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We report results of numerical and analytical studies of the spontaneous symmetry breaking in solitons,
both two- and one-dimensional (2D and 1D), which are trapped in H-shaped potential profiles built of two
parallel potential troughs linked by a narrow rung in the transverse direction. This system can be implemented
in self-attractive Bose-Einstein condensates (BECs), as well as in a nonlinear bulk optical waveguide. We
demonstrate that the introduction of the transverse link changes the character of the symmetry-breaking bifurcation
(SBB) in the system from subcritical to supercritical. (In terms of the corresponding phase transition, it is a
change between the first and second kinds.) A noteworthy feature of the SBB in this setting is a nonmonotonous
dependence of the soliton’s norm at the bifurcation point on the strength of the transverse link. In the full 2D
system, the results are obtained in a numerical form. An exact analytical solution is found for the bifurcation in
the 1D version of the model, with the transverse rung modeled by the local linear coupling between the parallel
troughs with the δ-functional longitudinal profile. By replacing the δ function by its finite-width Gaussian
counterpart, similar results are obtained by means of the variational approximation (VA). The VA is also applied
to the 1D system with a mixed linear and nonlinear transverse localized coupling. Comparison of the results
produced by the different varieties of the system clearly reveals basic features of its the symmetry-breaking
transition.
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I. INTRODUCTION

Symmetric double-well potential is one of the fundamen-
tal settings studied in quantum mechanics [1] and in the
theory of optical guided-wave propagation, which obeys the
Schrödinger equation similar to that known in quantum me-
chanics [2]. Counterparts of the double-well potential in optics
are represented by directional couplers [3,4], including various
dual-core waveguides created in photonic-crystal matrices [5].
It is commonly known that the ground state produced by
the linear Schrödinger equation keeps the symmetry of the
underlying double-well potential [1]. On the other hand, the
introduction of the self-attractive nonlinearity, which trans-
forms the linear equation into the Gross-Pitaevskii equation
(GPE) for a Bose-Einstein condensate (BEC) of interacting
atoms, loaded into the double-well potential [6], or the
nonlinear Schrödinger equation (NLSE) modeling nonlinear
dual-core waveguides in optics [2], leads to the ubiquitous
effect of the spontaneous symmetry breaking. As a result, the
symmetric ground state is replaced, via the symmetry-breaking
bifurcation (SBB; in fact, it is a variety of phase transitions), by
an asymmetric state providing for a minimum of the system’s
energy, when the strength of the nonlinearity exceeds a critical
value. This effect was originally discovered in a discrete model
of self-trapping [7] and later studied in many settings [8].
Manifestations of the spontaneous symmetry breaking were
also studied in detail in BEC models [9] and demonstrated
experimentally in a self-repulsive BEC [10].

In nonlinear optics the SBB was analyzed in Ref. [3] for
continuous-wave (spatially uniform) states in the model of
dual-core waveguides. For self-trapped modes in dual-core
optical systems, i.e., solitons, the bifurcation was studied

in Refs. [4] and [11]. A specific example is the SBB for
gap solitons in dual-core fiber Bragg gratings [12]. Later,
manifestations of the SBB for matter-wave solitons held in
dual-trough potential traps (including solitons of the gap type,
supported by a periodic optical-lattice potential) were explored
too [13–16]. The difference of the dual-trough configuration
from the usual double well is the presence of an additional free
direction, transverse to that in which the double-well potential
acts (see Fig. 1 below).

A characteristic property of solitons trapped in the sym-
metric dual-trough potential is that under the action of the
self-focusing cubic nonlinearity, they exhibit the SBB of the
subcritical type. In that case, branches of the asymmetric states
emerge as unstable ones, going backward from the SBB point
and getting stable after switching their direction forward at
turning points [17]. Thus the system features the bistability
before the bifurcation point, and this mode of the spontaneous
symmetry change may be understood as the phase transition of
the first kind. On the other hand, the addition of a sufficiently
strong periodic potential acting along the troughs changes
the character of the SBB in the self-attractive medium from
subcritical to supercritical. In the latter case, the asymmetric
branches emerge as stable ones, immediately going in the
forward direction [13,15], which may also be realized as the
phase transition of the second kind. The above-mentioned SBB
for gap solitons in the dual-core fiber Bragg grating is of the
supercritical type too [12].

