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Quantized vortices in a rotating Bose-Einstein condensate with
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We present theoretical analysis and numerical studies of the quantized vortices in a rotating Bose-Einstein
condensate with spatiotemporally modulated interaction in harmonic and anharmonic potentials, respectively. The
exact quantized vortex and giant vortex solutions are constructed explicitly by similarity transformation. Their
stability behavior has been examined by numerical simulation, which shows that a new series of stable vortex
states (defined by radial and angular quantum numbers) can be supported by the spatiotemporally modulated
interaction in this system. We find that there exist stable quantized vortices with large topological charges in
repulsive condensates with spatiotemporally modulated interaction. We also give an experimental protocol to
observe these vortex states in future experiments.
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I. INTRODUCTION

The investigation of rotating gases or liquids is a central
issue in the theory of superfluidity [1–4] since rotation can
lead to the formation of quantized vortices which order into a
vortex array, in close analogy with the behavior of superfluid
helium. Under conditions of rapid rotation, when the vortex
density becomes large, atomic Bose gases offer the possibility
to explore the physics of quantized vortices in novel parameter
regimes. During recent years, there have been advances in
experimental discoveries [5–7] of rotating ultracold atomic
Bose gases, and these developments have been reviewed in [8].

Theoretical studies mainly make use of the mean-field
Gross-Pitaevskii (GP) equation to describe the main features of
the vortex states [9,10], and several predictions [10] have been
shown to agree with experiments [11]. Some of the important
studies were concerned with the equilibrium properties of
a single vortex, including its structures and dynamics [10],
the critical frequency, and the nonlinear dynamics of vortex
lattice formation [12]. A multiquantum vortex is typically
dynamically unstable in harmonically trapped BEC predicted
by several theoretical studies [13–15]. The splitting instability
in the case of multiquantum vortices shows that the vortex
will split into single quantum vortices even in the absence of
dissipation due to the peculiar feature of nonlinear dynamics
[16,17]. However, in the presence of a plug potential [18]
or an anharmonic trapping potential [19,20], various studies
have addressed different means to stabilize multiquantum
vortices in rotating BEC. For example, when the confining
potential is steeper than harmonic potential in the plane
perpendicular to the axis of rotation, multiquantum vortices
are energetically favorable if the interaction is weak enough.
For stronger interactions, the multiply quantized vortices break
up into arrays of several vortices. In addition, interestingly,
stable multiquantum vortices have also been found to exist
in two-component BEC [21], which can be adjusted near
Feshbach resonance through spatial inhomogeneous external
magnetic field B [i.e., B = B(x)].

Mathematically, the GP equation, to be written explicitly,
is an equation of nonlinear Schrödinger type [22–28]. This
equation has been studied extensively both in the physical
and mathematical literature, since they provide a universal

model for a study of the dynamics of the envelope waves.
One of the distinctive features of the equation as it appears
in BEC problems is the presence of an external trapping
potential, which essentially affects the elementary excitation
spectrum. Most properties of the BEC are significantly affected
by the interatomic interaction, which can be characterized by
the s-wave scattering length [29]. Recent experiments have
demonstrated that both amplitude and sign of the scattering
length can be modified by utilizing the Feshbach resonance
[30–32]. This technique provides a very promising method for
the manipulation of atomic matter waves and the nonlinear
excitations in BEC by tuning the interatomic interaction. By
using this technique, one can study atomic matter waves and
the nonlinear excitations in BEC for the case of the GP
equations with the time- and space-dependent nonlinearity
coefficients [23–26]. More recently, Yamazaki et al. [32]
demonstrated experimentally submicron spatial control of
interatomic interactions in a BEC of ytterbium successfully
by utilizing optical Feshbach resonance technique.

Motivated by stabilizing multiple vortex states and un-
derstanding the behavior of nonlinear excitation in physical
systems, we perform theoretical analysis and numerical studies
of the quantized vortices in a rotating BEC with spatiotem-
porally modulated interaction in harmonic and anharmonic
potentials, respectively. Compared with the former work on
quantized vortices, we find that a new series of exact single and
multiple vortex states (defined by radial and angular quantum
numbers) can be supported by the spatiotemporally modulated
interaction in a rotating BEC. In particular, our results have
provided a very promising method for stabilizing the vortex
having very large topological charge S � 2, which has been
conjectured unstable [33] by tuning the external potential and
nonlinear interaction simultaneously in time.

