related to the susceptibility
at thermodynamic equilibrium,

χ th
αβ(r,r′) = lim

γ→0
Re

[
χ ex

αβ(r,r′; ω = iγ )
]

+ 1

kBT

∑
λ,λ′;Eλ=Eλ′

πλ〈λ|jα(r)|λ′〉〈λ′|jβ(r′)|λ〉.

(C12)

We recall that the thermodynamic susceptibility relates the
mean current in a thermal equilibrium state at temperature
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T to the applied (weak) static gauge field via 〈j〉 = χ th ∗ A,
where ∗ is the spatial convolution product. In the present case
of an interacting gas, one can safely expect that the second
line in Eq. (C12) gives a negligible contribution as there is
no systematic degeneracy and the current operator j has no
diagonal matrix elements since the eigenstate wave functions
may be taken as real. Within linear response theory, we thus
obtain

�E →
γ→0

1

2

∫
d2rd2r ′ ∑

α,β

χ th
αβ(r,r′)Aα(r,0+)Aβ(r′,0+).

(C13)

Since local-density approximation in the thermodynamic
equilibrium state is a standard procedure, we expect that it
can be applied to evaluate the right-hand side of Eq. (C13)
[73]. As a consequence, within linear response theory, our
deposited energy method [that measures the left-hand side of
Eq. (C13)] should be accurately described by the local-density
approximation down to the γ → 0 limit.

APPENDIX D: SOME RESULTS OF LINEAR RESPONSE
THEORY AND THE BOGOLIUBOV EXPRESSION OF THE

DEPOSITED ENERGY

A system of time-independent Hamiltonian H0 experi-
ences, at times t > 0, a time-dependent weak perturbation
of Hamiltonian −εf (t)V , where ε → 0, the dimensionless
time-dependent factor f (t) is zero for t < 0 and tends rapidly
to zero for t → +∞, and the operator V is time independent.
At time t = +∞, the system is free again, with a mean energy
modified by the perturbation. The question is to calculate the
mean energy change to second order in ε.

Suppose, first, that, at t = 0−, the system is prepared in the
eigenstate |λ〉 of H0 of eigenenergy Eλ. The energy change
δE between time 0 and time +∞ is

δE = lim
t→+∞〈ψ(t)|(H0 − Eλ)|ψ(t)〉, (D1)

where |ψ(t)〉 is the system state vector at time t . The usual
time-dependent perturbation theory gives an expansion in
powers of ε:

|ψ(t)〉 = |ψ0(t)〉 + ε|ψ1(t)〉 + ε2|ψ2(t)〉 + . . . , (D2)

where |ψ0(t)〉 = exp(−iEλt/h̄)|λ〉,

|ψ1(t)〉 = −
∫ t

0

dτ

ih̄
e−iH0(t−τ )/h̄f (τ )Ve−iEλτ/h̄|λ〉, (D3)

and the expression of higher-order contributions is not needed.
Using (H0 − Eλ)|ψ0(t)〉 = 0 and 〈ψ0(t)|(H0 − Eλ) = 0, we
find to second order in ε,

δE � lim
t→+∞ ε2 〈ψ1(t)|(H0 − Eλ)|ψ1(t)〉. (D4)

In this article, f (t) = �(t) exp(−γ t), with γ > 0, and �(t) is
the Heaviside step function, see Eq. (27). Also, the system is
prepared initially in a statistical mixture of eigenstates of H0

with a probability distribution πλ. After explicit integration of

(D3) over τ and then average over |λ〉, the expression for the
signal to be detected experimentally is

Signal (V) ≡ lim
ε→0

〈δE〉
ε2

= 1

2
Re

∑
λ,λ′

(πλ − πλ′)

Eλ′ − Eλ − ih̄γ
|〈λ′|V|λ〉|2. (D5)

The sum may be restricted to Eλ �= Eλ′ since the contributions
with Eλ = Eλ′ are zero. This also shows that the signal has a
finite limit for γ → 0+. Note that in a thermal equilibrium state
πλ = Z−1 exp(−Eλ/kBT ), the signal is necessarily positive.