Another realization of effective double-well potentials is
provided by settings based on double-peak spatial modulations
of the local nonlinearity coefficient, which may be imple-
mented in optics and BEC alike. (See a recent review [18]
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FIG. 1. The two-dimensional H-shaped trapping potential.

of the topic of solitons in nonlinear potentials.) The simplest
form of this setting has the nonlinearity concentrated at two
points, in the form of a symmetric pair of δ functions or narrow
Gaussians [19], as well as a two-dimensional (2D) counterpart
of the system, based on the set of two parallel stripes [20]
or two circles [21] carrying the self-attractive nonlinearity.
The SBB of solitons in the double-well nonlinear poten-
tials also features the symmetry breaking of the subcritical
type [18–20].

Further, the spontaneous symmetry breaking was analyzed
for one-dimensional (1D) and 2D solitons in dual-core discrete
systems, with the uniform coupling between two parallel
chains [22] or with the coupling concentrated at a single
site [23]. In the former and latter cases, the SBB is subcritical
and supercritical, respectively. Another implementation of the
SBB in discrete settings was recently reported for a pair of
nonlinear sites embedded into or side-coupled to a linear host
lattice [24].

The objective of the present work is to consider the SBB
of self-attractive localized wave fields trapped in H-shaped
potential landscapes, i.e., two parallel troughs linked by a
transverse rung, as shown in Fig. 1 below. This configuration
can be implemented in an effectively 2D BEC using a set
of attractive (red-detuned) laser sheets and/or blue-detuned
repelling sheet pairs [25], or in BEC layers isolated by a
strong-standing optical wave [26], that can also be combined
with magnetic trapping fields [27]. It is also possible to use
the techniques allowing one to “paint” complex potential
landscapes (in fact, even more complex than the H-shaped ones
that we aim to consider) by rapidly moving laser beams [28], or
induce time-averaged adiabatic landscapes created by means
of variable magnetic fields [29]. Essentially the same effective
potentials can be created in nonlinear optics using properly
patterned photonic-crystal media [5] or a transverse trapping
structure permanently written in bulk silica [30]. We aim to
consider both the full 2D model with the transverse H-shaped
potential (similar to the 2D model with the dual-trough
potentials considered in Refs. [14,15]) and its simplified 1D
counterpart (cf. the 1D version of the dual trough introduced
in Ref. [13]).

The transverse link (rung) added to the dual-trough poten-
tial can be used to control the dynamical properties of the
system and, eventually, alter the character of the spontaneous
symmetry breaking in the system. In particular, recent results
reported for the discrete system [23] suggest a possibility to
change the type of SBB from sub- to supercritical (i.e., the
kind of respective phase transitions from first to second) by
gradually increasing the strength of the transverse link.

The paper is structured as follows. The 2D and 1D models
are introduced in Sec. II, and the full 2D system is considered
in Sec. III by means of numerical methods. A set of bifurcation
diagrams indeed demonstrates a switch from the sub- to
supercritical SBB in the 2D setting. While one may expect that
the strengthening of the linear coupling between the parallel
troughs should lead to an increase of the critical value of the
nonlinearity strength at which the SBB happens, we observe
that with the introduction of the transverse link, the critical
nonlinearity strength at first decreases due to the change of the
character of the bifurcation, and only later starts to grow. In
Sec. IV we deal with the 1D versions of the system. In that
case the transverse link reduces to a localized linear coupling
between two one-dimensional GPEs or NLSEs. In that context
we consider different longitudinal profiles of the coupling.
First, approximating it by a δ function of the longitudinal
coordinate, we report exact analytical solutions for the solitons
of all the types—symmetric, antisymmetric, and asymmetric.
Accordingly, an exact comprehensive solution for the SBB is
available. Next, we consider the coupling localized in a finite
interval, with the Gaussian profile. In that case we develop a
variational approximation (VA) and verify its predictions by
comparison to numerical findings. Finally, we consider the
1D system which combines the linear and nonlinear localized
couplings between the one-dimensional GPEs or NLSEs,
both with the Gaussian profile. For that purpose, the VA is
developed, too. In all the versions of the 1D system, the SBB
is always found to be of the supercritical type, unlike the full
2D model that reveals the transition to the supercritical type
from the subcritical one. The paper is concluded by Sec. V.

II. THE MODEL

A. The two-dimensional setting

We introduce the model in terms of the two-dimensional
GPE for the mean-field wave function of the self-attractive
BEC trapped in the H-shaped potential. In physical units the
usual form of the equation is

ih̄�̃ t̃ = − h̄2

2m
(�̃x̃ x̃ + �̃ỹ ỹ) + U (̃x,̃y)�̃

+ 2
√

2πh̄2as

maz

|�̃|2�̃, (1)

where m and as < 0 are the atomic mass and the respec-
tive scattering length, az is the confinement length in the
transverse direction [az = √

h̄/ (m�), if the confinement is
provided by the harmonic-oscillator potential (1/2)m�2z2],
and the trapping potential of depth U0 is defined as
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follows:

U (̃x,̃y) =

⎧⎪⎨⎪⎩
−U0, at 1

2L < |̃x| < D + 1
2L,

and at |̃x| < 1
2L, |̃y| < 1

2W,

0 elsewhere.

