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Laser-driven direct quantum control of nuclear excitations
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The possibility of controlled direct laser-nuclear excitations is considered from a quantum control perspective.
The controllability of laser-driven electric dipole and magnetic dipole transitions among pure nuclear states is
analyzed. Within a set of realistic and general conditions, atomic nuclei are demonstrated to possess full state
controllability. Additionally, an analysis of the nuclear state excitation probability as a function of the laser
control field is conducted. This control landscape is shown to possess a generic topology, which has important
physical consequences for achieving optimal nuclear state excitation with laser fields. Last, an assessment is
given of the technological challenges that need to be considered when implementing direct nuclear control in the
laboratory.
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I. INTRODUCTION

The control of nuclear dynamics with high-intensity lasers
has been a long-standing objective [1,2]. Recent experiments
for this purpose have relied upon indirect methods of nuclear
excitation, including the use of laser-accelerated electron and
proton beams or Bremsstrahlung radiation produced from
laser-generated plasmas [3]. Direct laser-nuclear excitation has
thus far been prohibitive due to both a lack of coherent photon
sources matching typical nuclear transition energies and the
enormous laser intensities required to overcome the inherently
small nuclear excitation cross sections [1]. However, with
the future development of high-intensity, coherent x-ray
sources [4], direct laser-driven nuclear dynamics may become
practical.

An important objective is to determine the feasibility of
coherent radiation-driven nuclear dynamics, in analogy to that
achieved at the atomic and molecular scales. Optimally shaped
ultrafast laser fields have been demonstrated to coherently
alter the quantum dynamics of complex atomic and molecular
species in a multitude of applications [5–11]. As the prospects
for the study of direct laser-nuclear dynamics continue to
improve, the possible extension of these quantum control
concepts to the nuclear domain deserves careful consideration.

This paper explores direct laser-driven quantum nuclear
control from a theoretical perspective. The laser-nuclear
interaction and Schrödinger equation within the dipole ap-
proximation are described in Sec. II. The state controllability
of nuclear quantum systems is investigated in Sec. III to
establish, in principle, the ability to freely manipulate the
laser-induced nuclear transition probability from an arbitrary
initial state to an arbitrary final state. The control landscape
is defined as the transition probability as a functional of the
applied field; the topology of the landscape is important for the
efficiency of finding effective controls. The landscape is shown
in Sec. IV to have a generic topology for laser-driven nuclear
excitations. In addition, the Hessian of the nuclear transition
probability, with respect to the applied field at an optimum,
is investigated together with an assessment of the physical
consequences of its properties. Finally, practical aspects of
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performing direct nuclear quantum control experiments are
considered in Sec. V. In this regard, the applicability of laser-
pulse-shaping techniques, evolutionary learning algorithms,
and nuclear acceleration is considered along with prospective
technological developments favorable for the realization of the
proposed nuclear control schemes.

II. LASER-NUCLEAR INTERACTION DYNAMICS

The atomic nucleus is a complex many-body system that
does not possess a center of attraction, as is experienced by
electrons in atoms, yet nuclear structure still exhibits many
qualitative similarities to atomic structure. In particular, the
nucleus can be effectively described by a series of quantized
energy levels that fill with neutrons and protons according
to the Pauli exclusion principle [12,13]. Additionally, nuclei
possess a series of unoccupied, energetically excited states
above the stable ground state into which nucleons may
be promoted through their interaction with electromagnetic
radiation. The controllability and control landscape topology
analyses presented in Secs. III and IV, respectively, examine
the ability to arbitrarily manipulate transitions among such
states. Importantly, these assessments are not dependent upon
the specific internal structure of the nucleus (e.g., the particular
form of the nuclear potential); rather, the present analyses
require only a general model for the atomic nucleus consisting
of a series of stable, bound nuclear energy levels coupled
by electromagnetically induced transitions. The Hamiltonian
describing the nucleus and its interaction with an external
electromagnetic field can be expressed as

H (t) = H0 + H1(t), (1)

where H0 represents the internal Hamiltonian of the nucleus
and H1(t) describes its coupling with the applied laser field
(see [12] for more details).

