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Stability of a dipolar Bose-Einstein condensate in a one-dimensional lattice
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We show that in contrast with contact interacting gases, an optical lattice changes drastically the stability
properties of a dipolar condensate, inducing a crossover from dipolar destabilization to dipolar stabilization for
increasing lattice depths. Performing stability measurements on a 52Cr Bose-Einstein condensate in an interaction-
dominated regime, repulsive dipolar interaction balances negative scattering lengths down to −17 Bohr radii.
Our findings are in excellent agreement with mean-field calculations, revealing the important destabilizing role
played by intersite dipolar interactions in deep lattices.
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Ultracold gases allow for a high level of experimental
control, opening fascinating possibilities for the design and
realization of novel quantum phases [1,2]. In particular,
short-range isotropic interatomic interactions, which play a
key role in the properties of quantum gases, can be tuned almost
at will, e.g., using Feshbach resonances [3]. Interestingly,
systems with significant or dominant dipolar interactions (DIs)
open novel possibilities, due to the anisotropic and long-range
character of the DI. Dipolar gases have indeed attracted major
experimental and theoretical attention in the recent years [4,5].
In particular, quantum systems with strong DI have been
realized in chromium Bose-Einstein condensates (BECs) [6,7],
ultracold heteronuclear molecules [8], and BECs with Rydberg
excitations [9], while weaker dipolar effects were also reported
in alkali-metal samples [10–12].

The experimental realization of quantum phases in many-
body systems crucially depends on their overall stability.
Systems with dominant attractive short-range interactions are
fundamentally unstable against collapse, and may only be
stabilized away from the interaction-dominated regime, i.e.,
only for a limited number of particles at given external trapping
potential [13]. The DI, being partially attractive and partially
repulsive, induces a strong dependence of the stability of the
system on the trapping geometry [4,5], as recently observed
experimentally [14]. Therein the regime with effective dipolar
attraction has been explored with the realization of a purely
dipolar interacting condensate in an oblate trap.

Dipolar gases in optical lattices have recently attracted
particularly intense interest [5,15–17], mainly motivated by
the presence of intersite interactions, which are in general
negligible in short-range interacting systems. So far, the influ-
ence of dipolar intersite interactions has only been observed
in the dynamical properties of a very weakly interacting
39K BEC [11]. Beyond that, stronger dipolar interactions
are expected to result in a wealth of novel ground-state
phenomena, including supersolidity [18–20] and intersite
superfluids [21]. The observation of significant intersite effects
demands, however, the careful determination of the stability
of dipolar lattice gases, a fundamental question which has not
been addressed so far.

In this work we investigate the stability of a dipolar 52Cr
condensate in a one-dimensional optical lattice. We identify
the stability threshold for various lattice depths by measuring
the BEC atom number when decreasing the s-wave scattering

length via a magnetic Feshbach resonance. The stability
threshold depends on the nontrivial interplay between intersite
hopping, short-range interactions, and onsite and intersite
dipolar interactions. From small to large lattice depths, we
observe a continuous crossover from a dipolar destabilized
to a dipolar stabilized regime, where the system can be
considered as a stack of spatially separated highly oblate BECs.
We, therefore, show that, in addition to the suppression of
exothermic two-body chemistry in ultracold dipolar gases [22],
the DI can be used to stabilize otherwise unstable many-body
states. Our measurements are in excellent agreement with
mean-field calculations, revealing that intersite interactions
play a significant destabilizing role in deep lattices.

Our experimental procedure is as follows: we produce a
52Cr BEC in a crossed optical dipole trap (ODT, νx,y,z =
440,330,290 Hz) at a magnetic field B � 600 G, where the
scattering length is large and positive (a � 90a0 with a0 the
Bohr radius). Dipoles are aligned along the z direction by
the strong magnetic field. By changing the magnetic field
strength B in the vicinity of a Feshbach resonance, we are able
to tune the s-wave scattering length a = a(B), as described
in Ref. [6]. After reducing the scattering length to a =
60a0, we load the BEC into a one-dimensional (1D) optical
lattice oriented along the polarization direction z, populating
approximately 15 lattice sites, with a maximum of 2000 atoms
per site in the center of the trap. The lattice is produced by a
λ = 1064 nm fiber laser in a nearly back-reflected geometry
with a lattice spacing dlat = 534 nm, as illustrated in Fig. 1.
The radial trapping frequencies νx,y are kept constant during
the lattice ramp by adjusting the power of the ODT beam in the
z direction. We then decrease the scattering length in 6 ms to
reach its final value, where we hold the atoms for thold = 2 ms.
Finally we switch off the optical trapping potential for a 6 ms
time-of-flight (TOF) before taking an absorption image of the
atomic cloud.