(2)

As shown in Fig. 1, D is the width of the two longitudinal
troughs, with separation L between them, and W is the width
of the transverse rung. The norm of the wave function gives
the total number of atoms in the condensate,

Np =
∫ ∫ ∞

−∞
|�̃|2dx̃dỹ. (3)

Using scaled variables x = x̃/D, y = ỹ/D, t = t̃h̄/(mD2),
and � ≡ 2

√
2
√

2π |as |/azD�̃, we cast Eq. (1) into the dimension-
less form

i�t = − 1
2 (�xx + �yy) + U (x,y)� − |�|2�, (4)

where the rescaled norm is N2D ≡ 4πNp|as |, and the potential
takes the form of

U (x,y) =

⎧⎪⎨⎪⎩
−α1, at 1

2α2 < |x| < 1 + 1
2α2,

at |x| < 1
2α2, |y| < 1

2α3,

0, elsewhere,

(5)

with rescaled constants

α1 ≡ mU0D
2

h̄2 , α2 ≡ L

D
, α3 ≡ W

D
. (6)

Thus the system is governed by the set of four dimensionless
parameters: norm N2D, scaled potential depth α1, the relative
separation between the parallel channels α2, and the relative
width of the rung α3. In the next section we apply a numerical
method to search for symmetric and symmetry-broken local-
ized modes supported by the interplay of the H-shaped trapping
potential and self-attractive nonlinearity in Eq. (4). We identify
the SBB in this model, and produce the respective bifurcation
diagrams. The predicted results can be readily translated back
into physical units by undoing the above transformations.

In the application to the optical guided-wave propagation,
Eq. (4) plays the role of the NLSE for the evolution of the
amplitude of the guided electromagnetic wave, with time t

replaced by the propagation distance z. In the latter case the
effective potential represents the modulation of the refractive
index in the transverse plane, and the cubic term accounts for
the Kerr self-focusing.

B. The one-dimensional system

The 1D limit of the model corresponds to the case of
W � D � L, i.e., α3 � 1 � α2, in terms of the relative
parameters defined in Eq. (6). Then, by approximating the
wave function in each relatively narrow trough by 1D wave
functions ψ1,2 (y,t), the tails of the wave functions channeled
by the narrow transverse rung in the transverse direction take
the form of

(ψ1,2)tail (x,y,t)

≈ ψ1,2(y,t) exp

[
−

√(
π

α3

)2

− 2α1

∣∣∣∣x ± α2

2

∣∣∣∣], (7)

which implies α1 < π2/(2α2
3); otherwise (if the rung is very

deep), the effective coupling between the parallel troughs will
be stronger than given below by expression (9). Then, using the
general formalism elaborated for the analysis of the interaction
between far separated 2D localized modes [31], it is easy to
calculate the effective Hamiltonian of the interaction between
the parallel troughs, mediated by the channeled tails (7), and
thus approximate the full 2D model [Eqs. (4) and (5)] by the
system of coupled 1D equations with the local coupling

i∂tψ1 = − 1
2∂2

yψ1 − |ψ1|2ψ1 − κδ(y)ψ2,
(8)

i∂tψ2 = − 1
2∂2

yψ2 − |ψ2|2ψ2 − κδ(y)ψ1,

with the coupling coefficient identified by equating the
above-mentioned 2D interaction Hamiltonian to its counterpart
corresponding to the 1D system (8):

κ =
√

π2 − 2α1α
2
3 exp

(
−α2

α3

√
π2 − 2α1α

2
3

)
. (9)

In fact, by an additional rescaling of Eqs. (8) it is possible to fix
κ ≡ 1, which is adopted below in Sec. IV. To understand the
generality of the results produced by the 1D system with the
δ-functional coupling profile, we also consider the 1D system
with the δ function replaced by the Gaussian profile with a
finite width y0,

δ(y) → exp(−y2/y2
0 ), (10)

keeping the coefficient in front of the Gaussian to be 1.

III. SYMMETRIC AND ASYMMETRIC
TWO-DIMENSIONAL SOLITONS

Stationary soliton solutions to Eqs. (4) and (5) were found
by means of the imaginary-time integration method [32]. The
stability of the so-generated solitons was then tested by direct
simulations of the perturbed evolution in real time. Typical
examples of stable symmetric and asymmetric 2D solitons are
shown in Fig. 2.