While typical nuclear binding energies are on the order of
106 eV per nucleon, transition energies among bound nuclear
levels are generally on the order of 103–105 eV [14]. Currently
planned free-electron x-ray laser sources are expected to
possess photon energies of at most hν ∼ 104 eV, which are
insufficient for inducing nuclear fission or photodisintegration
[13,15]. Consequently, only relatively low-energy transitions
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among bound excited states are considered in this paper.
The present work considers the nucleus as a finite N -
level quantum system described by the internal Hamiltonian
H0 = ∑N

n=1 λn|n〉〈n| with eigenstates |n〉 : n = 1, . . . ,N , and
corresponding energy spectrum {λn}.

A stable nucleus of approximately constant density exhibits
a radius R empirically determined as R � r0A

1/3, where
r0 = 1.25 × 10−15 m and A is the atomic mass number.
Currently envisioned high-energy laser beam sources capable
of direct nuclear interaction have wavelengths on the order
of 10−10 m. For a nucleus with mass number A = 100, the
nuclear radius is approximately 6 × 10−15 m, and thus, any
spatial variation of the field with respect to the nucleus may
be neglected. Upon considering contributions from both the
electric and magnetic components of the applied laser field,
the interaction Hamiltonian H1(t) may be expressed within the
dipole approximation as

H1(t) = −μ1 · ε1(t) − μ2 · ε2(t), (2)

where the electric dipole μ1 and magnetic dipole μ2 interact,
respectively, with the electric ε1(t) and magnetic ε2(t) compo-
nents of the applied laser field. The magnetic dipole operator
μ2 includes contributions from both the orbital motion and the
intrinsic spin of each nucleon, which enables the interaction
of the laser pulse with the uncharged neutron. The resulting
electric dipole and magnetic dipole transitions among the
nuclear levels are denoted as E1 and M1, respectively. For
a typical nucleon charge separation distance on the order of
10−15 m, the transition electric dipole moment is on the order
of 10−34 C m; the corresponding interaction energy with the
nuclear electric dipole is EE � 1.7 × 10−12I 1/2 eV, where the
pulse peak intensity I is given in W/cm2. Likewise, assuming
a magnetic dipole on the order of the nuclear magneton μN ,
the magnetic interaction energy is EM � 2.9 × 10−13I 1/2 eV.
Hence, the nuclear electric and magnetic dipole couplings are
approximately of the same order. However, even for very high
laser intensities (I ∼ 1021 W/cm2), the field couples to the
nucleus in a weak manner and does not significantly perturb
the field-free structure.

Nuclear eigenstates are generally characterized by both
total angular momentum J and quantum parity π , which
corresponds to either even (π = +1) or odd (π = −1) values
of the orbital angular momentum L. Electric dipole (E1)
transitions (with a selection rule of �L = ±1) exhibit a
parity-conservation rule of πiπf = −1, while magnetic dipole
(M1) transitions (�L = 0) display a parity-conversation rule
of πiπf = +1 [13]. Accordingly, E1 and M1 transitions
between nuclear eigenstates are mutually exclusive. Nuclei
also exhibit collective motions, such as surface vibrations and
rotations, which lead to a rich array of quantized sublevels.
For the present analysis of laser-driven transitions between
energetically distinct (J,π ) states, the sublevel splittings of
each individual shell are not considered.

In the present application of controlled nuclear excitation,
we consider the transition probability Pi→f between an initial
state |ψi〉 and a final state |ψf 〉, both of which are pure states of
the field-free nuclear Hamiltonian H0; these states may either
be eigenstates |n〉 of the Hamiltonian H0 or superposition states
|ψ〉 = ∑N

n=1 an|n〉, where the complex coefficients an satisfy

the normalization condition
∑N

n=1 |an|2 = 1, with N being the
total number of accessible states.

While a more general density matrix analysis allows for
the possibility of mixed states, the characteristic shell energy
spacings of nuclei in thermodynamic equilibrium prevent the
construction of mixed nuclear states under normal conditions,
except in the cases of particle collisions and decay, which
are beyond the scope of the present work [13]. Hence, the
subsequent analyses examine the ability to control transitions
among pure nuclear states with coherent laser radiation.

