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R. Carretero-González,4,* and P. Schmelcher5

1Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA
2Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, USA
3Department of Physics, University of Athens, Panepistimiopolis, Zografos, GR-157 84 Athens, Greece

4Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics and Computational Science Research Center, San Diego
State University, San Diego, California 92182-7720, USA

5Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
(Received 21 April 2011; published 28 November 2011)

Motivated by recent experimental results, we present a systematic theoretical analysis of dark-bright-soliton
interactions and multiple-dark-bright-soliton complexes in atomic two-component Bose-Einstein condensates.
We study analytically the interactions between two dark-bright solitons in a homogeneous condensate and
then extend our considerations to the presence of the trap. We illustrate the existence of robust stationary
dark-bright-soliton “molecules,” composed of two or more solitons, which are formed due to the competition of
the interaction forces between the dark- and bright-soliton components and the trap force. Our analysis is based
on an effective equation of motion, derived for the distance between two dark-bright solitons. This equation
provides equilibrium positions and characteristic oscillation frequencies of the solitons, which are found to be in
good agreement with the eigenfrequencies of the anomalous modes of the system.

DOI: 10.1103/PhysRevA.84.053630 PACS number(s): 03.75.Mn, 05.45.Yv, 03.75.Kk

I. INTRODUCTION

Over the past few years, the macroscopic nonlinear
structures that can be supported in atomic Bose-Einstein
condensates (BECs) have been a topic of intense investigation
(see, e.g., Refs. [1–4] for reviews of this topic). The first
experimental efforts to identify the predominant nonlinear
structure in BECs with repulsive interatomic interactions,
namely the dark soliton, were initiated over a decade ago [5–9].
However, these efforts suffered from a number of instabilities
arising due to dimensionality and/or temperature effects.
More recently, a new generation of relevant experiments
has emerged that has enabled overcoming (or quantification
of) some of the above limitations. The latter works have
finally realized oscillating, and even interacting, robust dark
solitons in atomic BECs. This has been achieved by means
of various techniques, including phase-imprinting and density
engineering [10–12], matter-wave interference [13,14], and
dragging localized defects through the BECs [15].

Atomic dark solitons may also exist in multicomponent
condensates, where they are coupled to other nonlinear
macroscopic structures [1,2,4]. Of particular interest are dark-
bright (DB) solitons that are supported in two-component [16]
and spinor [17] condensates. Such structures are sometimes
referred to as “symbiotic” solitons, as the bright-soliton
component (which is generically supported in BECs with
attractive interactions [3]) may only exist due to the inter-
species interaction with the dark-soliton component. Dark-
bright solitons have also attracted much attention in other
contexts, such as nonlinear optics [18] and mathematical
physics [19]. In fact, DB-soliton states were first observed in
optics experiments, where they were created in photorefractive
crystals [20], while their interactions were partially monitored
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in Ref. [21]. In the physics of BECs, robust DB solitons were
first observed in the experiment of Ref. [10] by means of
a phase-imprinting method, and they were observed more
recently in Refs. [22–24] by means of the counterflow of the
two BEC components. The above efforts led to a renewed
interest in theoretical aspects of this theme: in this way,
DB-soliton interactions were studied from the viewpoint
of the integrable systems theory in Ref. [25], DB-soliton
dynamics were investigated numerically in Ref. [26], and
DB solitons in discrete settings were recently analyzed in
Ref. [27]. Furthermore, higher-dimensional generalizations,
namely, vortex-bright-soliton structures, were studied as well
[28].

Our aim in the present work is to study multiple-DB
solitons in two-component BECs confined in harmonic traps,
as motivated by the experimental results shown in Fig. 1.
Figure 1 illustrates DB-soliton clustering occurring during the
counterflow of two rubidium condensate species, namely, the
hyperfine states |1, − 1〉 and |2, − 2〉, confined in an elongated
optical dipole trap with measured trap frequencies of 2π{1.5,
140, 178} Hz; details on the soliton generation scheme are
provided in Refs. [22–24]. An intriguing observation is the
frequent formation of large gaps in one component (which
constitutes the component supporting the dark solitons) that are
filled by bright solitons in the other component. Interestingly,
these gaps are structured by small, periodic density bumps,
indicating that these regions are composed of merged solitons.
Some of these features are marked by the boxed regions in
Fig. 1, with corresponding cross sections shown as insets. We
clearly observe clusters of two and three merged solitons [see
Figs. 1(a)–1(c)] and also have some indications of clusters
composed of four to five solitons; see Figs. 1(d) and 1(e).
While our destructive imaging technique does not allow us to
analyze the dynamics and lifetime of the clusters in detail, the
occurrence of large DB-soliton clusters strongly supports the
theoretical part of our work that we will present below: we will
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FIG. 1. (Color online) Experimental images indicating DB-
soliton clustering in a two-component BEC. The upper cloud in each
image [and the red (gray) curve in the inset] shows atoms in the
|2, − 2〉 state, while the lower cloud (black curve) shows atoms in the
|1, − 1〉 state. Prior to imaging, the two components are overlapped
in the trap for 5 s. Insets show integrated cross sections of the boxed
regions.

study analytically the interaction between two DB solitons,
and we will demonstrate the existence of stable two- and
multiple-DB stationary states, resembling the ones observed
in the experiment.