By varying the set of control dimensionless parameters
(α1,α2,α3), we identified the critical value Ncr of the scaled
norm N2D at which the SBB occurs and asymmetric states
appear. The natural measure for the asymmetry of such states
is defined as

ν ≡
∫ +∞
−∞ dy

[ ∫ ∞
0 dx|�(x,y)|2 − ∫ 0

−∞ dx|�(x,y)|2]
N2D

. (11)

As mentioned in the Introduction, the 2D system without the
transverse rung, which is tantamount to the present 2D model
with W = α3 = 0 [14], as well as its 1D counterpart [13]
based on the system of 1D equations uniformly coupled by
linear terms, features the SBB of the subcritical type. The
difference of the present model is that with the increase of α3

from zero, the character of the bifurcation quickly switches to
supercritical (in other words, the kind of the respective phase
transition switches from first to second), as shown in detail
by means of the set of bifurcation diagrams in Fig. 3, where
control parameters α1 and α2 are fixed while α3 is varied. In
terms of the underlying system, this means the gradual increase
of the width of the transverse rung in Fig. 1. As verified by
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FIG. 2. (Color online) Examples of stable 2D symmetric (left) and asymmetric (right) solitons. The respective values of the scaled norm
are N2D = 4.05 and N2D = 4.5, respectively. The other parameters are α1 = α2 = α3 = 1.

direct simulations (not shown here in detail), all the solution
branches displayed in Fig. 3 are dynamically stable.

The transition to the supercritical bifurcation is a conse-
quence of the enhancement of the local transverse coupling
between the troughs through the rung. A qualitatively similar
change of the bifurcation was recently observed in dual discrete
chains, with the transition from the uniform transverse linear
coupling [22] to that at a single site [23].

The bifurcation picture is further characterized, in Figs. 4
and 5, respectively, by dependences of the value of the norm at
the bifurcation point Ncr on the relative width of the transverse
rung α3 and the relative distance between the troughs α2.
Because, as said above, the increase of α3 (making the rung
wider) implies the strengthening of the linear coupling between
the parallel troughs, one should expect the growth of Ncr with
α3. This is generally observed in Fig. 4, but after an initial
decrease. This surprising feature is explained by the above-
mentioned change of the character of the bifurcation from
subcritical to supercritical. On the other hand, the monotonous
decrease of Ncr with the increase of α2 is a natural consequence
of the weakening strength of the coupling between the
toughs.

The coupling between the troughs is obviously sensitive to
the relative width of the separating barrier with respect to the
troughs, which is measured by α2 [see Fig. 1 and Eq. (6)]. The
fact that the bifurcation diagrams, and the respective critical
values of the norm, are quite similar in panels (a) and (b) in
Figs. 3 and 4, which pertain to α2 = 4 and α2 = 1, respectively,
demonstrates that the type of symmetry breaking reported in
this section comprises a broad parametric area.

Finally, the simulations demonstrate that the 2D solitons
suffer the collapse, in the present model, exactly when it is
expected, i.e., when the total scaled norm exceeds the well-
known threshold value Nthr ≈ 5.85 [33].

IV. THE ONE-DIMENSIONAL SYSTEM: EXACT,
VARIATIONAL, AND NUMERICAL SOLUTIONS

A. Exact solutions for the linear coupling with the
δ-functional profile

1. General analysis

A remarkable feature of the 1D system based on Eq. (8) with
the transverse coupling accounted for by the δ functions is a

(a) (b)

FIG. 3. (Color online) Bifurcation diagrams showing the asymmetry of the 2D solitons as a function of the total norm. The parameters are
α1 = 1,α2 = 4 in (a), and α1 = α2 = 1 in (b) (fixed depth of the parallel troughs and the distance between them), while the scaled width of the
transverse rung varies: α3 = 0.5 (orange curves in each panel), α3 = 0.25 (blue curves), and α3 = 0 (black curves). In the case of α3 = 0 (no
transverse linkage through the rung), the bifurcation is subcritical, in agreement with Ref. [14] (only stable portions of the subcritical diagram
are displayed in this case). In other cases the character of the bifurcation is clearly supercritical.
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FIG. 4. (Color online) The total norm of the wave field at the point of the symmetry-breaking bifurcation, in the 2D model, versus the
relative width of the transverse rung α3. The other parameters are α1 = 1,α2 = 4 (a) and α1 = α2 = 1 (b).

possibility to find exact stationary solutions for the solitons of
all the types, symmetric, antisymmetric, and asymmetric (note
that exact solutions are not available in the discrete counterpart
of the system considered in Ref. [23]). Stationary solutions
to Eq. (8) with a given (negative) chemical potential μ (in
the application to optics, −μ is the propagation constant) are
looked for as

{ψ1 (y,t) ,ψ2 (y,t)} = e−iμt {u(y),v(y)} , (12)

where real functions u(y) and v(y) obey the following
equations:

μu = −1

2

d2u

dy2
− u3 − δ(y)v,

(13)

μv = −1

2

d2v

dy2
− v3 − δ(y)u.