The time evolution of a pure nuclear state is described by
the Schrödinger equation

ih̄
∂|ψ(t)〉

∂t
= [H0 − μ1 · ε1(t) − μ2 · ε2(t)]|ψ(t)〉, (3)

which will serve as the governing dynamical equation for the
analyses and assessments in this paper. For simplicity, linear
polarization of the transverse electromagnetic field is assumed,
which allows Eq. (3) to be recast as

ih̄
∂|ψ(t)〉

∂t
= [H0 − μ1ε1(t) − μ2ε2(t)]|ψ(t)〉. (4)

III. CONTROLLABILITY ANALYSIS

This section analyzes the controllability of laser-driven
nuclear excitation by extending the graph theory approach
[16] originally developed for treating atomic and molecular
systems. Nuclear state controllability seeks to establish the
existence of a set of laser control fields ε1(t) and ε2(t) that are
capable of steering the quantum system from an arbitrary initial
state |ψ(0)〉 = |ψi〉 to an arbitrary final state |ψ(T )〉 = |ψf 〉 at
a target time T [16]. The necessary and sufficient conditions for
state controllability are considered, along with a few specific
examples.

A. Conditions for state controllability

To facilitate the controllability analysis, we associate with
the system a nonoriented connectivity graph G = (V,E). The
set of vertices V of the graph is defined as the collection of
eigenstates |n〉 of the field-free Hamiltonian H0, and the set of
edges E is composed of all pairs of eigenstates coupled by the
dipole matrix elements of μ1 and μ2:

G = (V,E) : V = {|n〉,i = 1,...,N},
(5)

E = {(|a〉,|b〉); |a〉 �= |b〉,μab �= 0 for some μ ∈ {μ1,μ2}}.
An example of such a graph is shown in Fig. 1 for the
nine lowest eigenstates of the nucleus 153

63Eu. The vertices
(eigenstates of the field-free Hamiltonian H0) are represented
by horizontal lines along with the corresponding energy λn

relative to the nuclear ground state; all energy values and dipole
couplings (E1 and M1) are taken from the Evaluated Nuclear
Structure Data File (ENSDF) database [17]. The graph edges
are depicted by arrows connecting various eigenstates. Since
the E1 and M1 transitions are mutually exclusive, two distinct
types of edges exist, as explicitly seen in Fig. 1.

Denoting the transition energy between the eigenstates |i〉
and |j 〉 as ωij = |λi − λj |, i,j = 1,...,N , the nuclear system
dynamically governed by Eq. (4) is controllable under the
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FIG. 1. (Color online) Representation of the connectivity graph
for the nine lowest excited eigenstates of 153

63Eu [17]. Of the
observed eigenstates below 300 keV, only dipole-allowed transitions
contributing at least 5% of the total emissive oscillator strength from
a given state are included in the connectivity graph. The vertices
V of the connectivity graph correspond to the nuclear eigenstates,
represented by horizontal lines, along with their associated energy
and term symbol. Arrows connecting the various eigenstates are the
graph edges E ; E1 transitions are depicted by blue solid arrows, and
M1 transitions are depicted by green dashed arrows.

following conditions: (i) C1, the graph G is connected, and
(ii) C2, the graph G does not have degenerate transitions,
i.e., for every (i,j ) �= (a,b), i �= j , a �= b such that μij �= 0,
μab �= 0, for some μ ∈ {μ1,μ2}: ωij �= ωab. In the present
scenario, the electric dipole and magnetic dipole interaction
matrices, μ1 and μ2, are nonoverlapping (i.e., element-by-
element multiplication of μ1 and μ2 yields a zero matrix
due to parity-selection rules). Consequently, the proof of this
controllability statement follows the same steps as that for the
atomic and molecular cases in which only the electric dipole
interaction is considered [16].

The first condition C1 determining state controllability
implies that at least one connected path exists between
any two vertices |i〉 and |j 〉. Thus, any eigenstate must be
connected to every other eigenstate under consideration by
means of E1 and/or M1 transitions (with no regard for how
many intermediate eigenstates lie along the connecting path).
Condition C1 is necessary for controllability, while condition
C2 is only sufficient since there are systems with degenerate
transitions that can be proven controllable (see [16] for more
details).