Our analytical approximation relies on a Hamiltonian
perturbation theory, which leads to an equation of motion
of the centers of DB-soliton interacting pairs. Employing
this equation of motion, we demonstrate the existence of
robust DB-soliton molecules, in the form of stationary two-
and three-DB-soliton states. We also find semianalytically
the equilibrium distance of the constituent solitons as well
as the oscillation frequencies around these equilibria. The
oscillation frequencies correspond to the characteristic anoma-
lous modes’ eigenfrequencies that we numerically compute
via a Bogoliubov–de Gennes (BdG) analysis. In this way,
we are able to quantify the properties of stationary multiple
DB solitons in harmonically confined two-component BECs
and provide analytical results for their in- and out-of-phase
near-equilibrium motions.

This paper is organized as follows. In Sec. II we describe
our theoretical setup and present the DB-soliton states.
Section III is devoted to the study of the interactions of two
DB solitons, while Sec. IV contains the results for multiple
DB solitons in the trap. In all of these sections, we will

first present our theoretical analysis, and subsequently, we
will compare its predictions to numerical results. Finally,
in Sec. V we summarize our findings and discuss future
challenges.

II. MODEL AND THEORETICAL SETUP

A. Coupled Gross-Pitaevskii equations and dark-bright solitons

Following the experimental observations of the previous
section, we consider a two-component elongated (along the
x direction) BEC composed of two different hyperfine states
of rubidium. As is the case of the experiment, we consider a
highly anisotropic trap, with the longitudinal and transverse
trapping frequencies such that ωx � ω⊥. In the framework of
the mean-field theory, the dynamics of this two-component
BEC can be described by the following system of two coupled
Gross-Pitaevskii equations [1,2,4]:

ih̄∂tψj=
(

− h̄2

2m
∂2
xψj + V (x) − μj +

2∑
k=1

gjk|ψk|2
)

ψj .

(1)

Here ψj (x,t) (j = 1,2) denote the mean-field wave functions
of the two components (normalized to the numbers of atoms
Nj = ∫ +∞

−∞ |ψj |2dx), m is the atomic mass, μj are the
chemical potentials, and V (x) represents the external harmonic
trapping potential, V (x) = (1/2)mω2

xx
2. In addition, gjk =

2h̄ω⊥ajk are the effective one-dimensional (1D) coupling
constants, where ajk denote the three s-wave scattering lengths
(note that a12 = a21) accounting for collisions between atoms
belonging to the same (ajj ) or different (ajk,j �= k) species. In
the case of the hyperfine states |1, − 1〉 and |2, − 2〉 of 87Rb
considered in the previous section, the scattering lengths take
the values a11 = 100.4a0, a12 = 98.98a0 and a22 = 98.98a0

(where a0 is the Bohr radius) [22,23]. Thus, we will hereafter
use the approximation that all scattering lengths take the same
value, say aij ≈ a [29]. To this end, measuring the densities
|ψj |2, length, time, and energy in units of 2a, a⊥ = √

h̄/ω⊥,
ω−1

⊥ , and h̄ω⊥, respectively, we may reduce the system of
Eqs. (1) into the following dimensionless form:

i∂tψj = − 1
2∂2

xψj + V (x)ψj + (|ψj |2 + |ψ3−j |2 − μj )ψj ,
(2)

j = 1,2,

where the external potential in Eq. (2) is given by V (x) =
(1/2)�2x2, where � = ωx/ω⊥ � 1 is the normalized trap
strength. Below, we will consider a situation where the
component characterized by the wave function ψ1 (ψ2)
supports a single or a multiple dark (bright) soliton state, and
the respective chemical potentials will be such that μ1 > μ2.
As concerns the component ψ1, the dark-soliton state exists
on top of a ground-state cloud |ψGS|2, which for appropriately
large values of μ1 can be approximated by the Thomas-Fermi
(TF) density |ψGS|2 ≈ |ψTF|2 = μ1 − V (x); thus, to describe
the dark-soliton wave function, we substitute the density |ψ1|2
in Eq. (2) as |ψ1|2 → |ψTF|2|ψ1|2. Furthermore, we introduce
the transformations t → μ1t , x → √

μ1x, |ψ2|2 → μ−1
1 |ψ2|2
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and cast Eq. (2) into the following form:

i∂tψ1 + 1
2∂2

xψ1 − (|ψ1|2 + |ψ2|2 − 1)ψ1 = R1, (3)

i∂tψ2 + 1
2∂2

xψ2 − (|ψ1|2 + |ψ2|2 − μ̃)ψ2 = R2, (4)

where μ̃ = μ2/μ1, while

R1 ≡ (
2μ2

1

)−1
[2(1 − |ψ1|2)V (x)ψ1 + V ′(x)∂xψ1],

(5)
R2 ≡ μ−2

1 [(1 − |ψ1|2)V (x)ψ2],

with V ′(x) ≡ dV/dx. Equations (3) and (4) can be viewed
as a system of two coupled perturbed nonlinear Schrödinger
(NLS) equations, with perturbations given by Eqs. (5). In
the absence of the trap (i.e., for � = 0), the perturbations
vanish, and Eqs. (3) and (4) actually constitute the completely
integrable Manakov case [30]. This system conserves, among
other quantities, the Hamiltonian (total energy),