To extract the BEC atom number NBEC after the TOF,
the recorded two-dimensional (2D) density distribution is
integrated along the z direction, and we perform a 1D bimodal
fit. When the final scattering length is much larger than
the critical value acrit, we typically measure NBEC � 15 000
(NBEC � 10 000) in a shallow (deep) lattice, while the atom
number before loading the lattice is always Nat � 20 000.
Getting close to the instability point, we observe a fast decrease
in the atom number, as it is shown in Fig. 2 for two different
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FIG. 1. (Color online) Experimental setup. The measurements
are performed in a 1D optical lattice (blue) with underlying crossed
optical dipole trap (red). The magnetic field used to reach the
Feshbach resonance is produced by two Helmholtz coils (black) and
polarizes the dipoles along the lattice direction z. For deep lattices we
obtain a stack of oblate dipolar BECs as depicted on the lower right.

values of the lattice depth [23]. We finally extract the critical
scattering length from an empirically chosen function as
described in Ref. [14]. Although atom losses are enhanced
in a deep lattice, due to the larger mean trapping frequency,
they do not affect the determination of the stability threshold.

Figure 3 shows the stability diagram of a dipolar 52Cr
BEC in a 1D optical lattice. The critical scattering length
acrit is measured for different lattice depths in the range from

FIG. 2. (Color online) Atom number vs scattering length for
different lattice depths. For a moderate lattice depth of U =
(6.2 ± 0.6)ER (open blue dots), the condensate becomes unstable
at acrit = (6.5 ± 1.9)a0, while in a deep lattice at U = (37 ± 4)ER

(filled red dots), we observe a stable BEC until a = (−13.2 ± 2.5)a0.
The solid lines are fits to the data using the arbitrarily chosen form
NBEC = max{0,N0(a − acrit)β}, from which we extract the critical
scattering length acrit (β � 0.2).

FIG. 3. (Color online) Stability diagram of the dipolar condensate
in the 1D optical lattice. The critical scattering length acrit is plotted
vs the lattice depth U [23]. The lines are results of the numerical
simulations for different atom numbers. We explore the full crossover
from a dipolar destabilized (acrit > 0) to a dipolar stabilized (acrit < 0)
regime. At U = 50ER we observe a stable condensate down to
acrit = (−17 ± 3)a0. For comparison, the dashed-dotted line (green)
shows the simulated critical scattering length disregarding the dipolar
interaction. We find |acrit| < 0.4a0 on the whole range, approaching
acrit = 0 (gray dotted line) for increasing lattice depth.

U = 0 to 63ER [recoil energy, ER = h̄2π2/(2md2
lat), with m

the atomic mass]. We find a positive acrit until U � 10ER and
a negative acrit down to acrit = (−17 ± 3)a0 in the deep lattice
regime.

Our experimental results are in excellent agreement
with numerical simulations based on the nonlocal nonlinear
Schrödinger equation

ih̄
∂

∂t
�(r,t) =

[
− h̄2

2m
∇2 + Vext(r) + gNat|�(r,t)|2

+ Nat

∫
dr′ Vdd(r − r′)|�(r′,t)|2

]
�(r,t),

(1)

where g = 4πh̄2a(B)/m. The potential Vext(r) = U sin2

(πz/dlat) + m
∑

i=x,y,z(2πνi)2r2
i /2 results from the 1D optical

lattice and the three-dimensional (3D) harmonic confinement
given by the ODT. The DI potential is given by Vdd(r) =
μ0μ

2

4π

1−3(r̂·ẑ)2

r3 (with r̂ = r/r), where μ0 is the vacuum perme-
ability and μ the magnetic dipole moment (μ = 6μB for 52Cr
with μB the Bohr magneton).

We determine the critical scattering length acrit by integrat-
ing Eq. (1) in imaginary time, looking for the existence of a
stable ground state. As no assumption is made on the con-
densate wave function in our three-dimensional calculations
(i.e., separability or factorization in longitudinal and radial
wave functions), we can determine in a consistent way acrit for
all lattice depths, ranging from U = 0 to very deep lattices.
Alternatively, we simulate the whole experimental sequence by
integrating Eq. (1) in real time. While in general the wave
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functions calculated by real and imaginary time evolution
do not fully coincide, the stability threshold is basically
unaffected. Hence, although the evolution is not fully adiabatic,
the population of excitations does not influence appreciably the
stability threshold. Our simulations show a weak dependence
of the stability threshold on the initial BEC atom number Nat

(see Fig. 3), being even weaker for deep lattices. Note the
striking difference between the stability properties of dipolar
and nondipolar lattice gases (dashed-dotted line in Fig. 3). For
a purely contact-interacting BEC in a shallow lattice, the ODT
barely stabilizes the condensate, which becomes unstable for
a < −0.4a0. For deeper lattices acrit approaches zero due to the
highly oblate onsite trap geometry [24], therefore showing also
a qualitatively different behavior compared to the dipolar gas.

