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Behavior of heat capacity of an attractive Bose-Einstein condensate approaching collapse
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We report the calculation of heat capacity of an attractive Bose-Einstein condensate, with the number N of
bosons increasing and eventually approaching the critical number Ncr for collapse, using the correlated potential
harmonics (CPH) method. Boson pairs interact via the realistic van der Waals potential. It is found that the
transition temperature Tc initially increases slowly, then rapidly as N becomes closer to Ncr . The peak value of
heat capacity for a fixed N increases slowly with N , for N far away from Ncr . But after reaching a maximum, it
starts decreasing when N approaches Ncr . The effective potential calculated by the CPH method provides insight
into this strange behavior.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) is the transition process
in which a macroscopic fraction of bosons goes into the lowest
energy state as the temperature is lowered below a certain
critical temperature Tc [1]. This was predicted by Einstein
in 1925 based on Bose’s explanation of blackbody radiation.
A great deal of activity, both theoretical and experimental,
has been seen in this field since the experimental realization
of BEC in 1995. Although a number of static, dynamic,
and thermodynamic properties have been studied [2,3], not
much attention has been paid to the heat capacity of attractive
condensates. The main motivation of this work is to fill that
gap.

In laboratory experiments, the condensate is trapped by
a confining potential, usually a harmonic-oscillator potential.
An attractive condensate (e.g., 7Li condensate) has a negative
value of the s-wave scattering length as and collapses when
the number of particles N in the condensate exceeds a critical
number Ncr . On the other hand, a repulsive condensate (e.g.,
87Rb condensate) corresponds to as > 0 and is stable for
any N , since repulsively interacting bosons are contained in
the externally applied trap. The situation is quite different
for an attractive condensate: attractive bosons tend to come
to the center of the trap, which is balanced only by the
kinetic pressure, resulting in a metastable condensate. The total
attraction increases as the number of pairs do, N (N − 1)/2,
while the kinetic pressure increases as N does. Thus, for N

larger than a critical value Ncr , the net attraction dominates
and a collapse occurs.

In this paper, we report the calculation of heat capacity
of an attractive condensate containing a fixed number of 7Li
atoms, interacting via the realistic van der Waals potential,
appropriate for the experimental scattering length. The features
are markedly different from those of repulsive condensates,
which are the only condensates that have been investigated
so far. In a repulsive condensate, the heat capacity CN (T )
for a fixed number N of bosons in the trap, and also the
critical temperature Tc, smoothly approach a constant value
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as N → ∞ [4,5]. As a function of T , the heat capacity
for a given N increases to a maximum (CN )max, then falls
rapidly to a saturation value 3NkB as T increases (kB is the
Boltzmann constant). These features are qualitatively similar
to those of a trapped noninteracting condensate [3,5]. However,
for an attractive condensate, there are important changes
in the nature. This is due to the fact that the number of
available energy levels of the system is limited, especially
when N → Ncr , while for any N there are infinitely many
energy levels for the repulsive or noninteracting condensate. In
the limit of high T , both the repulsive and the noninteracting
condensate behave as the corresponding trapped Bose gas,
resulting in a saturation in CN (T ). On the other hand, an
attractive condensate also shows similar behavior, but only
if it is allowed to absorb energy internally through rotational
motion involving large orbital angular momenta.

We provide an understanding of this peculiar nature based
on the many-body picture. For the theoretical calculation, we
adopt the correlated potential harmonics (CPH) method [6,7]
to approximately solve the many-body problem. This tech-
nique is based on the potential harmonics (PH) expansion
method [8]. The laboratory BEC must be very dilute to pre-
clude three-body collisions, which lead to molecule formation
and consequent depletion. Hence, only two-body correlations
are relevant. The PH is a subset [8] of the full hyperspherical
harmonics (HH) basis [9] that involves only two-body cor-
relations. Hence, the PH basis is a good approximation for
expanding the condensate wave function. It reduces the bulk
of the numerical procedure immensely, while retaining the
most important basic features of the condensate. However, the
leading members of the PH basis do not have the correct short
separation behavior of the interacting Faddeev component.
This causes a very slow rate of convergence of the PH
expansion basis. To correct for this, we include a short-range
correlation function in the expansion basis. This correlation
function is obtained as the zero-energy solution of the two-
body Schrödinger equation [7]. It is a correct representation of
the short separation behavior and also incorporates the s-wave
scattering length as through its asymptotic behavior [3]. This
technique has been shown to reproduce known results, both
experimental and theoretical [10]. These include the following:
ground-state properties (energy, wave function, condensate
size, one-body density, pair-correlation, etc.) as also multipolar
moments of both repulsive and attractive condensates, correct
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prediction of the critical number and collapse scenario of
attractive condensates, thermodynamic properties of repulsive
condensates, properties of condensates in finite traps, etc.