E = 1

2

∫ +∞

−∞
Edx,

E = |∂xψ1|2 + |∂xψ2|2 + (|ψ1|2 + |ψ2|2 − 1)2

− 2(μ̃ − 1)|ψ2|2, (6)

as well as the total number of atoms, N = N1 + N2 =∑2
j=1

∫ +∞
−∞ |ψj |2dx; additionally, the number of atoms of each

component, N1 and N2, is separately conserved.
Considering the boundary conditions |ψ1|2 → 1 and

|ψ2|2 → 0 as |x| → ∞, the NLS equations (3) and (4) possess
an exact analytical single-DB-soliton solution of the following
form (see, e.g., Ref. [16]):

ψ1(x,t) = cos φ tanh{D[x − x0(t)]} + i sin φ, (7)

ψ2(x,t) = ηsech{D[x − x0(t)]} exp[ikx + iθ (t)], (8)

where φ is the dark soliton’s phase angle, cos φ and η represent
the amplitudes of the dark and bright solitons, D and x0(t)
denote the inverse width and the center of the DB soliton, and
k = D tan φ = const and θ (t) are the wave number and phase
of the bright soliton, respectively. The soliton parameters are
connected through the following equations:

D2 = cos2 φ − η2, (9)

ẋ0 = D tan φ, (10)

θ (t) = 1
2 (D2 − k2)t + (μ̃ − 1)t, (11)

where ẋ0 = dx0/dt is the DB soliton velocity. Below, we will
mainly focus on stationary solutions, characterized by a dark
soliton’s phase angle φ = 0 [in this case, the bright-soliton
component is stationary as well; see Eq. (10)]; nevertheless, we
will also consider the near-equilibrium motion of DB solitons,
characterized by φ ≈ 0.

To approximate a two-DB-soliton state (for � = 0) com-
posed of a pair of two equal-amplitude single DB solitons
traveling in opposite directions, we will use the following
ansatz:

ψ1(x,t) = (cos φ tanh X− + i sin φ)

× (cos φ tanh X+ − i sin φ), (12)

ψ2(x,t) = η sechX− ei[+kx+θ(t)+(μ̃−1)t]

+ η sechX+ ei[−kx+θ(t)+(μ̃−1)t] ei
θ , (13)

where X± = D[x ± x0(t)], 2x0 is the relative distance between
the two solitons, and 
θ is the relative phase between
the two bright solitons, assumed to be constant (
θ = 0
and 
θ = π correspond to in-phase and out-of-phase bright
solitons, respectively). Notice that ansatz (12) is a symmetric
form of two dark solitons on the common background that,
provided that the separation distance 2x0 is sufficiently large,
weakly interact with each other; such an ansatz for the
dark-soliton pair has been used for the study of the intersoliton
interactions [31]. Similarly, ansatz (13) is a superposition
of two bright solitons of equal amplitudes, placed at the
locations of their respective dark-soliton siblings; such a form
of the bright-soliton pair is commonly used for the study of
interactions between bright solitons (see, e.g., Chap. 3.2.2
of Ref. [18]).

At this point it is useful to note that in either case of single
or multiple DB solitons, the number of atoms of the bright
soliton N2 may be used to connect the amplitude η of the
bright soliton(s), the chemical potential μ1 of the dark-soliton
component, and the inverse width D of the DB soliton. In par-
ticular, in the case of a single DB soliton, one finds that N2 =
2η2√μ1/D [for the variables appearing in Eq. (2)], while
for the case of a two-DB-soliton state (with well-separated
solitons) the relevant result is approximately twice as large,
namely,

N2 ≈ 4η2√μ1

D
. (14)

B. Stationary states and their excitation spectrum

Apart from our analytical approximations, we will also use
numerical methods to obtain stationary DB-soliton states and
determine their stability by means of the well-known BdG
analysis (see, e.g., Refs. [1,2,4]). Particularly, in our numerical
computations below, we will initially obtain, by means of a
fixed-point algorithm, stationary solutions of Eq. (2) in the
form ψ1(x,t) = u(x) and ψ2(x,t) = v(x), and then we will
consider their linear stability, upon introducing the following
ansatz into Eq. (2):

ψ1(x,t) = u(x) + ε[a(x)eλt + b∗(x)eλ∗t ], (15)

ψ2(x,t) = v(x) + ε[c(x)eλt + d∗(x)eλ∗t ], (16)

where the asterisk denotes complex conjugation. The resulting
equations are linearized (keeping only terms of order of the
small parameter ε), and the ensuing eigenvalue problem for
eigenmodes {a(x),b(x),c(x),d(x)} and eigenvalues λ = λr +
iλi is numerically solved. In the case of a single DB soliton,
the excitation spectrum can be well understood in both cases,
corresponding to the absence and the presence of the harmonic
trap, using the following arguments.