Three different regimes may be identified in Fig. 3. For
U � 3ER , the lattice has no relevant effect on the stability of
the system, which is simply determined by the shape of the
underlying ODT. Measuring acrit = (12 ± 2)a0 at U = 0 in
this essentially prolate trap, we recover the result of Ref. [14].
To generalize our results to other dipolar systems, we introduce
a length scale associated with the DI, add = mμ0μ

2/12πh̄2

(�15a0 for 52Cr). In this regime of very shallow lattices, acrit �
add, i.e., the dipoles are maximally destabilizing the condensate
due to the effectively attractive dipolar interaction in the prolate
ODT.

By further increasing the lattice depth, a second regime
is entered: in the range from U = 3ER to 15ER, the system
undergoes the transition from weak to deep lattice [25], the
interlayer hopping being still significant. Even though we
do not change the underlying trapping potential (νx,y,z are
kept constant), we observe that the lattice radically modifies
the stability properties. It induces a continuous crossover
from dipolar destabilization (acrit > 0) to dipolar stabilization
(acrit < 0), which may be explained by the increasing role
of onsite repulsive dipolar interactions. The precise form of
the stability threshold in this regime depends, however, on a
nontrivial interplay between contact and dipolar interactions
and the tunneling between lattice sites.

Finally, for U > 15ER the tunneling is negligible and
the system can be considered as a stack of highly oblate
condensates interacting with each other only through attractive
intersite DIs. This regime, which is well described within
the tight-binding approximation, has recently attracted major
theoretical attention [15,16]. Despite the destabilizing intersite
attraction, the system proves to be stable down to acrit =
(−17 ± 3)a0, where the effective dipolar interaction is mostly
repulsive. To our knowledge, this is the first realization of
a stable many-body system at a < 0 within an interaction-
dominated regime (N |a|/āho > 1 with N the atom number
in the central lattice site and āho the mean onsite harmonic
oscillator length). In this regime the external potential itself
cannot stabilize the system, and the DI constitutes the key
stabilization mechanism.

We quantitatively investigate the destabilizing
effect of the dipolar intersite interactions by
introducing a truncated DI potential, V box

dd (r) = Vdd(r)
[�((r · ẑ) + dlat/2) − �((r · ẑ) − dlat/2)], where �(ξ ) is the
Heaviside function. Such cutoff is implemented following a
procedure similar to that of Ref. [26]. For deep lattices the
cutoff in V box

dd (r) effectively amounts to removing the intersite

FIG. 4. (Color online) Intersite coupling mediated by dipolar
interactions: zoom on Fig. 3 in the deep lattice regime. Intersite hop-
ping is negligible on experimental time scales. Solid line: numerical
simulation using the full dipolar potential Vdd(r). Dashed-dotted line:
simulation with the truncated dipolar potential V box

dd (r) (see text), for
which intersite coupling is not taken into account. The deviation of
the simulation with the truncated potential to the experimental data
indicates significant mean-field energy contributions from long-range
intersite interactions.

DI, while still taking into account the full short-range and
long-range onsite interactions. In Fig. 4 we compare the
experimental data to the stability threshold calculated with
V box

dd (r) and Vdd(r) in the deep lattice regime (U � 15ER).
The calculations with V box

dd (r) show a substantial deviation
from the experimental data: at U � 20ER the difference is

acrit � 8a0, which is more than three times our standard
deviation. This discrepancy, in addition with the very good
agreement of the measurements with the simulations with
Vdd(r), shows that dipolar intersite interactions have a strong
impact on the stability of the system (e.g., for U = 20ER,
|acrit| is reduced to about 50%). Note, that in both the
simulations (using the truncated and the nontruncated dipolar
potential), the critical scattering length approaches the
fundamental limit acrit = −2add for very high lattice depths.
This is due to the fact that two infinite homogeneous planes
of dipoles would present zero averaged intersite DI [27].

In conclusion, contrary to the case of contact interacting
gases, an optical lattice changes drastically the stability
properties of a dipolar condensate. For increasing lattice
depths, a continuous crossover from dipolar destabilization
to dipolar stabilization is observed. In particular in deep
lattices, a condensate with attractive short-range interactions
is stabilized by the effective dipolar repulsion, although
attractive intersite interactions are responsible for a significant
destabilization of the system.

The determination of the condensate stability is funda-
mental for the observation of both quantum phases and
instability dynamics of dipolar condensates in lattices. In the
highly oblate geometries that we obtained in the deep lattice
regime, dipolar gases are expected to exhibit a roton-type
excitation spectrum [28,29], similar to the one observed
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in liquid helium [30,31]. Additionally, intersite coupling in
optical lattices is expected to enhance the roton character
in the excitation spectrum [32,33] and related self-organized
structures [15,16]. Finally, the realization of a stack of stable
mesoscopic ensembles interacting through long-range dipolar
interactions, together with the possibility to tailor multi-well
potentials at will [34,35], is particularly promising for the
experimental realization of new quantum phases relying on the
interplay between onsite and long-range intersite interactions,
as predicted in [36].
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[19] I. Danshita and C. A. R. Sà de Melo, Phys. Rev. Lett. 103,
225301 (2009).
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