We can understand the behavior of the heat capacity of
attractive condensates in terms of the energy levels of the
system produced by the CPH method. This method generates
an effective potential in which the condensate moves. For an
attractive condensate, the effective potential has a metastable
region (MSR) separated from a deep well on the inner
side by an intermediate finite barrier. A finite number of
energy levels are supported by the MSR. As the number
N of atoms increases, the MSR shrinks and the number of
energy levels reduces drastically. As temperature increases,
particles are distributed in higher energy levels, according
to the Bose distribution formula. Thus, at low temperatures,
the internal energy and CN (T ) increase with temperature. At
higher temperatures, the bosons have fewer levels to occupy,
causing CN (T ) to differ from the repulsive case. There is also
a dominant effect of the drastically reducing number of energy
levels as N → Ncr .

The paper is organized as follows. For easy readability and
to introduce our notations, we briefly review the correlated
potential harmonics method in Sec. II. Section III provides
our numerical procedure. Results and discussion are presented
in Sec. IV. Finally, we draw our conclusions in Sec. V.

II. CORRELATED POTENTIAL HARMONICS (CPH)
METHOD

We adopt the correlated potential harmonics method
[6,7] to solve the many-body problem of the BEC. We briefly
recapitulate the technique in the following. Interested readers
can find details in the cited references.

For the relative motion of a system of N identical spinless
bosons, we introduce (N − 1) Jacobi vectors

�ζi =
√

2i

i + 1

⎛
⎝�xi+1 − 1

i

i∑
j=1

�xj

⎞
⎠ (i = 1, . . . ,N − 1), (1)

where �xi is the position vector of the ith particle. The
Schrödinger equation governing the relative motion of the
system trapped in a harmonic well is[

−h̄2

m

N∑
i=1

∇2
�ζi

+ Vtrap(�ζ1, . . . ,�ζN ) + V (�ζ1, . . . ,�ζN ) − ER

]

×ψ(�ζ1, . . . ,�ζN ) = 0, (2)

where N = N − 1, and the trapping potential Vtrap and
interatomic interaction V are expressed in terms of the Jacobi
vectors. The energy of the relative motion is ER . Next, we
introduce hyperspherical variables corresponding to the set of
N Jacobi vectors. First, a hyperradius is defined as

r =
[ N∑

i=1

ζ 2
i

] 1
2

. (3)

The remaining set of (3N − 1) “hyperangles” consists of
2N polar angles of N Jacobi vectors and (N − 1) angles
defining their relative lengths [9]. In the hyperspherical
harmonics expansion method (HHEM), ψ is expanded in the

complete set of hyperspherical harmonics (HH), which are the
eigenfunctions of the grand orbital operator [hyperangular part
of the N dimensional Laplace operator, given by the sum in
the first term of Eq. (2)] [9]. The substitution of this in Eq. (2)
and the projection on a particular HH result in a set of coupled
differential equations. The imposition of symmetry of the wave
function and the calculation of the matrix elements become
increasingly difficult and tedious as N increases. In addition,
the degeneracy of the HH basis increases very rapidly [9] with
the increase in the grand orbital quantum number K . Hence,
a convergent calculation using the HHEM with the full HH
basis is extremely computer intensive and unmanageable for
N > 3. This is the price one pays for keeping all many-body
correlations in ψ .