First, in the absence of the trap, the system of Eq. (2)
features not only a U(1) (phase) invariance in each of the
components but also a translational invariance; thus, the system
has three pairs of eigenvalues (each associated with one of the
above symmetries) at the origin of the spectral plane (λr,λi).
In this case, the phonon band (associated with the continuous
spectrum of the problem) covers the entire imaginary axis of
the spectral plane.

053630-3



D. YAN et al. PHYSICAL REVIEW A 84, 053630 (2011)

Second, in the presence of the trap, the single DB soliton
“lives” on the background of the confined ground state
{ψ1,ψ2} = {ψGS,0} (as discussed above). It is well known [1,2]
that the harmonic potential introduces a discrete (point) BdG
spectrum for this spatially confined ground state. In addition
to that, the translational invariance of the unconfined system
is broken, and due to the presence of the DB soliton, a single
eigenvalue λ(AM) emerges. The respective (negative energy)
eigenmode is the so-called anomalous mode (AM), while
the associated eigenvalue λ(AM) is directly connected with
the oscillation frequency of the DB soliton in the harmonic
trap, similar to the case of a dark soliton in one-component
BECs [32]. In fact, the imaginary part of the eigenvalue λ(AM)

reads λ
(AM)
i = ωosc, where ωosc is the oscillation frequency of

the single DB soliton, given by [16]

ω2
osc = �2

(
1

2
− χ

χo

)
, (17)

χ ≡ N2√
μ1

, χo ≡ 8

√
1 +

(χ

4

)2
. (18)

The above results are illustrated in Fig. 2, where a typical
example of a stationary single-DB-soliton state has been nu-
merically computed and is depicted (top panel); additionally,
the eigenvalues λi characterizing the numerically obtained
excitation (BdG) spectra of such stationary states are shown
as functions of the chemical potentials μ1 and μ2 in the
middle and bottom panels of Fig. 2, respectively. As observed
in the middle and bottom panels, there exist two types of
spectral lines, namely, “slowly varying” ones (analogous to
ones that are present in the spectrum of a dark soliton in
one-component BECs [13]) and “rapidly varying” ones due
to the presence of the bright-soliton component. The latter, as
was pointed out also in Ref. [24], may, in fact, collide with
the internal anomalous mode of the DB soliton and give rise
to instability quartets, which are barely discernible in Fig. 2
(see, e.g., the bottom panel for μ2 > 1.4, where a merger of
eigenvalues occurs). Generally, however, it is found that the
analytical prediction (red dashed line) is excellent in capturing
the anomalous mode eigenvalue pertaining to the DB-soliton
oscillation.

The above discussion sets the stage for the presentation of
our results for multiple-DB-soliton states.

III. INTERACTION BETWEEN TWO DARK-BRIGHT
SOLITONS

We start with the case where the external trap is absent,
i.e., � = 0. To analytically study the interaction of two
identical DB solitons, cf. Eqs. (12) and (13), we will employ
the adiabatic approximation of the perturbation theory for
matter-wave solitons (see, e.g., Refs. [2,4]). In particular, we
assume that the approximate two-DB-soliton state features an
adiabatic evolution due to a weak mutual interaction between
the constituent solitons, and thus, the DB soliton parameters
become slowly varying unknown functions of time t . Thus,
φ → φ(t), D → D(t), and hence, Eqs. (9) and (10) become

D2(t) = cos2 φ(t) − 1
4χD(t), (19)

ẋ0(t) = D(t) tan φ(t), (20)
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FIG. 2. (Color online) The top panel depicts the stationary solu-
tion for a single DB soliton for μ1 = 3/2, μ2 = 1, and � = 0.1. The
bright (dark) components are shown by the dashed green (solid blue)
line. The middle (bottom) panel shows the normalized imaginary part
λi/� of the eigenvalues for the single DB soliton as a function of μ1

(μ2) for μ2 = 1 (μ1 = 3/2). The red dashed line depicts the analytical
prediction of Ref. [16] for the DB-soliton oscillation frequency [cf.
Eq. (17)], providing an excellent approximation to the anomalous
mode eigenfrequency.

where we have used Eq. (14). The evolution of the parameters
φ(t), D(t), and x0(t) can then be found by means of the
evolution of the DB-soliton energy as follows. First, we
substitute the ansatz (12) and (13) into Eq. (6) and perform
the integrations under the assumption that the soliton velocity
is sufficiently small, such that cos(kx) ≈ 1 [and sin(kx) ≈ 0].
Then, we further simplify the result assuming that the solitons
are well separated, i.e., their relative distance is x0 
 1. In this
way, we find, by substitution of the trial ansatz of Eqs. (12)
and (13) into the total energy of the system given by Eq. (6),
that the latter assumes the form

E = 2E1 + EDD + EBB + 2EDB, (21)
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where E1 is the energy of a single DB soliton, namely,

E1 = 4

3
D3 + η2

(
k2 − 2 (μ̃ − 1)

D
+ D

)
, (22)

while the remaining terms account for the interaction between
the two DB solitons. In particular, EDD, EBB, and EDB denote,
respectively, the interaction energy between the two dark
solitons, the interaction energy between the two bright ones,
and the interaction energy between the dark soliton of one
component and the bright soliton in the other component.
Approximate expressions for the above interaction energies
are provided in the Appendix.