II. THE THEORETICAL MODEL AND EXACT
VORTEX SOLUTIONS

At zero temperature, the quantum and thermal fluctuations
are negligible so that a BEC trapped in an external potential
can be described by a “macroscopic wave function” �(r,t)
obeying the GP equation. In the rotating frame with rotating
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frequency �0 around the z axis, the GP equation in cylindrical
coordinate reads

ih̄
∂�

∂t
=

(
− h̄2

2m
∇2− h̄2

2m

∂2

∂z2
+Vext+G|�|2

)
� + ih̄�0

∂�

∂θ
,

where ∇2 = ∂2/∂x2 + ∂2/∂y2 = ∂2/∂r2 + 1/r∂/∂r +
1/r2∂2/∂θ2 with r2 = x2 + y2, m is the atom mass, θ is the
azimuthal angel, the wave function is normalized by the total
particle number N = ∫

dr|�|2, Vext is an external trapping
potential, and G = 4πh̄2a(r,t)/m represents the strength of
interatomic interaction characterized by the s-wave scattering
length a(r,t), which can be adjusted experimentally by an
inhomogeneous external magnetic field B = B(x,y,t) in
the vicinity of a Feshbach resonance [30,31]. The trapping
potential can be assumed to be Vext = m(ω2

r r
2 + ω2

zz
2)/2,

where ωr and ωz are the confinement frequencies in the radial
and axial directions, respectively, and in particular, the radial
confinement frequency ωr is assumed to be time dependent
as in [25,34]. In the following, we consider the atoms in the
|F = 1,mF = 1〉 hyperfine state of 7Li and |F = 1,mF = 1〉
hyperfine state of 87Rb trapped in a very thin disk-shaped
potential [i.e., the trapping potential in the radial direction is
much weaker than that in the axial direction as ωr (t)/ωz � 1],
such that the motion of atoms in the z direction is essentially
frozen to the ground state ϕ(z) of the axial harmonic trapping
potential.

Then we can separate the wave function as �(r,t) =
ψ(x,y,t)ϕ(z) to derive the two-dimensional (2D) GP equation,

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ+ m

2
ω2

r r
2ψ+Gη|ψ |2ψ + ih̄�0

∂ψ

∂θ
, (1)

with η = ∫
dz|ϕ(z)|4/∫ dz|ϕ(z)|2. Introducing the scales char-

acterizing the trapping potential, the length, time, and wave
function are scaled as

x = ahx̃,y = ahỹ,t = t̃/ωz,ψ = ψ̃/ah

√
4πa0η,

respectively, with ah = (h̄/mωz)1/2 and a0 is a constant length
chosen to measure the s-wave scattering length. After the
tilde is omitted, the 2D GP equation (1) is reduced to a
dimensionless form as

i
∂ψ

∂t
= −1

2
∇2ψ + V (r,t)ψ + g(r,t)|ψ |2ψ + i�

∂ψ

∂θ
, (2)

where the interaction strength g(r,t) = a(r,t)/a0, � = �0/ωz

and the radial trapping potential can be written as V (r,t) =
ω2(t)r2/2 with ω(t) = ωr (t)/ωz. In what follows, we consider
not only the harmonic potential like this but also an anharmonic
potential.

In order to find the exact vortex solutions to Eq. (2) with
spatiotemporally modulated interaction, we first assume its
exact solution as

ψ(r,θ,t) = eiSθ+iφ(r,t)ρ(r,t) U [R(r,t)], (3)

where S is the topological charge related to the angular
momentum of the condensate, ρ(r,t) denotes the amplitude of
wave function, and R(r,t) is an intermediate variable reflecting
the changes of the main wave function U . Substituting Eq. (3)
into (2) and furthermore, letting U [R(r,t)] satisfy

d2U/dR2 + μ0U + μ1U
3 = 0, (4)

where μ0 and μ1 are real constants, we can get
a set of partial differential equations (PDEs) about
ρ(r,t),R(r,t),φ(r,t),V (r,t), and g(r,t) as