The calculation of the noise on the experimental signal
can be performed along the same lines. One defines δE2 ≡
limt→+∞〈ψ(t)|(H0 − Eλ)2|ψ(t)〉 with the initial state vector
|ψ(0)〉 = |λ〉, and one finds after averaging over the initial
state:

[Noise (V)]2 ≡ lim
ε→0

〈δE2〉
ε2

=
γ→0

∑
λ,λ′,Eλ �=E′

λ

πλ|〈λ|V|λ′〉|2

�
∑

λ

πλ[〈λ|V2|λ〉 − 〈λ|V|λ〉2], (D6)

where the approximate equality is based on the assumption
that there are no systematic degeneracies in the many-body
spectrum. The ε2 scaling of the variance in Eq. (D6) shows
that the typical value of the energy change at the end of
the excitation sequence is of order ε. This scaling is to be
contrasted with the ε2 one of the expectation value that is
suggested by Eq. (D5).

We now apply the general formula Eq. (D5) to the
Bogoliubov analysis of Sec. IV B. In this case, ε = εgauge/2
and V = Vq + V−q with

Vq =
∫

[0,L]2
d2r eiqxjy(r) =

∑
k

h̄ky

m
a
†
k+qak, (D7)

where ak is the annihilation operator of a particle of the gas of
wave vector k, and we have set q = q ex . In a translationally
invariant system, the eigenstates |λ〉 can be taken of well-
defined total momentum; as the action of V±q changes this
total momentum by ±h̄q, the two operators Vq and V−q cannot
interfere in the signal and thus Signal (V) = 2 Signal (Vq).
In terms of the annihilation operators bk of Bogoliubov
quasiparticles, we can split

Vq = V (0)
q + V (2)

q + V (−2)
q (D8)

in terms of

V (0)
q =

∑
k �=0,−q

h̄ky

m
(UkUk+q − VkVk+q) b

†
k+qbk, (D9)

V (2)
q =

∑
k �=0,−q

′ h̄ky

m
(VkUk+q − UkVk+q) b

†
k+qb

†
−k, (D10)

V (−2)
q =

∑
k �=0,−q

′ h̄ky

m
(UkVk+q − VkUk+q) bkb−(k+q). (D11)

The primed sum
∑′ indicates restriction of the sum over wave

vectors such that ky > 0. In Bogoliubov theory, the eigenstates
|λ〉 may be taken in the form of Fock states of quasiparticles.
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Since V (n)
q changes the total number of quasiparticles by the

amount n, the terms in the right-hand side of Eq. (D8) cannot
interfere in the signal and

Signal (Vq) = Signal
(
V (0)

q

) + Signal
(
V (2)

q

) + Signal
(
V (−2)

q

)
.

(D12)

Thanks to the clever writing of V (n)
q with the constraint ky > 0

[74], there are no interferences in Eqs. (D9)–(D11) between
the different terms of the sums over k. As a result, the whole
signal is the sum over the contribution of the different k’s. The
last trick is to express the ratios πλ′/πλ in terms of the mean
occupation numbers nk of the Bogoliubov modes of energy εk
and to make use of the identity

eβεk = nk + 1

nk
(D13)

satisfied by the Bose law. A little bit of rewriting, taking
advantage of the relation Signal(V) = (N/m)f eff

n and of the
remarks in Ref. [74], finally leads to Eq. (31).