Having determined the two-DB-soliton energy, we can find
the evolution of the soliton parameters from the energy con-
servation, dE/dt = 0. We focus on the case of low-velocity,
almost-black solitons [with Ḋ(t) ≈ 0 and cos φ(t) ≈ 1], for
which energy conservation leads to the following nonlinear
evolution equation for the DB soliton center:

ẍ0 = Fint, (23)

Fint ≡ FDD + FBB + 2FDB. (24)

In the above equations, Fint is the interaction force between
the two DB solitons (depending on the soliton coordinate x0),
which contains the following three distinct contributions: the
interaction forces FDD and FBB between the two dark and two
bright solitons, respectively, and the interaction force FDB of
the dark soliton of the one soliton pair with the bright soliton
of the other pair. The functional form of the above forces is
provided in the Appendix.

The equation of motion for the two-DB-soliton state [cf.
Eq. (23)] provides a clear physical picture for the interaction
between the two DB solitons. In order to better understand this
result, first we note that (to the leading order of approximation)
the interaction force between the bright-soliton components
introduces a longer-range effect than the interaction forces
between the dark-soliton components, which in turn introduces
a shorter-range repulsion. This can be seen since FBB ∝
exp(−2D0x0) and FDD ∝ exp(−4D0x0) (see the Appendix);
note that the interaction between dark and bright solitons
is also to leading order, FDB ∝ exp(−2D0x0). This result
is in accordance with earlier predictions, where the same
dependence of the force over the soliton separation was found
(see, e.g., Refs. [33] and [14,31,34] for bright and dark solitons,
respectively).

Let us now consider the role of the bright-soliton compo-
nent. In its absence, i.e., for χ = 0 [cf. Eq. (19)], it is clear that
FBB = FDB = 0 and Eq. (23) describes the interaction between
two dark (almost black) solitons; in this case, taking into
account that D0 = 1, it can readily be found that the pertinent
(repulsive) interaction potential is ∝ 2 exp(−4x0), which coin-
cides with the result of Ref. [31] (see also Refs. [4,14]). On the
other hand, when bright solitons are present (i.e., for χ �= 0),
the principal nature of the bright-bright-soliton interaction,
and also of part of the dark-bright-soliton interaction, depends
on the relative phase 
θ between the two bright solitons
through the factor cos 
θ ; see also Eqs. (A5) and (A6) in
the Appendix. In particular, if 
θ = 0 (in-phase case), the
interaction is repulsive, while if 
θ = π (out-of-phase case),
the interaction is attractive [35].

According to the above, it is clear that the competition
between repulsive (for dark solitons) and attractive (for out-of-
phase bright solitons) forces leads to the emergence of fixed
points in the equation of motion (23) [36]. In other words,
in this case, there exists a stationary DB-soliton “molecule”
composed of two DB solitons. Note that stationary two DB
solitons were also found numerically and experimentally
in Ref. [21] in the context of nonlinear optics, but their
existence details and stability properties were not considered.
Additionally, although exact two-DB-soliton solutions (as well
as N -DB-soliton solutions) do exist in the Manakov system
[25,37], their complicated form does not allow for a transparent
physical picture, as provided above.

The fixed (equilibrium) points xeq of Eq. (23), which
represent the equilibrium distance between the constituent DB
solitons forming the stationary molecule, can be determined as
solutions of the transcendental equation resulting from Eq. (23)
for ẍ0 = 0 in the out-of-phase case (
θ = π ). Once xeq are
found, their stability can be studied by introducing the ansatz
x0(t) = xeq + δ(t) into Eq. (23) and linearizing with respect to
the small-amplitude perturbation δ(t); in this way, we derive
the following equation:

δ̈ + ω2
0δ = 0, (25)

where the oscillation frequency ω0 is given by

ω2
0 = −∂Fint

∂x0

∣∣∣∣
x0=xeq

. (26)

Physically speaking, the oscillation frequency ω0 represents
the internal out-of-phase motion of the two DB solitons. Note
that, as here we deal with the homogeneous case (i.e., in
the absence of the trap), the in-phase motion of the solitons
is associated with the neutral translation mode due to the
translational invariance of the system (the respective in-phase
Goldstone mode has a vanishing frequency).