FIG. 5. (Color online) The norm at the point of the symmetry-
breaking bifurcation in the 2D model versus the relative separation
between the parallel troughs α2. The other parameters are α1 =
1,α3 = 0.25.

[Recall κ ≡ 1 is fixed in Eq. (8) by means of rescaling.] As
follows from Eqs. (13), at y = 0 the solutions must satisfy the
following boundary conditions:

�(u′) = −2v, �(v′) = −2u, (14)

where � stands for the jump of the derivative at y = 0.
Solutions to Eqs. (13) and (14) are looked for as

u = ηsech [η (|y| + a)] ,
(15)

v = sηsech [η (|y| + b)] , η ≡
√

−2μ,

where s = +1 and s = −1 correspond to the symmetric
and antisymmetric states, respectively (or their asymmetric
deformations), while shifts a > 0 and b > 0 are determined
by equations following from the substitution of ansatz (15)
into Eqs. (14):

η
sinh (ηa)

cosh2 (ηa)
= s

cosh (ηb)
, η

sinh (ηb)

cosh2 (ηb)
= s

cosh (ηa)
. (16)

Remember that η ≡ √−2μ is treated here as an arbitrary
constant parameterizing the family of solutions.

2. Symmetric and antisymmetric solutions

Symmetric modes correspond to s = +1 and a = b, in
which case Eq. (16) yields

exp(2ηasymm) = (η + 1) / (η − 1) . (17)

As seen from here, the symmetric solution exists for η > 1, i.e.,
μ < −1/2, with the total norm which can be readily calculated

N =
∫ +∞

−∞
[u2(y) + v2(y)]dy ≡ Nu + Nv = 4 (η − 1) .

(18)

Antisymmetric states, with s = −1 and a = b < 0, are also
possible, with |a| given by the same expression (17) as in
the symmetric case. However, the antisymmetric states are
expected to be completely unstable, as they correspond to a
maximum, rather than minimum, of the respective interaction
Hamiltonian; therefore they are not considered below. (The
instability of the antisymmetric states is corroborated by
numerical tests; see, e.g., Fig. 8 below.)

053618-5



HUNG, TRIPPENBACH, AND MALOMED PHYSICAL REVIEW A 84, 053618 (2011)

FIG. 6. (Color online) The bifurcation diagram produced by the
exact solution of the 1D system with the δ-functional profile of the
linear coupling.

3. Asymmetric solitons

For the most interesting asymmetric solutions with a 	= b

and s = +1, Eq. (16) can be transformed into the following
system:

tanh2 (ηa) + tanh2 (ηb) = 1 − η−2, (19)

tanh (ηa) tanh (ηb) = η−2, (20)

an explicit solution to which is

tanh (ηa) = 1
2 (

√
1 + η−2 −

√
1 − 3η−2),

(21)
tanh (ηb) = 1

2 (
√

1 + η−2 +
√

1 − 3η−2).

As seen from these expressions, with the increase of η, i.e.,
with the growth of the norm of the symmetric solutions [see
Eq. (18)], the asymmetric modes emerge and exist at

η � η0 ≡
√

3, (22)

with the following values of the norm in the two troughs:

Nu = 2η −
√

η2 + 1 +
√

η2 − 3,
(23)

Nv = 2η −
√

η2 + 1 −
√

η2 − 3.

Accordingly, the total norm of the asymmetric solution is

N ≡ Nu + Nv = 2(2η −
√

η2 + 1), (24)

or, inversely, constant η may be expressed in terms of the total
norm, which is then treated as the intrinsic parameter of the
family of asymmetric solitons:

η = 1

3

(
N +

√
1

4
N2 + 3

)
. (25)

The corresponding asymmetry measure is

ν ≡ Nu − Nv

Nu + Nv

=
√

η2 − 3

2η −
√

η2 + 1
. (26)

Substituting here η from Eq. (25), we obtain an eventual
expression for the asymmetry parameter as a function of the
total norm:

ν =
√

(N2 − 4)2 − 12(2N − √
N2 + 12)2

2(N2 − 4) −
√

(N2 − 4)2 + 4(2N − √
N2 + 12)2

,

(27)

which provides a full analytical description of the SBB in
the 1D system. The norm of the asymmetric solitons assumes
values N � N0 = 4(

√
3 − 1) ≈ 2.93, with N0 corresponding

to the symmetry-breaking point (22).
The bifurcation diagram predicted by Eq. (27), i.e., ν as a

function of N , is displayed in Fig. 6. Obviously, the bifurcation
revealed by the exact solution is supercritical, being quite
similar to the supercritical SBB in the 2D model, which is
displayed above in Fig. 3. Direct simulations (with the ideal
δ functions replaced by their regularized versions, see below)
confirm that, as expected, all the solution branches shown in
Fig. 6 are stable.

B. Coupling with the Gaussian profile

To check how generic the exact solution found with
the δ-functional coupling profile is, it is natural to compare
the results to those generated by the Gaussian profile (10).
Because exact solutions are not available in this case, we tackle
the problem by means of the VA, which is an effective tool for

FIG. 7. (Color online) The bifurcation diagram produced by the 1D system with the Gaussian profile of the coupling, Eqs. (8) and (10),
in the framework of the variational approximation. The width of the Gaussian profile is y0 = 0.5 (squares), 0.25 (stars), and 0.125 (balls),
respectively.
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the analysis of a broad class of systems similar to the present
one [34].

To apply the VA we use the expression for the energy of the
1D system (8), (10):

E =
∫ +∞

−∞
dy

[
1

2

2∑
j=1

∣∣∂yψj

∣∣2 − 1

2

2∑
j=1

|ψj |4

− exp

(
−y2

y2
0

) (
ψ1ψ

∗
2 + ψ∗

1 ψ2
) ]

, (28)

and introduce the following ansatz (hereafter we use ± instead
of subscripts 1 and 2):

ψ±(y,t) = e−iμt

√
N (1 ± ν)

2W
√

π
exp

(
− y2

2W 2

)
, (29)

where W is the width of the soliton, and ν is the asymmetry
parameter defined as

ν = 1

N

∫ +∞

−∞
dy (|ψ1|2 − |ψ2|2), (30)

cf. Eq. (11). Substituting ansatz (29) into expression (28) yields
the energy as a function of variational parameters W and ν:

E = N

4W 2
− Ny0

√
1 − ν2√

y2
0 + W 2

− N2(1 + ν2)

4W
√

2π
. (31)

The variational equations resulting from expression (31),
∂E/∂W = ∂E/∂ν = 0, take the following form:

1

W 4
− 2y0

√
1 − ν2(

y2
0 + W 2

)3/2 − N (1 + ν2)

2
√

2πW 3
= 0,

(32)

ν

(
y0√(

y2
0 + W 2

)
(1 − ν2)

− N

2
√

2πW

)
= 0.

These equations were solved in a numerical form to find
parameters W and ν of stationary solutions as functions of the
free parameters y0 and N . The stability of the solutions was
verified, in the framework of the VA, by checking whether they
correspond to a local minimum of energy (31).

The so-generated bifurcation diagrams are displayed
in the left panel of Fig. 7 for several fixed values of width
y0 of the Gaussian profile of the coupling. Bifurcation is
supercritical in this case. It is quite similar to that produced
by the exact solution for the δ-functional profile, (cf. Fig. 6)
and to the supercritical diagrams found in the 2D model,
(cf. Fig. 3). The second panel in Fig. 7 shows the respective
dependence of the norm at the bifurcation point on the width
of the Gaussian profile, Ncr(y0). In fact, the latter plot is a
1D counterpart of the one which, in the 2D model, shows the
dependence of Ncr on the relative width of the transverse rung
α3 (cf. Fig. 4).

We have also constructed stationary states of the 1D system
with the Gaussian-shaped coupling as numerical solutions
of Eqs. (8) and (10). Two different algorithms were used
for this purpose: the imaginary-time integration and the
Newton-Kantorovich iteration method, both yielding identical
results. Thus three types of stationary configurations were
found—symmetric, antisymmetric, and asymmetric. Their

−5 0 5
−2

−1

0

1

2

y

ψ
1
(y)

ψ
2
(y)

FIG. 8. (Color online) The shape of a typical antisymmetric
solution and its evolution in the 1D system (8) with the Gaussian
profile (10) of the linear coupling. In the top panel the pink, red, and
(dash) blue curves display ψ1(y), ψ2(y) in the stationary solution and
Gaussian profile exp(−y2/y2