Rt + φrRr = 0,

2 gρ2 + μ1 Rr
2 = 0,

ρ Rr + 2 rρrRr + rρ Rrr = 0, (5)

rρφrr + 2 rφrρr + ρφr + 2 rρt = 0,

ρrr

ρ
−2 φt−φr

2 − S2

r2
+ 2 �S + ρr

ρ r
−2 V − μ0Rr

2 = 0,

where subscripts r and t mean the derivative of function with
respect to r and t . If letting V (r,t) = ω(t)2r2/2 − μ0R

2
r /2

(μ0 = 0 corresponds to harmonic potential) and φ(r,t) =
f1r

2 + f2 (f1 and f2 are time-dependent functions, and f1

is frequency chirp and f2 is phase), then solving the set of
PDEs (5) we get

ρ(r,t) = e−2
∫
f1dt
(re−2

∫
f1dt ), (6)

and

R(r,t) =
∫ re−2

∫
f1dt

0
1/[
2(τ )τ ]dτ, (7)

and

g(r,t) = −μ1R
2
r /2ρ2, (8)

where μ1 is a parameter controlling the sign of interaction
parameter g(r,t), 
(τ ) is defined by Whittaker M and W
functions [35], that is, 
(τ ) = [c1M(λ1/4λ2,S/2,λ2τ

2) +
c2W (λ1/4λ2,S/2,λ2τ

2)]/τ, where λ1,λ2,c1,c2 are nonzero
constants and c1c2 > 0. In particular, the above f1 and f2

satisfy the following two ordinary differential equations:

2 �S − λ1e
−4

∫
f1dt − 2df2/dt = 0,

(9)
ω2(t) + 4 f 2

1 + 2 df1/dt − λ2
2e

−8
∫
f1dt = 0.

When the parameter μ0 = 0, the external potential is
just harmonic form V (r,t) = ω2(t)r2/2, and we get explicit
solution of Eq. (4) as U (R) = ν1cn(ν1 R + ν0,

√
2/2)/

√
μ1,

where ν0 and ν1 are arbitrary constants and μ1 > 0. So the
exact vortex solution to Eq. (2) is

ψ = ν1√
μ1

ρei(Sθ+f1r
2+f2) cn(ν1 R + ν0,

√
2/2), (10)

where functions ρ and R are given above. Here cn
and sn (below) are Jacobi elliptic functions. When
imposing the boundary conditions for vortex solution
as lim|r|→0 ψ(r,θ,t) = lim|r|→∞ ψ(r,θ,t) = 0, we can get
ν0 = K(

√
2/2),ν1 = 2nK(

√
2/2)/R(+∞,0), where K(s) =∫ π/2

0 [1 − s2 sin2 τ ]−1/2dτ is the first kind elliptic integral and
n is a nonnegative integer. In this case, since μ1 should be
positive and thus the interaction strength g(r,t) is negative
corresponding to the condensates consisting of 85Rb [36] or 7Li
atoms [37,38] experimentally. The structures of the interaction
parameter g(r,t) with respect to radial coordinate r and time t

are demonstrated in Fig. 1. It is observed that the interaction
parameter is inverse Gaussian in r and periodic in t .

When the parameter μ0 �= 0, the external potential becomes
V (r,t) = ω2(t)r2/2 − μ0R

2
r /2 (an anharmonic potential) as

053607-2



QUANTIZED VORTICES IN A ROTATING BOSE- . . . PHYSICAL REVIEW A 84, 053607 (2011)

FIG. 1. (Color online) The spatiotemporally dependent interac-
tion parameter g(r,t) in Eq. (8) for parameter � = 0.7, λ1 = 4, λ2 =
2, c1 = c2 = 1, S = 1, μ1 = 1000, and ω(t) = 0.028. (a) The radial
structure of g(r,t) at t = 0. (b) The spatiotemporal structure of g(r,t).
Here the unit of length is 1.51 μm and the unit of time is 0.25 ms.

shown in Fig. 2, where there is a convex hull in the
center of the harmonic potential, and the anharmonic po-
tential is periodic in time t . We get the exact solution of
Eq. (4) as U (R) =

√
2 (δ2 − μ0)/ μ1sn(δR,

√
μ0/δ2 − 1),

where μ0/2 < δ2 < μ0 and μ1 < 0. So the exact vortex
solution to Eq. (2) is

ψ =
√

2 (δ2 − μ0)

μ1
ρei(Sθ+f1r

2+f2)sn(δR,
√

μ0/δ2 − 1), (11)

where functions ρ and R are given above. When im-
posing the boundary conditions for vortex solution as
lim|r|→0 ψ(r,θ,t) = lim|r|→∞ ψ(r,θ,t) = 0, we can get δ =
2nK(

√
μ0/δ2 − 1)/R(∞,0). In this case, the parameter μ1

should be negative and thus the interaction strength g(r,t)
is positive corresponding to the condensates consisting of
87Rb [39] or 23Na atoms [40] experimentally.