However, all of these complications can be avoided and
a much simpler computational procedure can be formulated
for the laboratory BEC, which is designed to be extremely
dilute (the typical number density is ∼1015 cm−3) in order
to avoid recombination through three-body collisions. Thus,
three-body correlations and three-body forces are totally
negligible. We can then express ψ as a sum of the two-body
Faddeev component ψij for the (ij )-interacting pair [8],

ψ =
N∑

i,j>i

ψij (�rij ,r). (4)

Note that the assumption of two-body correlations makes ψij

a function of the pair-separation vector and the hyperradius
only. One can then expand ψij in a subset of HH, called the
potential harmonics (PH) subset, which is sufficient for the
expansion of the interaction potential V (�rij ) as a function in
the hyperangular space for the (ij ) partition. Since the labeling
of the particles is arbitrary, we can choose �rij = �ζN . Then,
the corresponding PH, P lm

2K+l(�
ij

N ) [the argument is the full
set of hyperangles for the (ij ) partition], is independent of
{�ζ1, . . . ,�ζN−1} and a simple analytic expression is possible [8].
Expansion of the Faddeev component in the PH basis reads

ψij (�rij ,r) = r− (3N−1)
2

∑
K

P lm
2K+l

(
�

ij

N
)
ul

K (r), (5)

whereP lm
2K+l(�

ij

N ) is a potential harmonic [8]. The r-dependent
factor in front is included to remove the first derivative with
respect to r . Substitution of this expansion in the Faddeev
equation for the (ij ) partition,

(T + Vtrap − ER)ψij = −V (rij )
N∑

k,l>k

ψkl (6)

(where T = − h̄2

m

∑N
i=1 ∇2

�ζi

), and projection on the PH corre-
sponding to the (ij ) partition, give a set of coupled differential
equations in r . Note that any realistic two-body potential V (�rij )
can be used. A realistic interatomic potential has a very strong
repulsion (arising from the nucleus-nucleus repulsion) at very
short separations. Consequently, the corresponding ψij must
be vanishingly small for small values of rij . But the leading
PH (corresponding to K = 0) in the expansion in Eq. (5) is a
constant and does not have this behavior. Hence, convergence
of the expansion in Eq. (5) will be very slow. To improve
the rate of convergence, we include a short-range correlation
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function η(�rij ) in the expansion basis, so that Eq. (5) is replaced
by

ψij (�rij ,r) = r− (3N−1)
2

∑
K

P lm
2K+l

(
�

ij

N
)
ul

K (r)η(�rij ). (7)

The short-range correlation function is chosen to have the
expected behavior of ψij (�rij ,r) for small rij in the following
manner. The small rij behavior of ψij will be that of a
zero-energy pair interacting via V (�rij ), since the energy of
the interacting pair is practically zero. We obtain η(�rij ) by
solving the zero-energy two-body Schrödinger equation

−h̄2

m

1

r2
ij

d

drij

[
r2
ij

dη(rij )

drij

]
+ V (rij )η(rij ) = 0. (8)

Inclusion of the short-range correlation function η(�rij ) en-
hances the rate of convergence greatly, which has been checked
in our numerical calculation.

The laboratory BEC is very dilute; hence, the average
separation of the atoms is very large compared with the range
of interatomic interactions. Moreover, the atoms scatter with
almost zero energy. Hence, the effective two-body interaction
is represented by the s-wave scattering length as . In our
calculation, we take V (�rij ) to be the van der Waals potential
with a hard core: V (�rij ) = − C6

rij
6 for rij � rc, and V (�rij ) = ∞

for rij < rc. The correlation function obtained by solving
Eq. (8) quickly attains its asymptotic form C(1 − as

rij
) for large

rij . The asymptotic normalization is chosen to make the wave
function positive at large rij . The hard-core radius rc is adjusted
so that the calculated as is the actual experimental value of the
scattering length [3]. This procedure assures that the realistic
two-body interaction appropriate for the condensate has been
incorporated.

Substitution of the expansion given by Eq. (7) into Eq. (6),
and projection on the PH corresponding to the (ij ) partition,
result in

{
−h̄2

m

d2

dr2
+ h̄2

mr2
[L(L + 1) + 4K(K + α + β + 1)] + Vtrap(r) − ER

}
UKl(r) +

∑
K ′

fKlVKK ′ (r)fK ′lUK ′l(r) = 0, (9)

where UKl(r) = fKlu
l
K (r), L = l + 3N−6

2 , α = 3N−8
2 , and β = l + 1

2 , with l being the orbital angular momentum contributed
by the interacting pair. f 2

Kl is a constant representing the overlap of the PH for the interacting partition with the full set of all
partitions, which can be found in Ref. [8]. The correlated potential matrix element VKK ′ (r) is given by [7]