0 ), respectively. The two lower panels
show the evolution of |ψ1 (y,t)| and |ψ2(y,t)|, respectively. The
parameters are total norm N = 11.4, chemical potential μ = −1.03,
and the width of the Gaussian profile y0 = 0.5.

stability was tested by direct simulations of the evolution in real
time. It has been confirmed that the respective SBB is indeed
supercritical, and the variational results are very close to the
numerically exact ones. It was also found that antisymmetric
modes (which do not undergo the bifurcation) are unstable (as
mentioned above). (See an example in Fig. 8.) The two-peak
profile of the stationary mode in this figure is a consequence
of its antisymmetry. (The Gaussian profile of the coupling
is effectively repulsive in this case, which also explains the
instability of the mode.) It is seen that almost the entire norm
is spontaneously transferred into a single trough where the two
peaks split into separating single-component solitons.
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FIG. 9. (Color online) The same as in Figs. 7, but for the 1D model with the Gaussian profile of the mixed linear-nonlinear coupling,
based on Eq. (33), and the variational ansatz (29). The width of the Gaussian profile is y0 = 0.25 (squares), 0.125 (stars), and 0.05 (balls),
respectively. The relative strength of the nonlinear and linear couplings is σ0 = 1.

We have also developed a similar analysis, using both
the VA and numerical solutions, for the 1D model with a
rectangular profile of the transverse coupling. The results (not
shown here) are very similar to those generated by the Gaussian
profile.

V. COMBINED LINEAR-NONLINEAR COUPLING WITH
THE GAUSSIAN PROFILE

It may also be relevant to consider a nonlinear correction
to the linear coupling between the two troughs within the
framework of the 1D system (note that the full 2D model
automatically takes into regard both linear and nonlinear
effects of the coupling). To this end we adopt the following
modification of the 1D system (8) with the Gaussian coupling
profile (10):

i∂tψ1 = − 1
2∂2

yψ1 − |ψ1|2ψ1

− exp(−y2/y2
0 )(σ |ψ2|2ψ1 + ψ2),

(33)
i∂tψ2 = − 1

2∂2
yψ2 − |ψ2|2ψ2

− exp(−y2/y2
0 )(σ |ψ1|2ψ2 + ψ1),

where σ is the relative strength of the nonlinear coupling. In
this case the energy functional is

E =
∫ +∞

−∞
dy

{
1

2

2∑
j=1

∣∣∂yψj

∣∣2 − 1

2

2∑
j=1

|ψj |4

− exp

(
−y2

y2
0

)
[σ |ψ1|2|ψ2|2 + (ψ1ψ

∗
2 + ψ∗

1 ψ2)]

}
.

(34)

To apply the VA method we adopt the same Gaussian ansatz
(29) which was used above. The substitution of the ansatz into
functional (34) yields

E = N

4W 2
− Ny0

√
1 − ν2

W 2 + y2
0

− N2

4W
√

π

(
σy0(1 − ν2)√

W 2 + 2y2
0

+ 1 + ν2

√
2

)
, (35)

the corresponding variational equations, ∂E/∂W = ∂E/∂ν =
0, being

8y0W
√

1 − ν2(
W 2 + y2

0

)3/2 +
√

2N (1 + ν2)√
πW 2

+ 2σy0N (1 − ν2)√
π

(
W 2 + 2y2

0

)(
1

W 2
+ 1

W 2 + 2y2
0

)
− 4

W 3
= 0,

(36)

ν

[
2y0√(

W 2 + y2
0

)
(1 − ν2)

+ N

W
√

π

(
σy0√

W 2 + 2y2
0

− 1√
2

)]
= 0.

The bifurcation diagram produced by the numerical solution
of Eqs. (36) and the respective dependence of the total norm
at the SBB point on y0 are displayed (for σ = 1) in Fig. 9.

The comparison of the dependences Ncr(y0), obtained in
the three versions of the 1D model with the finite width
of the coupling profile (Gaussian, rectangular—which is not
displayed here in detail—and mixed linear-nonlinear) suggests
that the inclusion of the nonlinear coupling into Eq. (33) makes
this characteristic essentially more similar to its counterpart
obtained in the full 2D model (cf. Fig. 4). While in Fig. 7, and
in its counterpart obtained in the model with the rectangular
profile, the curves Ncr(y0) are convex, they are concave in
both Figs. 4 and 9. This conclusion is naturally explained by
the above-mentioned fact that the full 2D model automatically
takes into account both the linear and nonlinear coupling
between the parallel troughs.