An alternative procedure is to calculate the current-current
susceptibility (C11) for a spatially homogeneous system
within the Bogoliubov theory, which for q ⊥ ey gives in
dimension d the following:

χyy(q; ω)

= 1

Ld

∑
k �=0,−q

h̄2k2
y

m2

×
[

nk − nk+q

εk+q − εk − h̄ω − i0+
(
U 2

k+qU
2
k − Uk+qVk+qUkVk

)
− 1 + nk + nk+q

−εk+q − εk − h̄ω − i0+
(
V 2

k+qU
2
k − Uk+qVk+qUkVk

)
+ 1 + nk + nk+q

εk+q + εk − h̄ω − i0+
(
U 2

k+qV
2

k − Uk+qVk+qUkVk
)

+ nk+q − nk

εk − εk+q − h̄ω − i0+
(
V 2

k+qV
2

k − Uk+qVk+qUkVk
)]

.

(D14)

From Eq. (C4) one then recovers expression Eq. (31) for the
effective normal fraction f eff

n .
Another application of Eq. (D5) is to calculate the en-

ergy deposited by the external potential U(r,t) = (U0e
iQ·r +

c.c.)�(t)e−ηt in the spatially homogeneous case for η > 0.
This is useful for Appendix A and Appendix B to estimate
the effect of undesired light shifts. In the second quantized
form, and to leading order in Bogoliubov theory, one then has
εV = N1/2(UQ + VQ)[U0(b†Q + b−Q) + H.c.]. These terms do
not interfere in Eq. (D5). For nonzero temperature, using
(D13), we then obtain a temperature-independent result,

�EU � 2N |U0|2(UQ + VQ)2 Re

[
1

εQ − ih̄η

]
. (D15)

Remarkably, this also allows us to calculate the energy change
�Eg due to the switch-on-and-off of a spatially modu-
lated coupling constant, δg(r,t) = (δg0e

iq·r + c.c.)�(t)e−γ t .
For a spatially homogeneous system, to leading order of
Bogoliubov theory, the relevant operator is εV = N1/2(Uq +
Vq)[ρδg0(b†q + b−q) + H.c.], so one can formally apply

Eq. (D15) with U0 = ρδg0. This can be applied to the variation
of the coupling constant due to gaa �= gab in Eq. (18). In
this case, δg0 = 2g[(gab − gaa)/gaa](�+

p �−∗
p )(0+)/|�c|2 so,

for qξ = 1 and γ → 0,

�Eg

�E2
� 16

5fn

mρg

(h̄kc)2

(
gab − gaa

gaa

)2

. (D16)

For the values of Table I and |gab − gaa| � 0.1|gaa| as ex-
pected for 87Rb, this gives �Eg/�E2 ≈ 7 × 10−4/fn, which
is negligible.

APPENDIX E: THE NOISE ON THE DEPOSITED ENERGY

In Sec. IV C, while presenting the numerical results on
the deposited energy measurement, we mentioned that the
statistical noise on the deposited energy was larger for smaller
values of the gauge-field amplitude εgauge.

To understand this feature, it can be useful to rewrite the
deposited energy for a single realization of the classical field
simulation in the form

δE = −
∫

d2r j(r,0) · A(r,0+) −
∫ +∞

0+
dt

×
∫

d2r j(r,t) ∂tA(r,t). (E1)

The first term comes from the abrupt switch-on of the gauge
field. For each realization, it is of order εgauge but averages
to zero in the limit of an infinite number of realizations of
the experiment as 〈j(r,0)〉 = 0. In any actual calculation, an
average over a finite number nreal of realizations is taken, which
gives a nonzero random value for δE scaling as εgauge/

√
nreal.

The relevant signal 〈δE〉 is given by the second term in
Eq. (E1), obtained from the classical Hamiltonian identity
dH/dt = ∂tH . For small values of the gauge-field switch-off
rate γ , this term is of order O(ε2

gauge) as in this limit j
adiabatically follows the thermal equilibrium value for the
instantaneous value of the gauge field. As a result, the number
of realizations that are needed to extract the signal out of the
statistical noise due to the first term grows as |εgauge|−2, which
perfectly explains the numerical observation.