Seen from the exact vortex solutions (10) and (11),
there exists two class of vortex states (distinguishing them
with two quantum numbers which are radial node n and
topological charge S, also called angular momentum quantum
number) corresponding to the harmonic potential (μ0 = 0)
and anharmonic potential (μ0 �= 0) in attractive and repulsive
BECs, respectively. In the following, we will first examine the

FIG. 2. (Color online) The shapes of the anharmonic potential
V (r,t) = ω2(t)r2/2 − μ0R

2
r /2. (a) The radial structures of the anhar-

monic potential at t = 0 with parameters S = 1, δ = 7.4 (dashed
line), and S = 5, δ = 1172.4 (solid line), respectively. (b) The
spatial structure of the anharmonic potential at t = 0 with parameter
S = 1, δ = 7.4. (c) The spatiotemporal structure of the anharmonic
potential with parameter S = 1, δ = 7.4. The unit of time is
0.25 ms and the unit of length is 0.43 μm for the 87Rb atom. The other
parameters are � = 0.7, λ1 = 4, λ2 = 2, c1 = c2 = 1, μ0 = 62.2,
and ω(t) = 0.028.

structures of these exact vortex solutions and then study the
dynamic properties and stability of these vortex states under
different situations.

III. STRUCTURES OF VORTEX STATES

The structures of the exact vortex solutions (10) and
(11) can be controlled by modulating the frequency of the
trapping potential and the spatiotemporal inhomogeneous
s-wave scattering length as seen from Eq. (9). Taking into
account the feasibility of the experiment, we only consider the
case of harmonic potential (μ0 = 0) which corresponds to the
attractive BEC as explained above.

In real experiment, we assume an attractive 7Li condensate
in the internal atomic state |F = 1,mF = 1〉 [37,38] trapped
in an axis-symmetric disk-shaped potential, where the axial
confinement energy h̄ωz is much larger than the radial
confinement and interaction energies, and the radial frequency
of the trap is time dependent which can be written as

ω(t) = ωr (t)/ωz = ω0 + ε cos(ω1t), (12)

with 0 � ε < ω0. For ε = 0, the radial frequency of the trap
is time ndependent and here, we choose the time-independent
part of radial frequency ωr = (2π ) × 18 Hz and axial fre-
quency ωz = (2π ) × 628 Hz as in [41], so ω(t) = ω0 = 0.028.

As shown in Fig. 3, we demonstrate the density distributions
for different radial quantum number n with fixed topological
charge S = 1 at t = 0, which is based on the exact vortex
solution (10). Figure 3(a) corresponding to n = 1 is a lowest

n=4n=3

n=1 n=2

FIG. 3. (Color online) (a)–(d) The density distributions
|ψ(x,y,0)|2 (at t = 0), and the corresponding radial wave profiles
(bottom) for the vortex solution (10) of the attractive rotating BEC
for topological charge S = 1 and various radial quantum numbers.
The parameters are � = 0.7, μ1 = 1000, λ1 = 4, λ2 = 2, c1 = c2 =
1, ε = 0, and ω0 = 0.028. Here the unit of length is 1.51 μm for 7Li
atom.
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FIG. 4. (Color online) The radial structures of the density
distributions and phase diagrams for the vortex solution (10) of
the attractive rotating BEC with radial quantum number n = 1 and
different topological charges at t = 0, where the unit of length is
1.51 μm for 7Li atom. The insets are the corresponding phase
diagrams and the other parameters are the same as Fig. 3.

energy state and Figs. 3(b)–3(d) corresponding to n = 2,3,4
are three excited states. In Fig. 3(e), we show the radial wave
profiles of the exact vortex solution (10) at t = 0. It is clear
to see that the number of ring structure of vortex solution
increases by one with changing the radial quantum number n

by one, which is similar to the quantum states of harmonic
oscillator.