VI. CONCLUSION

The objective of this work is to extend the study of
the spontaneous symmetry breaking in 1D and 2D solitons
trapped in the systems of two parallel tunnel-coupled potential
troughs. Unlike recently studied models, here we introduce the
H-shaped potential and focus on the SBB (symmetry-breaking
bifurcation) for solitons in this system. Analysis of both the 2D
and 1D versions of the model demonstrates that the transverse
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link (the rung of the H-shaped potential profile) transforms the
bifurcation from subcritical into the supercritical one. In other
words, the rung controls the switching of the corresponding
symmetry-breaking phase transition from the first into the
second kind. A nontrivial manifestation of the change of the
SBB type is the nonmonotonous dependence of the critical
value of the soliton’s norm, at the bifurcation point, on the
strength of the transverse link; prior to the expected growth,
it demonstrates a region of the decrease. In the full 2D model
the results were obtained in the numerical form. On the other
hand, the 1D version with the δ-functional profile of the local
linear coupling between the troughs admits the exact analytical
solutions for the solitons of all three types—symmetric, anti-
symmetric, and asymmetric—and, accordingly, the bifurcation
diagram was obtained in the exact analytical form, which is
a rare possibility. In another variant of the 1D model, with
the Gaussian profile of the local transverse linear coupling,
the results were obtained by means of the VA (variational
approximation). The VA was also used to solve the bifurcation
problem in the system combining the linear and nonlinear
localized transverse coupling. The set of results reported in
the paper provides for a comprehensive description of the
symmetry breaking in the H-shaped system. In particular,
adding the nonlinear coupling to the 1D model makes the
characteristics of the symmetry breaking closer to those found
in the full 2D model, which automatically incorporates linear
and nonlinear coupling effects.

The settings considered in this work can be realized in the
self-attractive BEC and in self-focusing bulk optical media,
with the appropriate transverse profile of the refractive index. It
is relevant to stress that the description of the BEC based on the
coupled GPEs is entirely based on the mean-field approxima-
tion. While it is well known that this approximation provides

for an exceptionally accurate description of virtually all matter-
wave patterns observed in experiments, quantum fluctuations,
and other beyond-mean-field effects being detectable only
under special conditions [6], one may expect that fluctuations
can be amplified in a vicinity of the phase transition (i.e., of
the SBB), which suggests the question of whether the GPEs
are applicable in this case. A full analysis of this issue should
be a subject for a separate extended work; nevertheless, a
relevant analogy is suggested by the analysis of fluctuations
in the vicinity of the SBB, both in the continuous-wave and
soliton settings, which was performed within the framework of
the model of the directional coupler in nonlinear optics, based
on the coupled 1D NLSEs, in Ref. [11]. The conclusion was
that contrary to what was anticipated, the fluctuational effects
remain virtually negligible in that case, their amplification in
the vicinity of the respective SBBs producing no conspicuous
changes against the mean-field description. Based on this
analogy we expect that the mean-field description remains
valid in the present case, too.

One possibility for further development of the analysis is
to perform it in a two-component system. Another interesting
extension may be carried out for a configuration with two
parallel transverse rungs, in which case one may expect a
double spontaneous symmetry breaking: between the parallel
potential troughs, and, independently, between vicinities of the
two rungs. In particular, a challenging problem would be to
find an exact solution in the case when the pair of rungs is
represented by a symmetric set of two δ functions.
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M. Albiez, J. Fölling, B. Hemmerling, and M. K. Oberthaler,
Appl. Phys. B 82, 207 (2006).

[11] A. Mostofi, B. A. Malomed, and P. L. Chu, Opt. Commun. 137,
244 (1997); 145, 274 (1998).

[12] W. C. K. Mak, B. A. Malomed, and P. L. Chu, J. Opt. Soc. Am.
B 15, 1685 (1998).

[13] A. Gubeskys and B. A. Malomed, Phys. Rev. A 75, 063602
(2007).

[14] M. Matuszewski, B. A. Malomed, and M. Trippenbach, Phys.
Rev. A 75, 063621 (2007).

[15] M. Trippenbach, E. Infeld, J. Gocalek, M. Matuszewski,
M. Oberthaler, and B. A. Malomed, Phys. Rev. A 78, 013603
(2008).

[16] L. Salasnich, B. A. Malomed, and F. Toigo, Phys. Rev. A 81,
045603 (2010).

[17] G. Iooss and D. D. Joseph, Elementary Stability Bifurcation
Theory (Springer-Verlag, New York, 1980).

[18] Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys.
83, 247 (2011).

[19] T. Mayteevarunyoo, B. A. Malomed, and G. Dong, Phys. Rev.
A 78, 053601 (2008); N. Dror and B. A. Malomed, ibid. 83,
033828 (2011).
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