Furthermore, it has been demonstrated by a number of
recent cold-atom experiments that noise is not always just
an hindrance but can be also a source of useful physical
information [75,76]. As a simple example, we consider here
the amplitude of the noise on the energy that is deposited in the
system at each realization of the experiment. This quantity is
quantified by the average 〈δE2〉 of the square of the deposited
energy in the γ → 0 limit. Looking at Eq. (E1), it is immediate
to see that in the small εgauge limit the dominant contribution
comes from the square of the first term, which suggests that
the noise on the deposited energy is related to the variance
of the instantaneous fluctuations of the current operator. From
the fluctuation-dissipation theorem, this quantity can then be
related to the normal fraction of the gas.

This idea can be put on solid ground by developing a full
quantum calculation. The linear response theory calculation

053637-20



NONEQUILIBRIUM AND LOCAL DETECTION OF THE . . . PHYSICAL REVIEW A 84, 053637 (2011)

performed along the lines of Appendix D leads to the
expression in Heisenberg picture as follows:

lim
γ→0

〈[H0(+∞) − H0(0)]2〉

�
〈[ ∫

d2rj(r) · A(r,0+)

]2〉
, (E2)

where H0 is the unperturbed Hamiltonian, that is, the Hamilto-
nian without coupling to the gauge field. This relation connects
the variance of the quantum equivalent of the deposited energy
to the instantaneous fluctuations of the current operator and
confirms our expectation based on the classical field model.
Moreover, combined with the fluctuation-dissipation theorem,
it can be the starting point for another proposal to measure fn.

For a generic Hermitian operator V with vanishing diagonal
matrix elements in the eigenbasis of H0, the fluctuation-
dissipation theorem of linear response theory relates the
imaginary part of the susceptibility χ to the Fourier transform
of the correlation function SV V (t) = 〈V (t) V (0)〉,

Im[χV V (ω)] = 1

2h̄
SV V (ω)[1 − e−h̄ω/kBT ]. (E3)

The Fourier transform SV V (ω) of the correlation function in
the thermodynamic equilibrium state is defined as usual as

SV V (ω) =
∫ ∞

−∞
dt eiωt 〈V (t) V (0)〉. (E4)

Under the assumption that most of the spectral weight of the
V operator lies in the low-energy region h̄ω � kBT , we can
approximate 1 − e−h̄ω/kBT � h̄ω/kBT . This is a quite standard
approximation of many-body theory and is generally accurate

in the small q limit [77]. After a few manipulations, it leads to
the general expression

SV V (t = 0) =
∫

dω

2π
SV V (ω) �

∫
dω

2π

2kBT

ω
Im[χV V (ω)]

= kBT Re[χV V (ω = 0)], (E5)

where the equivalent of Eq. (26) was used to obtain the last
identity. An application of the fluctuation-dissipation relation
(E5) to the susceptibility and the fluctuations of the mass
current in liquid He can be found in Ref. [15].

The link between the variance of the deposited energy and
the normal fraction is immediately obtained by applying (E5)
to the specific operator

V = −
∫

d2r j(r) · A(r,0+) (E6)

and isolating the contribution of the spatially modulated gauge
field proportional to �+

p �−
p . In this way, using Eq. (C10), one

is led to the final expression

πw2

4

ρ

m

(
εgauge

2

)2

fn � 1

2kBT
lim
γ→0

〈[H0(+∞) − H0(0)]2〉,
(E7)

which demonstrates an alternative way of extracting the value
of the normal fraction fn from a measurement of the statistical
variance of the deposited energy in a series of experiments.

It is, however, crucial to note that a measurement of
fn based on the relation (E7) requires taking expectation
values of the Hamiltonian operator at different times. This
may be experimentally challenging as it requires either a
nondestructive measurement of the initial energy of the system
at t = 0 before switching on the gauge field or a very precise
a priori knowledge of its value in a sort of microcanonical
ensemble [78].
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