B. Evaluation of controllability

As a demonstration of state controllability, the case of 153
63Eu

is assessed by examining the connectivity graph in Fig. 1. A
set of edges exist that allow for movement from any initial
vertex to every other vertex. Accordingly, the graph G for
153

63Eu is connected. It is also clear from Fig. 1 that the graph
contains no degenerate transitions. Since both conditions for
controllability are satisfied, the nuclear system 153

63Eu is state
controllable.

State controllability can be readily determined in a system-
atic fashion utilizing the above graphical methodology. Several
nuclei with an odd number of nucleons in the actinide and
lanthanide series of the periodic table were examined. Nuclei
belonging to these groups are of particular interest since they
typically possess an energetically low-lying excited state that
may be directly accessed with available laser sources. For
instance, the lowest dipole-accessible excited states for 151

62Sm,
169

69Tm, 171
69Tm, and 201

80Hg are each below 10 keV [17]. The
narrow bandwidths (∼0.1% of the photon energy) and limited
field strengths of existing x-ray laser sources (see Sec. V)
place a practical limit on the number of relevant states; for the
purpose of analyzing controllability, only excited states lying
below an excitation energy of 300 keV were considered for the
following nuclei: 151

62Sm(13), 151
63Eu(3), 153

63Eu(8), 161
66Dy(10),

167
69Tm(9), 169

69Tm(2), 171
69Tm(2), and 201

80Hg(4). The numeric
value in parentheses denotes the number of dipole-accessible
excited states considered in the analysis. Upon applying the
two controllability conditions C1 and C2, each of these nuclear
systems was found to be state controllable.

The expected general controllability of nuclei follows from
state connectivity and the typical absence of degeneracy in
their energy spectra [13,14]. It is important to note that
degeneracy in the present circumstance does not refer to
magnetic sublevels MJ corresponding to a single total angular
momentum state J , but rather to the notion of two physically
distinct (J,π ) states of the same energy. Moreover, as the
Hilbert space dimension N increases, it has been demonstrated
that a larger fraction of states should be connected [18]. As
a result, upon including higher-energy excited states in the
controllability analysis, it is expected that a nucleus that
has already been established as connected will remain so.
Accordingly, with the exception of cases possessing accidental
degeneracy, full state controllability is expected to be a general
feature of laser-driven nuclear excitation.

IV. NUCLEAR CONTROL LANDSCAPE TOPOLOGY

When a nucleus is state controllable, the external fields ε1(t)
and ε2(t) may be appropriately varied to freely manipulate the
transition probability Pi→f . The control landscape is defined
as Pi→f as a functional of the control fields:

Pi→f = Pi→f [ε1(t),ε2(t)]. (6)

The maximization of the transition probability entails a search
for the controls ε1(t) and ε2(t) over this landscape. In the
laboratory, technological limitations will generally introduce
significant constraints on the controls; further details concern-
ing the experimental aspects of this effort are presented in
Sec. V. Notwithstanding the technological circumstances, the
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goal here is to assess the topology of the control landscape in
the idealized limit where control resources are fully available.
An a priori expectation is that the control landscape would
have a highly complex topology, with possibly many maxima,
minima, and saddle points. In particular, it is reasonable
to expect the existence of suboptimal local maxima where
Pi→f < 1, which can act as traps in laboratory searches for
optimal control fields [19]. Hence, an understanding of the
topological features of the landscape is of prime interest. In
this section, an analysis of the control landscape topology for
nuclear transitions is given, expanding on earlier work done
in [20,21] to account for the presence of both electric ε1(t)
and magnetic ε2(t) fields. We investigate the properties of the
gradient of the landscape with respect to the fields, the possible
existence of suboptimal maxima, and the behavior of the
landscape Hessian around the global maximum Pi→f = 1.0,
along with the physical consequences of these properties.