One of the interesting properties for the exact vortex solu-
tion (10) is shown in Fig. 4 by choosing different topological
charge S with fixed radial quantum number n = 1. We can see
that the density profiles of the vortex states become more and
more localized with increasing the topological charge S due to
the larger angular momentum for the higher topological charge
S. Moreover, vortex expands outward with the increasing of
the topological charges and so will obtain the larger angular
momentum.

Another interesting aspect of the condensate is to study
the monopole moment [34,42] defined by 〈r〉 = ∫

r|ψ |2dr

which can be directly compared with experiments in BEC.
In Fig. 5, we show the time evolution of the monopole
moment for different oscillation frequencies ω1, amplitude
ε in (12), and different radial quantum numbers n = 1, 2 with
fixed topological charge S = 1. It is seen that the monopole
moment represents regular oscillation following the oscillating
frequency of the trap when ω1 is large, but irregular oscillation
when ω1 is small which can be observed experimentally.
The amplitude and center position of oscillation of monopole
moment for the case n = 2 are a little larger than that for
the case n = 1, but their periods are the same. In particular,
at ε = 0 (i.e., time-independent trapping potential), the os-
cillation of the monopole moment is only determined by the
spatiotemporally nonlinear interaction which also represents
regular behavior in our studied case. These phenomena connect
to the resonance of certain collective modes in the system. It
is seen that the interaction parameter g(r,t) varies periodically
in time from Fig. 1, and the frequency of the external potential
can be modulated periodically as ω(t) = ω0 + ε cos(ω1t).
Therefore, the oscillating behavior of the monopole moment
is the result of tuning interaction parameter and frequency of
the external potential.

FIG. 5. (Color online) Time evolution of the monopole moment
〈r〉 in the attractive rotating BEC for different frequencies of the
harmonic potential. (a) The radial quantum number is n = 1 and
(b) n = 2. In both figures, the topological charge is S = 1, the
frequency of the trap is ω(t) = ω0 + ε cos(ω1t) with parameters
� = 0.7, ω0 = 0.028, λ1 = 4, λ2 = 2, μ1 = 1000, c1 = c2 = 1, and
the unit of time is 0.25 ms.

IV. STABILITY ANALYSIS

It has been shown that attractive Bose condensates like
85Rb and 7Li become mechanically unstable and collec-
tively collapse [30,31,38] when the number of atoms in the
condensate exceeds critical value Nc. So it is important to
produce the stable states in attractive Bose condensates. Saito
and Ueda [34] have demonstrated that a matter-wave bright
soliton can be stabilized in 2D free space by causing the
strength of interactions to oscillate rapidly between repulsive
and attractive by using, for example, Feshbach resonance
[30,31]. In previous work, we [24] have found an exact
stable localized nonlinear matter wave in quasi-2D BEC with
spatially modulated nonlinearity in harmonic potential. In this
section, we investigate the dynamical stability of the exact
vortex solutions (10) and (11) by numerical simulation of
Eq. (2). We show that only some types of the stable vortices
(defined by radial and angular quantum numbers) can be
supported by the spatiotemporally modulated interaction in
this system.

In order to elucidate the dynamical stability of the exact
vortex solutions proposed in Sec. II, we conduct numerical
experiments by solving Eq. (2) and take the exact vortex
solutions (10) and (11) at t = 0 as initial data. To begin
with, we consider the attractive rotating BEC with harmonic
potential at ε = 0 in (12), which has exact vortex solution
(10). In Fig. 6, we show the density evolutions and phase
diagrams of the vortex solution (10) as the initial condition
with radial quantum number n = 1 and different topological
charge S or angular momentum quantum numbers based on
numerical simulation of Eq. (2). It is shown that only when
topological charge S = 1, vortex solution (10) is stable against
perturbation with an initial Gaussian noise of level 0.5%, but
for topological charge S � 2, giant vortex solution (10) will be
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FIG. 6. (Color online) Time evolution of the density distributions
|ψ(x,y,0)|2 (at t = 0) and phase diagrams for the vortex solution
(10) of the attractive rotating BEC for radial quantum number
n = 1. (a) Stable vortex for topological charge S = 1. (b) and
(c) Unstable vortex for S = 2 and 3, respectively. For all cases,
the domain is (x,y) ∈ [−15,15] × [−15,15]. The other parameters
are � = 0.7, λ1 = 4, λ2 = 2, μ1 = 1000, c1 = c2 = 1, ε = 0, and
ω0 = 0.028. Here the unit of time is 0.25 ms and the unit of length is
1.51 μm for 7Li atom.

unstable and split into single-charge vortices and so destruct
the ring structures.