The above analytical predictions have been compared with
numerical simulations. First, we have confirmed the existence
of the stationary two-DB-soliton state (in the out-of-phase
case); a prototypical example of such a state is shown in the
top panel of Fig. 3 (for μ1 = 3μ2/2 = 3/2). We have also
determined the dependence of the equilibrium soliton positions
(denoted by x0 in the middle panel of Fig. 3) and the effective
frequency ω0 [cf. Eq. (26)] on the chemical potential μ2 of
the bright-soliton component. The respective analytical and
numerical results are shown in the middle and bottom panels
of Fig. 3. To obtain the numerical results, we have used a (least-
squares) fitting algorithm to accurately identify the amplitude
η, inverse width D, and equilibrium center of mass position
x0 of the bright component. The numerical findings for x0

and ω0 (the latter is numerically obtained via a BdG analysis,
as the imaginary eigenvalue λi pertaining to the out-of-phase
motion of the stationary two-DB-soliton state) are directly
compared with the semianalytical results of Eqs. (23) and (26),
respectively. We find that there is a very good quantitative
agreement between the analytical and numerical results (see
middle and bottom panels of Fig. 3). Notice that despite the
motion of this eigenvalue through the continuous spectrum,
no instability is observed in the parametric window shown in
Fig. 3.
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FIG. 3. (Color online) (top) A stationary DB-soliton pair: the
solid blue line denotes the two-dark-soliton state (recall that each dark
soliton is associated with a zero crossing), while the dashed green
line denotes the respective two-bright-soliton state. The chemical
potentials are μ1 = 3/2 and μ2 = 1. (middle) The equilibrium
center of mass x0 as a function of the chemical potential μ2 (for
μ1 = 3/2). Red stars denote the analytical prediction of Eq. (23),
while blue circles denote the numerically obtained soliton center x0.
(bottom) The oscillation frequency for the out-of-phase motion of the
DB-soliton pair as a function of μ2 (for μ1 = 3/2). Red stars depict
the analytical result for ω0 [cf. Eq. (26)], while blue circles depict
the corresponding numerically obtained imaginary eigenvalue λi

(for the out-of-phase soliton motion) of the excitation spectrum.

IV. MULTIPLE DARK-BRIGHT SOLITONS IN THE TRAP

Next, let us consider the case of multiple DB solitons in
the presence of the harmonic trap. In the presence of the trap,
each of the multiple-DB-soliton structures is subject to two
forces: (a) the restoring force of the trap Ftr [in the case of a
single DB soliton, this force induces an in-trap oscillation with
a frequency ωosc; see Eq. (17)] and (b) the pairwise interaction
force Fint [cf. Eq. (24)] from other dark-bright solitons. Thus,
taking into account that Ftr = −ω2

oscx0 [16], one may write the
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FIG. 4. (Color online) The left and right columns correspond,
respectively, to an in-phase and an out-of-phase dark-bright-soliton
pair in a harmonic trap with � = 0.1. The top row of panels depicts
the profiles of the DB-soliton pairs (solid blue lines and dashed green
lines correspond, respectively, to the dark and bright components)
and the trapping potential (dashed-dotted red line). The middle row of
panels depicts the spectral plane (λr,λi) rescaled by the trap frequency
�. The bottom row of panels depicts the numerical (small red stars)
and the analytical (blue circles) results for the equilibrium distance
between the solitons as a function of μ2; the theoretical prediction is
based on Eq. (27).

effective equation of motion for the center x0 of a two-DB-
soliton state as follows:

ẍ0 = Ftr + Fint. (27)

One can thus straightforwardly generalize the above equation
for N -interacting DB-soliton states, similar to the case of
multiple dark solitons in one-component BECs [13,14,38].

Importantly, the presence of the trap allows for the existence
of stationary DB-soliton molecules not only for out-of-phase
bright solitons (as in the homogeneous case) but also for
in-phase bright solitons. In the latter case, the repulsion
between both the dark- and the bright-soliton components
is balanced by the trap-induced restoring force Ftr. In the
case of two-DB solitons placed at x = ±x0, the equilibrium
points xeq can readily be found (as before) as solutions of the
transcendental equation resulting from Eq. (27) for ẍ0 = 0 in
both the in- and out-of-phase cases. To study the stability of
these equilibrium points in the framework of Eq. (27), we may
again use the ansatz x0(t) = xeq + δ(t), and we obtain a linear
equation for the small-amplitude perturbation δ(t), similar to
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FIG. 5. (Color online) The left and right columns of panels
correspond, respectively, to an in-phase and an out-of-phase dark-
bright-soliton pair in a harmonic trap with � = 0.1. Shown are the
imaginary (top row of panels) and the real (bottom row of panels)
parts of the eigenvalues as functions of μ2 for μ1 = 3/2. In the
top panels, the theoretical predictions for the eigenfrequencies of
the anomalous modes of the system, pertaining to the in-phase (ω2)
and out-of-phase (ω1) oscillations of the DB solitons [see Eqs. (28)
and (29)], are depicted by dashed red lines. Notice that collisions
of modes (eigenvalue crossings) observed in the top panels indicate
the emergence of instability windows observed in the bottom panels.
The instabilities are of the Hamiltonian-Hopf type and result in the
emergence of eigenvalue quartets.

that of Eq. (25), namely, δ̈ + ω2
1δ = 0, where the frequency ω1

is given by

ω2
1 = ω2

osc + ω2
0, (28)

where ω0 is given by Eq. (26). Similar to the case of dark
solitons in one-component BECs [14] (see also Ref. [4]), by
construction, this mode captures the out-of-phase motion of
the DB-soliton pair. Furthermore, by symmetry, the in-phase
oscillation of the DB-soliton pair in the trap will be performed
with the frequency

ω2 = ωosc. (29)

These two characteristic frequencies (ω1,ω2) coincide with
the eigenfrequencies of the two anomalous modes of the BdG
spectrum of the trapped DB-soliton pair.