A. Control landscape formulation: Gradient analysis of Pi→ f

The control landscape for a laser-driven nucleus is given
by [20]

Pi→f = |〈ψf |U (T ,0)|ψi〉|2, (7)

where the unitary time evolution operator U (t,0) satisfies

ih̄
∂U (t,0)

∂t
= [H0 − ε1(t)μ1 − ε2(t)μ2]U (t,0), (8)

with the state evolving as |ψ(t)〉 = U (t,0)|ψi〉.
Maximization of the transition probability entails climbing

the landscape until a critical point is reached where the gradient
of Pi→f with respect to the fields ε1(t) and ε2(t) is zero. A
critical point could correspond to a local maximum, minimum,
or saddle on the transition probability landscape as well as the
global minimum and the desired global maximum value. The
condition for the landscape gradient to vanish is given by
(see [21] for more details)

δPi→f

δεm(t)
= 2

h̄
Im[〈ψi |μm(t)|q〉] = 0, ∀ t > 0, m = 1,2,

(9)

where |q〉 = U †(T ,0)|ψf 〉〈U (T ,0)|ψi〉 and μm(t) =
U †(t,0)μmU (t,0) is the evolution of the dipole operator. It
has been shown [20] that only control fields corresponding to
Pi→f = 1.0 and Pi→f = 0 satisfy the condition in Eq. (9).
Thus, the control landscape for a laser-driven nucleus only
possesses critical points associated with perfect or null
control. In particular, there are no unconstrained control
fields that produce suboptimal critical points in the landscape
corresponding to transition probabilities 0 < Pi→f < 1.0.
The important consequence of this conclusion is that searches
with adequate freedom for the fields within the dipole
approximation should not encounter suboptimal traps in the
transition probability landscape.

Under realistic laboratory conditions, there can be con-
straints on the feasible values for the target time T and
especially the ability to arbitrarily sculpt the laser fields.
While these circumstances do not detract from the the-
oretically deduced controllability and landscape topology
analyses presented here, they can have important physical

consequences in realistic laboratory studies of nuclear control.
An upper limit on the target time stems from the finite lifetime
of excited nuclear states, which imposes a long-time limit
on the coherent control among states. In addition, if the
coherence time of the laser pulse is shorter than the lifetime
of the excited state, the effective upper limit on T is further
diminished. Fundamentally, the target time also needs to be
sufficiently long to permit attaining full controllability. The
generation of the control fields is always encumbered by
practical considerations in the laboratory, which are discussed
in Sec. V. Significant constraints on the controls can lead to
artificial suboptimal traps in the nominally trap-free landscape.
Nevertheless, numerical simulations [22] have shown that,
even with modest constraints in the controls, extremely high
transition yields (Pi→f > 0.90) are achievable in many cases.

B. Analysis of stability and robustness upon seeking
optimal control fields

The overall success of a laboratory search is greatly
influenced by both the climb over the landscape toward
an optimal solution and the search landscape topology in
the immediate vicinity of an optimal solution [20]. In this
regard, we first consider the magnitude of the landscape slope
δPi→f /δεm on the way toward an extremum.

An upper bound for δPi→f /δεm can be established using
Eq. (9):∥∥∥∥δPi→f

δεm(t)

∥∥∥∥ = 2

h̄
‖Im[〈ψi |U †(t,0)μmU (t,0)|q〉]‖

� 2

h̄
‖μm‖, m = 1,2. (10)

In any practical application, the norms of the dipole operators
μ1 and μ2 are always finite. Thus, the landscape slope on
the way toward an extremum is rather gentle, without any
steep regions, thereby assuring stability in the search (see [21]
for more discussion). This stability to noise is important
for climbing the landscape, regardless of the nature of the
algorithm utilized.

Upon arriving at the landscape maximum, the topology
of the landscape in that region is important for assessing the
robustness of the optimal solution to noise and other errors in
the controls. Toward this end, a detailed examination of the
Hessian at Pi→f = 1.0 is required. In this case, the Hessian is
defined by a matrix composed of four Hermitian submatrices
of infinite dimension over the domain [0,T ]:

H(t,t ′) =
(
H11(t,t ′) H12(t,t ′)

H21(t,t ′) H22(t,t ′)

)
, (11)

where the matrix elements are given by

Hmn(t,t ′) = δ2Pi→f

δεm(t)δεn(t ′)
for m,n = 1,2. (12)