VKK ′ (r) = (hαβ

K h
αβ

K ′ )−
1
2

∫ +1

−1

[
P

αβ

K (z)V

(
r

√
1 + z

2

)
P

αβ

K ′ (z)η

(
r

√
1 + z

2

)
Wl(z)

]
dz. (10)

Here, h
αβ

K and Wl(z) are, respectively, the norm and weight
function [11] of the Jacobi polynomial P

αβ

K (z). Note that the
inclusion of the short-range correlation function η(rij ) makes
the PH basis nonorthogonal. The numerical solution of Eq. (8)
shows that η(rij ) differs from a constant value only in a small
interval of small rij values. Hence, the dependence of the
overlap, 〈P lm

2K+l(�
(ij )
N )|P lm

2K+l(�
(kl)
N )η(rkl)〉, on the hyperradius

r is quite small. By disregarding the derivatives of this overlap
with respect to the hyperradius, we get approximately Eq. (9),
with VKK ′ (r) given by Eq. (10). The effect of the overlap being
different from unity is represented by the asymptotic constant
C of η(rij ). The emerging physical picture is as follows: the
effective interaction between pairs of atoms at very low energy
becomes V (rij )η(rij ). This is justified, since at very low kinetic
energy, the atoms have a very large de Broglie wavelength
and do not approach each other close enough to “see” the
actual interatomic interaction. In the limit of zero energy,
the scattering cross section becomes 4π |as |2 and the effective
interaction is governed by the s-wave scattering length as ,
through the asymptotic form of η(rij ).

The introduction of the PH basis and the inclusion of
the short-range correlation function, referred to as the cor-
related potential harmonics (CPH) method, simplifies the
many-body problem dramatically. A fairly fast computer
code can solve Eq. (9) with up to 15 000 particles in the
condensate. This technique has been tested against known
results, i.e., both experimental and theoretical ones calculated

by other authors, for repulsive as well as attractive condensates
[6,7,10].

III. NUMERICAL PROCEDURE

A. Solution of coupled equations

Although Eq. (9) can be solved by an exact numerical tech-
nique using the Numerov method, we adopt the hyperspherical
adiabatic approximation (HAA) [12], which, apart from
simplifying the computations greatly, provides an effective
potential in the hyperradial space in which the condensate
moves. This effective condensate potential provides a physical
picture for the internal mechanism of the condensate.

In the HAA, one assumes that the hyperangular motion
is much faster than the hyperradial motion, since the latter
corresponds to the breathing mode. Therefore, one can solve
the former adiabatically for a fixed value of r and obtain the
solution as an effective potential for the hyperradial motion,
as in the Born-Oppenheimer approximation. The hyperangular
motion is solved by diagonalizing the potential matrix VKK ′ (r)
together with the hypercentrifugal potential [second term of
Eq. (9)]. The lowest eigenvalue ω0(r) [with the corresponding
eigen column vector being χK0(r)] is the effective potential
for the hyperradial motion [12],[

−h̄2

m

d2

dr2
+ ω0(r) +

∑
K

|χK0(r)

dr
|2 − ER

]
ζ0(r) = 0. (11)
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The third term is an overbinding correction. Equation (11)
is solved by the Runga-Kutta method, subject to appropriate
boundary conditions to get ER and the hyperradial wave
function ζ0(r). The many-body wave function can be con-
structed in terms of ζ0(r) and χK0(r) [12]. The total energy
is obtained by adding the center-of-mass energy (1.5 o.u.)
to ER . Energy levels Enl are characterized by the quantum
numbers (n,l), where n represents the excitation quantum
number for a given orbital angular momentum l. The HAA
has been tested for nuclear, atomic, and molecular systems
and has been shown to give better than 1% accuracy, even for
the long-range Coulomb potential [13]. In our case, the van der
Waals potential has a shorter range and the HAA is expected
to be better. Moreover, in a BEC, the dominant confining
harmonic-oscillator potential is smooth and the corresponding
hyperradial equation is completely decoupled. Hence, in a
BEC, the HAA is expected to be far better. We tested this by
solving the coupled differential equations, given by Eq. (9),
with the interatomic potential for the ground state using the
renormalized Numerov method [14,15], which is an exact nu-
merical algorithm for solving a set of coupled differential equa-
tions. The calculated exact ground-state energies are (in o.u.)
948.6420,1174.5284,1277.8219,1460.3706, and 1596.2611,
respectively, for N = 700,900,1000,1200, and 1400. These
compare very well with the following corresponding
HAA results: 948.0986,1173.9809,1277.2040,1459.6373,
and 1595.8163, respectively. The error is less than 0.06% in
all cases. Thus, we can safely use the HAA, which reduces the
numerical complications to a great extent.