When the harmonic trap is time dependent which corre-
sponds to ε �= 0 and ω1 �= 0 in (12), Fig. 7 shows the unstable
dynamics and phase diagrams of the giant vortex solution
(10) with S = 3 and two different radial quantum numbers
n = 1,2 for the attractive rotating BEC. It is observed that
the time-dependent frequency of trap affects the dynamics
of the vortex significantly. The instability of vortex states
with S = 2 and 3 in Figs. 6 and 7 is concerned with
the resonance with the collective modes described by the
harmonics with the angular momentum quantum number.

FIG. 7. (Color online) The dynamic instability of the vortex
solution (10) of the attractive rotating BEC with time-dependent
harmonic potential for topological charge S = 3 and two different
radial quantum numbers. Here the unit of time is 0.25 ms, the unit
of length is 1.51 μm for 7Li atom, and the parameters are � =
0.7, λ1 = 10, λ2 = 5, μ1 = 1000, c1 = c2 = 1, ω1 = 1, ε = 0.02,
and ω0 = 0.028.

FIG. 8. (Color online) Time evolution of the density distributions
|ψ(x,y,0)|2 and phase diagrams for the vortex solution (11) of the
repulsive rotating BEC for topological charge S = 1 and radial quan-
tum numbers n = 1 and 2, respectively, with an initial Gaussian noise
of level 0.5%. Here the domain is (x,y) ∈ [−25,25] × [−25,25], the
parameters are δ = 7.4 (top) and δ = 14.9 (bottom), � = 0.7, λ1 =
4, λ2 = 2,c1 = c2 = 1, μ1 = −10, ε = 0, and ω0 = 0.028, the unit
of time is 0.25 ms and the unit of length is 0.43 μm for 87Rb atom.

Following the description in [3,43], we can explore the
energy excitations near the stationary state by introducing a
small deviation from the stationary state and linearizing the
motion equation. Because the interaction parameter g(r,t) and
the frequency of the external potential vary following time, the
vortex states may correspond to many high-energy collective
excitation modes even for the lowest radial mode n = 1. For the
lowest mode with n = 1 and angular momentum mode S = 1,
the vortex state is stable against a Gaussian noise. However,
the vortex states with angular momentum modes S = 2 and
3 in Figs. 6 and 7 are inclined to decay as they correspond
to high-energy collective excitations. In addition, the vortex
state with radial mode n = 2 in Fig. 7 is also unstable as it
corresponds to higher energy collective excitations.

Next we consider the repulsive rotating BEC in anharmonic
potential V (r,t) = ω2(t)r2/2 − μ0R

2
r /2 with μ0 �= 0 shown

in Fig. 2, which has exact vortex solution (11). In Figs.
8 and 9, we demonstrate the density evolutions and phase
diagrams of vortex solution (11) as the initial condition with
different radial quantum numbers n = 1,2 and fixed angular
momentum quantum numbers S = 1 and S = 5, respectively.
It is very interesting to note that when the radial quantum
number n = 1, the exact vortex solution (11) is always stable
even for very large topological charge S = 5, which is very
different from the attractive rotating BEC with harmonic
potential where a stable region for vortex solution (10) was
found only for S = 1 as shown in Fig. 6. Our results have
provided a very promising method for stabilizing the giant
vortex having very large topological charge S � 2 which has
been conjectured unstable [33] by tuning the external potential
and nonlinear interaction simultaneously in time. Numerical
simulation shows that for the radial quantum number n > 1,
the vortex solution (11) is always unstable for any topological
charge S.
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FIG. 9. (Color online) Time evolution of the density distributions
|ψ(x,y,0)|2 and phase diagrams for the vortex solution (11) of the
repulsive rotating BEC for topological charge S = 5 and radial quan-
tum numbers n = 1 and 2, respectively, with an initial Gaussian noise
of level 0.5%. Here the domain is (x,y) ∈ [−25,25] × [−25,25], and
the parameters are δ = 1172.4 (top) and δ = 2344.9 (bottom). The
other parameters and units of time and length are the same as Fig. 8.