The Hessian is real and symmetric, with the matrix elements
satisfying the relationsHmn(t,t ′) = Hmn(t ′,t) andHmn(t,t ′) =
Hnm(t,t ′) for m,n = 1,2. Following prior work for a single
control field [20], the upper triangular matrix portions (i.e.,
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t � t ′) of all four submatrices of the Hessian can be expressed
as

Hmn(t,t ′) = − 2

h̄2 Re(〈ψi |{[μm(t) −〈ψi |μm(t)|ψi〉]

× [μn(t ′) − 〈ψi |μn(t ′)|ψi〉]}|ψi〉), t � t ′. (13)

In a similar fashion, the diagonal elements of the full Hessian
can be evaluated as

Hmm(t,t) = δ2Pi→f

δ[εm(t)]2

= − 2

h̄2 〈ψi |[μm(t) − 〈ψi |μm(t)|ψi〉]2|ψi〉

� − 2

h̄2

∥∥μ2
m

∥∥, m = 1,2. (14)

From the last relation, it follows that the trace of the Hessian
is bounded from below,

tr(H) =
2∑

m=1

∫ T

0
Hmm(t,t)dt � −2T

h̄2

2∑
m=1

∥∥μ2
m

∥∥, (15)

which has important physical significance, which will be
discussed later.

The Hessian in Eq. (11) has an infinite set of eigenvalues σk

and corresponding eigenvectors uk(t) = (u(1)
k (t),u(2)

k (t)) that
satisfy the following equation [21]:

2∑
n=1

∫ T

0
Hmn(t,t ′)u(n)

k (t ′)dt ′ = σku
(m)
k (t), m = 1,2. (16)

At the landscape global maximum, each of the four subma-
trices of the Hessian in Eq. (13) can be reexpressed as a
symmetric and separable kernel of the form

Hmn(t,t ′) = − 2

h̄2

2N−2∑
k′=1

φ
(m)
k′ (t)φ(n)

k′ (t ′), m,n = 1,2, (17)

by utilizing the dual (2N − 2)-dimensional bases φk′(t) =
(φ(1)

k′ (t),φ(2)
k′ (t)), whose component functions are

{
φ

(m)
k′ (t)

} = {
Re

[
ξ

(m)
1 (t)

]
,Im

[
ξ

(m)
1 (t)

]
, . . . ,

(18)
Re

[
ξ

(m)
N−1(t)

]
,Im[ξ (m)

N−1(t)]
}
, m = 1,2,

where ξ
(m)
l (t) = 〈l|μm(t)|ψi〉 with |l〉 �= |ψi〉 for all l [20]. It

follows from Eq. (17) that the Hessian at the landscape max-
imum is finite rank (i.e., possesses a finite subset of nonzero
eigenvalues along with infinitely many zero eigenvalues).

Upon substituting Eq. (17) into Eq. (16) and denot-
ing wk′k = ∑2

n=1

∫ T

0 φ
(n)
k′ (t ′)u(n)

k (t ′)dt ′, the Hessian eigenvalue
equation reduces to

− 2

h̄2

2N−2∑
k′=1

φ
(m)
k′ (t)wk′k = σku

(m)
k (t), m = 1,2. (19)

After multiplying by φ
(m)
k′′ (t), integrating with respect to time,

and summing over m, we get

− 2

h̄2

2N−2∑
k′=1

[
2∑

m=1

∫ T

0
φ

(m)
k′′ (t)φ(m)

k′ (t)dt

]
wk′k

= σk

[
2∑

m=1

∫ T

0
φ

(m)
k′′ (t)u(m)

k (t)dt

]
. (20)

Now, defining Ak′′k′ = − 2
h̄2

∑2
m=1

∫ T

0 φ
(m)
k′′ (t)φ(m)

k′ (t)dt , we can
simplify Eq. (20) to give

2N−2∑
k′=1

Ak′′k′wk′k = σkwk′′k, 1 � k � 2N − 2. (21)

Consolidating the indexes and rewriting the expression in
matrix notation, we arrive at 2N − 2 distinct eigenvalue
equations:

A · wk = σkwk, 1 � k � 2N − 2. (22)