B. Calculation of specific heat

At a temperature T > 0, bosons are distributed in avail-
able energy levels Enl according to the Bose distribution

function

f (Enl) = 1

eβ(Enl−μ) − 1
, (12)

where β = 1/kBT and μ is the chemical potential. The latter
is determined from the constraint that the total number of
particles is N . Clearly, μ has a temperature dependence.
The total number of bosons in the trap is fixed and, at any
temperature, it can be written as

N =
∞∑

n=0

∞∑
l=0

(2l + 1)f (Enl). (13)

At a particular temperature T , μ is determined from the
constraint given by Eq. (13). The total energy of the system at
T is given by

E(N,T ) =
∞∑

n=0

∞∑
l=0

(2l + 1)f (Enl)Enl. (14)

The specific heat at fixed particle number N is calculated using
the relation

CN (T ) = ∂E(N,T )

∂T

∣∣∣
N
. (15)

By using (12), (14), and (15), one can obtain the heat capacity
as

CN (T ) = β

∞∑
n=0

∞∑
ln=0

(2ln + 1)Enln exp [β(Enln − μ)]{
exp

[
β
(
Enln − μ

)] − 1
}2

×
[
Enln − μ

T
+ ∂μ

∂T

]
, (16)

where

∂μ

∂T
= −

∑∞
m=0

∑∞
lm=0(2lm + 1)(Emlm − μ) exp

[
β
(
Emlm − μ

)][
f

(
Emlm

)]2

T
∑∞

p=0

∑∞
lp=0(2lp + 1) exp

[
β
(
Eplp − μ

)][
f

(
Eplp

)]2 . (17)

For an ideal noninteracting bosonic gas containing N bosons
in a three-dimensional isotropic harmonic well, the critical
temperature T 0

c is well defined [2]. μ remains equal to the
energy of the single-particle ground state for T < T 0

c and
starts decreasing rapidly for T > T 0

c . In the standard textbook
treatment [1], the sums in Eqs. (13) and (14) are replaced
in the semiclassical approximation by integrals over energy,
assuming a continuous energy spectrum. In a harmonic trap,
the energy spectrum is discrete and this assumption is not valid,
particularly for small N at low energies. A correct treatment [5]
shows that μdecreases slowly from its maximum value (equal
to the ground-state energy) as T increases from zero, with
the rate of decrease becoming suddenly rapid at some tem-
perature close to the reference temperature T 0

c corresponding
to the same value of N [4]. Thus, in this case, the critical
temperature is not well defined. In the correct treatment, the
heat capacity also becomes a smooth function of T , attaining
a maximum at a temperature at which μ suddenly becomes

a rapidly decreasing function of T . In the limit of large N ,
the behaviors of the μ(T ) and CN (T ) curves approach those
of the textbook treatment. The transition temperature Tc for a
finite interacting system is defined as the temperature at which
CN (T ) is a maximum [5],

∂CN (T )

∂T

∣∣∣∣
Tc

= 0. (18)

For the numerical calculation for a chosen particle number
N , the CPH equations are solved for a large number of energy
levels—typically n running from 0 to 300, and l running from
0 to 200, subject to an upper energy-cutoff value EUL (see
below), so that Enl < EUL. By using previously calculated
values of Enl , Eq. (13) is solved for μ, at a chosen temperature
T , by a modified bisection method. Next, EUL is increased and
the process is repeated, until convergence in μ is achieved.
Using this upper energy cutoff, CN (T ) is determined using
Eq. (16).
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IV. RESULTS AND DISCUSSIONS

We consider the attractive condensate of 7Li atoms in the
trap used in the experiment at Rice University [16]. The
harmonic trap that was used was axially symmetric with
νx = νy = 163 and νz = 117 Hz. For simplicity, we consider
an isotropic trap with ν = (νxνyνz)