We now turn to a systematic numerical investigation of the
above features and of the multiple-DB-soliton states. At first,
we consider the two-DB-soliton state in the trap, results for
which are summarized in Figs. 4 and 5, both for the in-phase
and the out-of-phase configurations. In particular, the top left
and right panels of Fig. 4 show examples of an in-phase and an
out-of-phase stationary DB-soliton pair, respectively (both for
μ1 = 3/2 and μ2 = 1). The two middle panels illustrate the
corresponding spectral planes, showcasing the linear stability
of these configurations. The bottom panels of Fig. 4 show the
equilibrium positions of the soliton centers. In the in-phase
case (bottom left panel), it is observed that larger chemical
potential (number of atoms) in the second component leads to
stronger repulsion and hence larger distance from the trap cen-
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FIG. 6. (Color online) The left and right columns of panels
correspond, respectively, to in-phase and out-of-phase three-DB-
soliton configurations. The first row of panels depicts the respective
stationary states for μ1 = 3/2, μ2 = 1, and � = 0.1; solid blue lines
depict the dark-soliton components, dashed green lines depict the
bright ones, and the dash-dotted red line shows the harmonic trap.
The second row of panels depicts the spectral planes for the above
stationary states, and the third and fourth rows are equivalent to those
of Fig. 5, but for the three-DB-soliton configurations.

ter. In the out-of-phase case (bottom right panel), we observe a
similar effect but in the reverse direction (due to the attraction
of the out-of-phase bright-soliton components) for smaller
values of the chemical potential. Notice that in both cases a
good agreement is observed between the numerically observed
equilibrium separations and the theoretically predicted ones
from Eq. (27).

To study the validity of Eq. (28), which is pertinent to
small-amplitude oscillations around the fixed points, we
show in Fig. 5 the eigenvalues λ of the excitation spectrum
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[both for the in-phase (left column) and for the out-of-phase
(right column) cases] as functions of μ2. The imaginary
and real parts, λi and λr , of the respective eigenvalues,
normalized over the trap strength �, are respectively shown
in the top and bottom panels of Fig. 5. In the top panels, it
is straightforward to compare the analytical result of Eq. (28)
with the BdG result, namely, the second anomalous mode of
the spectrum, corresponding to the out-of-phase oscillations of
the DB-soliton pair. Once again, good agreement is observed
between the two; the differences may be partially attributed
to the “interaction” (i.e., collisions) of these modes with other
modes of the BdG spectrum. It is clear from the comparison of
the corresponding columns that there exist narrow instability
windows, arising due to the crossing of the anomalous mode(s)
of the DB-soliton pair with eigenmodes of the background
of the two-component system. These instabilities arise in
the form of Hamiltonian-Hopf bifurcations [39] through the
emergence of quartets of complex eigenvalues resulting from
the collision of two pairs. The growth rates of the pertinent
oscillatory instabilities are fairly small (i.e., the instabilities
are weak) in both the in- and out-of-phase cases; it should
be noted, however, that in the latter case, the formation of the
quartets appears to be occurring in very narrow intervals.

Naturally, the above considerations can also be general-
ized to three or more DB solitons, although the analytical
calculations become increasingly more tedious; again, as we
will show below, in-phase or out-of-phase configurations are
possible in the presence of the trap. Pertinent examples,
showing two different three-DB-soliton configurations, are
illustrated in Fig. 6. In particular, the left column in Fig. 6
corresponds to the in-phase three-DB-soliton state, while the
right column corresponds to the out-of-phase variant thereof.
In the case under consideration, there exist narrow parametric
intervals of dynamical instability, which are narrower for
the out-of-phase case (as in the case of the two-DB-soliton
states). We should mention, in passing, that the dynamics of
two- and three-DB-soliton configurations was recently studied
in Ref. [26]; our study complements the latter by yielding
analytical approximations and a numerical continuation and
bifurcation approach toward such states.

V. CONCLUSIONS AND DISCUSSION

In the present work, we have studied multiple quasi-one-
dimensional dark-bright solitons in atomic Bose-Einstein con-
densates. Our theoretical results were motivated and supported
by the experimental evidence of the formation of DB-soliton
clusters in a two-component, elongated rubidium condensate,
confined in a harmonic trap. The theoretical analysis was based
on the study of two coupled one-dimensional Gross-Pitaevskii
equations.