Finally, we investigate the effect of the slightly asymmet-
rical potential to the stability of quantized vortices. To do so,
we take the asymmetrical external trap as V (r,t) = ω2(t)[(1 +
εx)x2 + (1 + εy)y2]/2 − μ0R

2
r /2, where parameters εx and εy

describe small deviations of the trap from the axisymmetry.
The ENS group [44] stirred a BEC of 87Rb confined in this
kind of magnetic trap using a focused laser beam. Figure 10

FIG. 10. (Color online) Density profiles and phase diagrams
for the vortex solution (11) at t = 1000 for the repulsive in-
homogeneous rotating BEC in slightly asymmetrical anharmonic
potential V (r,t) = ω2(t)[(1 + εx)x2 + (1 + εy)y2]/2 − μ0R

2
r /2 with

εx = 0.02 and εy = 0.03. Here the quantum numbers n = 1 and
topological charges S = 1 and 5, respectively, and the level of the
initial Gaussian noise is still 0.5%. The parameters are δ = 7.4 (top)
and δ = 1172.4 (bottom). The other parameters are the same as
Figs. 8 and 9. Here the unit of time is 0.25 ms and the unit of length
is 0.43 μm for 87Rb atom.

shows the evolutions of density profiles and phase diagrams of
the vortex solution (11) at t = 1000 for the inhomogeneous re-
pulsive rotating BEC in this slightly asymmetrical anharmonic
potential with parameters εx = 0.02 and εy = 0.03. Here the
quantum number n = 1 and topological charges S = 1 and
5, respectively, and the level of the initial Gaussian noise is
still 0.5%. It is seen that the quantized vortices with S = 1
and 5 in slightly asymmetrical anharmonic potential are still
stable at t = 1000. The stability of these quantized vortices
is related with collective modes described by the anharmonic
potential, and the spatiotemporally modulated interaction and
anharmonic potential can support stable giant vortex states.

We now give an experimental protocol to observe the
above vortex states in future experiments. For the attractive
interactions, we take 7Li condensate in internal atomic state
|F = 1,mF = 1〉 [37,38], containing about 6.55 × 104 atoms,
confined in a pancake-shaped trap with radial frequency ωr =
(2π ) × 18 Hz and axial frequency ωz = (2π ) × 628 Hz [41].
Experimentally, this trap can be determined by a combination
of spectroscopic observations, direct magnetic field measure-
ment, and the observed spatial cylindrical symmetry of the
trapped atom cloud [45]. For the repulsive interactions, we take
87Rb condensate in internal atomic state |F = 1,mF = 1〉 [39],
containing about 8 × 105 atoms, confined in an anharmonic
potential which is a pancake-shaped harmonic trap with
radial frequency ωr = (2π ) × 18 Hz and axial frequency
ωz = (2π ) × 628 Hz [41] plus a convex hull (see Fig. 2).
The key step is how to realize the spatiotemporal variation
of the scattering length. Near the Feshbach resonance [30,31],
the scattering length as(B) varies dispersively as a function of
magnetic field B, that is, as(B) = ã[1 − �/(B − B0)], with
ã being the asymptotic value of the scattering length far from
the resonance, B0 being the resonant value of the magnetic
field, and � being the width of the resonance at B = B0. For
the magnetic field in the z direction with gradient α along
the x-y direction, we have �B = [B0 + αB1(x,y,t)] �ez. In this
case, the scattering length is dependent on x,y and time t .
So in real experiments, we can use the Feshbach resonance
technique to realize spatiotemporal variation of the interaction
parameters shown in Fig. 1. Finally, in order to observe the
density distributions in Figs. 3 and 6–9 clearly in experiment,
the atoms should be evaporatively cooled to low temperatures,
say in the range of 50–150 nK.

V. CONCLUSIONS

In conclusion, we have investigated the quantized vortices
in a rotating BEC with spatiotemporally modulated interaction
in harmonic and anharmonic potentials, respectively. Two
families of exact vortex solutions for the 2D GP equation
are constructed explicitly by similarity transformation. It is
interesting to see that a new series of stable giant vortex states
with topological charge S � 2 can be supported by tuning
the external potential and the spatiotemporally modulated
interaction in this system. We hope that this paper will
stimulate further research on quantized vortices and help to
understand the behavior of nonlinear excitation in physical
systems with spatiotemporally modulated interaction.
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