1
3 . The experimental value

of as is −27.3 o.u. We use oscillator units (o.u.) of length

(
√

h̄
mω

) and energy (h̄ω). As mentioned earlier, we choose the
van der Waals (vdW) potential for the interatomic interaction,
with known value [3] of C6 = 1.715 × 10−12 o.u. The value of
rc is obtained by the procedure discussed following Eq. (8), so
that calculated as has the experimental value [3]. Its numerical
value is 5.338 × 10−4 o.u. The calculated effective potential
ω0(r) is plotted as a function of r in Fig. 1 for N = 1300. In
the r → 0 limit, ω0(r) becomes strongly repulsive, due to the
repulsive core of the vdW potential and the hypercentrifugal
repulsion of Eq. (9). As r increases, there is a deep narrow well
(DNW) arising from the strong interatomic attraction at small
values of r . This attraction is proportional to the number of
pairs and hence increases rapidly as N increases. For still
larger r , the effects of the kinetic pressure (including the
centrifugal repulsion), interatomic attraction, and harmonic
confinement together produce a metastable region (MSR).
An intermediate barrier (IB) appears between the DNW and
MSR. The DNW is very deep and narrow, hence it is shown
as an inset in Fig. 1 (note the large changes in scale for
both horizontal and vertical axes). As N increases, the DNW
becomes deeper, the IB becomes shallower, and the minimum
of the MSR becomes higher. At the critical value Ncr , the
maximum of IB and the minimum of MSR merge to form a
point of inflexion and the MSR disappears. At this point, the
condensate falls into the DNW, resulting in a collapse of the
condensate and the formation of clusters within the DNW. Our
calculated value of Ncr is 1430. In panels (a)–(f) of Fig. 2, we
demonstrate how the MSR shrinks, with N approaching Ncr ,
for N = 500,1300,1400,1410,1420, and 1426, respectively.
From Fig. 2, one notices that both the depth and width of MSR
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FIG. 1. (Color online) Calculated effective potential ω0(r) against
r in oscillator units for the attractive 7Li condensate with N = 1300.
The narrow and deep well near the origin is shown in the inset (note
that different scales are used).
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FIG. 2. (Color online) Plot of effective potential ω0(r) against r

(both in appropriate o.u.) for the attractive 7Li condensate with N =
(a) 500, (b) 1300, (c) 1400, (d) 1410, (e) 1420, and (f) 1426, showing
how the MSR shrinks in depth and width. Note that different scales
have been used in different panels to bring out the features of the
MSR as N → Ncr .

decrease as N increases toward Ncr . Hence, the number of
bound energy levels supported by the MSR decreases rapidly
with N (see also Fig. 7).

However, the effective potentials shown in Figs. 1 and 2
are obtained for l = 0. For higher l, the effective potential
has a higher IB, arising from the l-dependent terms of the
hypercentrifugal repulsion [see Eq. (9)]. Thus, the position
of the MSR rises higher in energy as l increases, as can be
seen in Fig. 3 for l = 0,1,2,3,4 for a condensate containing
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FIG. 3. (Color online) Plot of effective potential ωl(r) against
r (both in appropriate o.u.) for the attractive 7Li condensate with
N = 1420 atoms, corresponding to l = 0,1,2,3,4. The curves show
how the IB increases as l increases.
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1420 atoms. Hence, particles with l > 0 can attain higher
energy levels. The inclusion of these levels will have a
profound effect on the heat capacity. If such energy states were
ignored (i.e., only the energy levels supported by the l = 0
MSR considered), the heat capacity would reduce drastically
and Tc would increase indefinitely as N → Ncr , since all
the atoms would be forced into the few remaining energy
levels available for internal excitation. In our calculation, we
have retained all energy levels supported by a given l. A
question arises as to whether the metastable condensate can
have large l values. Intuition indicates that with an increase of
temperature, the system can absorb energy only by increasing
its rotational kinetic energy, thereby increasing the stability
of the metastable system with enhanced centrifugal repulsion.
The increase of the kinetic energy due to faster linear motion
alone would cause the system to fall in the DNW near the
center of the condensate. Compared with the noninteracting
or repulsive condensates, the attractive condensate has a clear
distinction, viz., while the number of hyperradial excitations
for a given l in the former is not limited, it is drastically
limited in the latter. Thus, for an attractive condensate, there
are fewer energy states in which the system can reside. This
causes (CN )max to increase initially for N 
 Ncr (when energy
levels are not greatly restricted), but as N → Ncr , it starts
decreasing after attaining a maximum. Figure 4 shows how
CN (T ) depends on T , for selected values of N . It is seen that
the transition temperature Tc increases gradually with N , but
(CN )max increases up to N = 1300, and for larger N , it starts
decreasing. When N 
 Ncr , the nature is similar to that of a
repulsive condensate [4], since, in this case, the number of
available energy levels are still large enough (the topmost
energy level, including l �= 0, in the MSR has an energy
much greater than kBT ) so that the topmost levels are still
practically unoccupied and there is scope for further internal
excitation as T increases. Consequently, Tc increases gradually
with N , as in the repulsive case. As N approaches Ncr , the
number of energy levels supported by the MSR decreases
rapidly, and there is less scope for absorbing energy internally
as T increases. Hence, (CN )max decreases and Tc increases
faster, as N increases towards Ncr . At higher temperatures,
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FIG. 4. (Color online) Plot of heat capacity CN (T )/(NkB ) (di-
mensionless) against T (in nK) for indicated number of 7Li atoms in
the metastable condensate.
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FIG. 5. (Color online) Plot of the peak heat capacity
(CN )max/(NkB ) (dimensionless) against the number N of bosons in
the attractive 7Li condensate.