Starting from the case of a homogeneous condensate (i.e.,
in the absence of a trapping potential), we have employed
a Hamiltonian perturbation theory to analyze the interaction
between two DB solitons. Assuming that the DB solitons
are of low velocity and sufficiently far from each other, we
have found approximate expressions for the interaction forces
between the same or different soliton components. In this way,
we derived a classical equation of motion for the center of
mass of the DB-soliton pair and revealed the role of the phase

difference between the bright-soliton components: we have
shown, in particular, that the repulsion between the dark soliton
components may be counterbalanced by the attraction between
out-of-phase bright components, thus inducing the existence of
stationary DB-soliton pairs even in the case when the external
trapping potential is absent. We have found the equilibrium
distance between the two DB solitons that compose the
stationary DB-soliton pair, with the semianalytical result
being in excellent agreement with the relevant numerical one.
Additionally, we have demonstrated the linear stability of
these stationary DB-soliton pairs by means of analytical and
numerical techniques (the latter were based on a Bogoliubov–
de Gennes analysis). It was shown that the analytical result
for the oscillation frequency of small-amplitude perturbations
around the equilibrium distance is in excellent agreement with
the pertinent eigenvalue characterizing the frequency of the
out-of-phase motion of the DB-soliton pair.

We have then studied multiple DB solitons in the trap. In
this case, we have employed a simple physical picture, where
the total force acting on the DB solitons was decomposed to
an interaction force (derived in the homogeneous case) and a
restoring force induced by the trapping potential; the relevant
characteristic frequency associated with the latter was the
oscillation frequency of a single DB soliton in the trap (which
was found to coincide with the pertinent anomalous-mode
eigenvalue of the single-DB-soliton system). Following this
approach, we were able to find stationary in-trap DB-soliton
pairs even in the case where the bright-soliton components
were repelling each other: in this case, the trap-induced
restoring force was able to counterbalance the repulsive
forces between the dark- and bright-soliton components. The
semianalytical results for the equilibrium distance and the
oscillation frequencies (for the in- and out-of-phase bright-
component cases) were again found to be in very good
agreement with the respective numerical results, including
the anomalous-mode eigenfrequencies pertaining to the in-
and out-of-phase motion of solitons. The stability analysis
of the DB solitons in the trap indicated the possibility of
the existence of unstable modes through Hamiltonian-Hopf
instability quartets, although the latter would typically only
arise over narrow parametric intervals and with rather weak
instability growth rates. Results pertaining to three DB solitons
in the trap were presented as well; the main features of these
states were found to be qualitatively similar to the ones of the
DB-soliton pairs. The identified robustness of such DB-soliton
molecules in our analytical and numerical results is in line with
the frequent and persistent occurrence of such clusters also in
the experiment (although in the latter it is not as straightforward
to prepare such “distilled” molecular states).

It would be particularly interesting to further explore the
dynamics of multiple-DB-soliton complexes and, potentially,
the formation of “DB-soliton gases” comprising such interact-
ing atomic constituents. Deriving Toda-lattice-type equations
describing such gases and identifying their stationary states,
excitations, and (mesoscopic) solitons (as in the case of single-
component dark solitons [38]) are challenges for future work.
Another possibility is to extend the present considerations to
the vortex-bright solitons found in Ref. [28]. There, it would be
relevant to identify whether molecular states consisting of two
or three vortex-bright solitons can be constructed and whether
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the relative phases of 0 and π between the bright components
can still yield different stationary states. Relevant studies are
presently in progress.
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APPENDIX : THE INTERACTION ENERGIES AND
FORCES

The interaction energies EDD, EBB, and EDB are given by
the following (approximate) expressions:

EDD = 16 cos2 φ

[
1

3
D cos2 φ + D + 2(cos2 φ − D2)x0

− 3 + 4 cos2 φ

3D
cos2 φ

]
e−4Dx0 , (A1)

EBB = χ{2D[D(1 − Dx0) − k2x0] + Dχ} cos 
θe−2Dx0

+χ [χD (2Dx0 − 1)
(
1 + 2 cos2 
θ

)
]e−4Dx0 , (A2)

EDB = −4χ cos2 φ cos 
θe−2Dx0

+χ cos2 φ

(
16

3
cos2 φ − 16Dx0 + 8

)
e−4Dx0 , (A3)

where terms of order O(e−6Dx0 ) and higher have been
neglected (nevertheless, it has been checked that their con-
tribution does not alter the main results that were presented
herein). On the other hand, the interaction forces FDD, FBB,
and FDB have the following form:

FDD = 1

χo

[
1

3

(
544 − 352D2

0

) + 128D0
(
D2

0 − 1
)
x0

]
× e−4D0x0 , (A4)

FBB = χ

χo

[ − 6D0 + 4D2
0x0 − 2χ

]
D2

0 cos 
θe−2D0x0

+ χ2

χo
[(1 + 2 cos2 
θ )(−8D0x0 + 6)]

×D2
0e

−4D0x0 , (A5)

FDB = χ

χo
[8D0 cos 
θ ]e−2D0x0

+ χ

χo

[
− 208

3
+ 64D0x0

]
D0e

−4D0x0 , (A6)

where D(t) ≈ D0 since we are assuming that Ḋ(t) ≈ 0.
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