higher l states are excited, which push atoms further outwards,
increasing the average interatomic separation. Consequently,
the system behaves ultimately as a noninteracting Bose gas.
Thus, the asymptotic value of CN (T ) becomes 3NkB . In Fig. 4,
we plot the dimensionless quantity CN (T )/(NkB) against T (in
nK) for the 7Li condensate with N = 500,1000,1300,1350,
and 1400. The features discussed above are clearly visible.
One notices that the behavior for N < 1300 is similar to
that of a repulsive condensate, but as N exceeds 1300, the
curves become flatter near their maxima and the peak value
of CN (T )/(NkB), namely, (CN )max/(NkB), decreases fairly
rapidly as N → Ncr . All the curves appear to converge to the
Bose gas limit. But a closer scrutiny shows that the curves
for N = 1350 and 1400 show a slight downward trend. This
is due to a limitation in the higher energy cutoff used in our
calculation. In Fig. 5, we plot calculated (CN )max/(NkB) as a
function of N . It is seen that this quantity increases gradually
up to N = 1300. Beyond this value, (CN )max/(NkB) decreases
fairly rapidly as N → Ncr . A plot of transition temperature
Tc (in nK) as a function of N is shown in Fig. 6. Initially,
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FIG. 6. (Color online) Plot of transition temperature (in nK) vs
N for the attractive 7Li condensate.
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energy levels vs N , close to Ncr for the attractive 7Li condensate.

Tc increases linearly for N < 1300. As discussed above, this
behavior is expected for small N , as in the case of a repulsive
condensate. But for N > 1300, Tc increases rapidly. Both
the decrease of (CN )max and faster increase of Tc are due to
the reduction in the number of available energy levels as N

approaches Ncr . We demonstrate this in Fig. 7 for the l = 0
energy levels as N increases from 1200 to Ncr . The decrease in
the number of available energy levels forces a larger fraction
of the bosons to be in the ground state as T increases [see
Eq. (13)]. This causes a decrease of (CN )max and an increase
of Tc, as N → Ncr .

A possible scenario of the attractive condensate as its
temperature is gradually increased is the following. The
standard definition of critical number Ncr referred to in
the literature corresponds to the l = 0 condensate at zero
temperature. As T is gradually increased, the system absorbs
energy by occupying higher available energy levels up to the
top of the MSR. However, there is a finite lifetime of atoms in
higher energy levels due to tunneling through the IB into the
DNW. Thus there will be a decrease in the number of atoms
in the MSR. The rate of loss of atoms will increase with the
energy of the level, as also with N (increase of N will lower the
IB). The usual definition of heat capacity, CN (T ), is the rate
of change of internal energy with respect to T [Eq. (15)] for
a fixed number N of atoms in the condensate. This definition
is unambiguous for a repulsive or noninteracting condensate,
since in these cases there is no loss. However, since the loss
is appreciable for an attractive condensate for N close to
Ncr , or if T is such that kBT is comparable with the highest
excitation energy allowed by the IB, this definition demands
that atoms be pumped into the condensate at the same rate
as the loss rate from the condensate. Such an experimental
procedure has not been adopted yet. However, for N 
 Ncr

and T 
 Tc, the highest appreciably occupied levels will have
negligible tunneling probability into the DNW. Under these
conditions, the metastable attractive condensate is fairly long
lived and the standard definition of CN (T ) is acceptable.
Hence, standard experimental techniques can be adopted.
Thus, our results presented in Figs. 4–6 are experimentally
verifiable in the small N , small T limit. We have presented, for

theoretical completeness, results for N close to Ncr and for T

beyond Tc. The question of how the system can absorb energy
internally for such values of N and T was already discussed
above.

V. CONCLUSIONS

In this work, we report a detailed calculation of the heat
capacity CN (T ) of an attractive Bose-Einstein condensate
containing N atoms of 7Li. The correlated potential harmonics
method, which is appropriate for the dilute BEC, has been used.
The effective potential, in general, supports a large number of
energy levels. At T = 0, the lowest energy level accommo-
dates all the bosons. As the temperature increases, particles
are distributed in higher energy levels, according to the Bose
distribution formula. Thus, the internal energy of the system
increases. Heat capacity CN for a fixed number N of particles
in the condensate is defined as the temperature derivative of the
total internal energy. For a repulsive condensate trapped by an
ideal harmonic oscillator, the effective potential has no upper
cutoff. Hence, the energy levels are not limited in energy.
Consequently, total internal energy and CN increase as the
temperature increases up to Tc. For T > Tc, the ground-state
occupation becomes suddenly microscopic (negligible) and
the system behaves like a harmonically trapped Bose gas.
Hence, CN decreases rapidly above Tc, reaching its asymptotic
value of 3NkB . Thus, CN first increases, reaches a maximum
value (CN )max, and then decreases rapidly to its asymptotic
value as T increases from zero.

For N < Ncr bosons with mutual attraction, a metastable
condensate is formed in the metastable region (MSR) of the
effective potential. On the left of the MSR, an intermediate
barrier (IB), followed by a deep narrow well, and, finally, a
strongly repulsive core, appear as one approaches the center
of the condensate. For N 
 Ncr , the IB is very high and the
minimum of the MSR is very low, so that the metastable well
is sufficiently deep compared with thermal excitation energy
kBTc at Tc, and a large number of energy levels are supported.
Hence, for T � Tc, even the most thermally excited particles
do not feel the effect of the IB and CN increases gradually, as
in the repulsive case.

With an increase of temperature, the system with a fixed
N absorbs energy internally by increasing the occupation
probability of higher energy levels supported by the metastable
region of the effective potential. Atoms in energy levels close
to the top of the intermediate barrier have an appreciable prob-
ability to tunnel into the deep narrow well, causing the
condensate to lose atoms. But such levels are not occupied
with any appreciable probability if N 
 Ncr and T 
 Tc.
Hence, such a condensate is quasistable, and CN (T ) calculated
for a fixed N is appropriate. When the rate of atom loss
from the condensate is appreciable, the standard definition
of heat capacity at constant N requires feeding the attractive
condensate with additional atoms at a rate so as to compensate
for the loss rate. Although this is not the usual experimental
technique, we investigate such cases for a complete theoretical
study. In such a situation, there are drastic changes. The
peak value of CN (T ) (the temperature at which this occurs
is the transition temperature Tc) initially increases gradually
with N , then, after reaching a maximum, decreases fairly
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rapidly near Ncr . On the other hand, for small N , Tc

increases almost linearly up to N ∼ 1300. For larger N , the
transition temperature increases rapidly with N . We provide
an explanation of this behavior based on the microscopic
mechanism of absorption of internal energy as T increases.
As N increases towards Ncr , the depth and width of the
metastable well decrease rapidly. As a result, the number
of energy levels supported by the metastable well decreases
rapidly. This tends to increase Tc, since fewer energy levels
are available for absorption of internal energy, and bosons
are forced to be in lower energy levels as T increases. The
rapid reduction of available energy levels as N → Ncr causes
quicker saturation of the internal energy of the condensate.

Consequently, the maximum of CN (T ) decreases rapidly as
N → Ncr .
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