By interchanging the indexes k′′ and k′ in the definition
of Ak′′k′ , it is clear that the (2N − 2) × (2N − 2) matrix
A is symmetric; furthermore, the diagonal elements Ak′k′ =
− 2

h̄2

∑2
m=1

∫ T

0 dt [φ(m)
k′ (t)]2 are all negative. This means that

A can be transformed into a congruent diagonal matrix
containing only nonpositive diagonal entries. It follows from
Sylvester’s law of inertia that the 2N − 2 eigenvalues σk

of A must be nonpositive. Thus, the Hessian H(t,t ′) at
the landscape maximum possesses at most 2N − 2 nonzero,
negative eigenvalues σ1,σ2, . . . ,σ2N−2 associated with 2N −
2 orthonormal eigenvectors u1(t),u2(t), . . . ,u2N−2(t), along
with infinitely many zero eigenvalues and corresponding
null-space eigenvectors. In light of this, we can rewrite the
Hessian at the control landscape maximum in terms of its
nonzero spectrum:

H(t,t ′) = −
2N−2∑
i=1

|σi |ui(t)u
†
i (t

′). (23)

Since the trace of the Hessian is bounded by the relation
in Eq. (15), as the dimension N increases, each individual
nonzero eigenvalue will likely take on an even smaller value,
falling off on average as ∼1/(2N − 2). Physically, this means
that as higher-energy nuclear eigenstates are included, the
curvature of the control landscape in the vicinity of a perfect
control solution will likely become flatter, leading to a broader
region for which an excellent transition yield can be achieved.
Furthermore, this analysis implies that a small perturbation in
the control field (e.g., due to laboratory noise) will generate
a deviation δPi→f , whose magnitude is bounded. By the
same argument, this inherent robustness should increase, or at
least remain neutrally stable, as the dimension of the nuclear
system N increases. In conclusion, the preceding analysis
reveals the existence of remarkably attractive quantum control
landscapes for laser-driven nuclear transitions where search
efforts encounter gentle slopes and maxima that are relatively
flat and robust to control field variations.
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TABLE I. Important issues for direct quantum control of nuclear dynamics in the laboratory.

Issue Features

Complexity of nuclear dynamics (i) The Hamiltonian is not fully or precisely known. (ii) Optimal
control fields cannot be effectively designed a priori but may be
discovered in the laboratory.

Laser specifications (i) Nuclear energy level spacings are generally much greater than
5 keV (i.e., in the hard x-ray or γ -ray energy range). (ii) Small
nuclear transition dipole elements demand exceptionally high
laser intensities in order to achieve significant transition amplitude
manipulation within the excited state lifetime [2,23].

Pulse engineering (i) Narrow nuclear transition linewidths (typically on the order
of 10−6 eV or less [15]) imply that arbitrary manipulations
of transition amplitudes would likely require several distinct
radiation sources. (ii) Both magnetic and electric fields need consideration.

Transition yield detection Determining the success of a laboratory control experiment
necessitates an appropriate probe of the excited state population.

V. EXPERIMENTAL PROSPECTS

Having established the theoretical groundwork above for
direct nuclear excitation control, we now consider the practical
aspects of nuclear transition probability manipulation that will
be relevant for eventual laboratory implementation. While
the theoretical underpinnings of direct laser-driven nuclear
control are a natural extension of the analogous atomic and
molecular control concepts, many of the traditional experi-
mental approaches to coherent control are not applicable due
to both the magnitude of the couplings between nuclear states
and the transition energies. As such, significant technological
challenges remain before experimental realization of these
direct control concepts. This section presents a heuristic
overview of the laboratory techniques directly pertinent to
nuclear quantum control. Table I first summarizes some of the
relevant issues for laboratory quantum control of nuclei.

Some currently available experimental techniques and
potential future solutions to the systemic and technological
challenges for direct nuclear control are enumerated in Table I
and discussed below.

(1) Complexity of nuclear dynamics. In order to design an
optimal control field a priori, detailed knowledge regarding
nuclear structure, radiation-matter coupling, and excited state
lifetimes is necessary. While the energetics and transition cross
sections of nuclei have been studied with γ -ray spectroscopy,
unforeseen state couplings or splittings can render theoreti-
cally designed fields incomplete or insufficient. As a result,
such technical limitations can produce systematic errors in the
field design, which may degrade the success of the envisaged
control outcome. Alternatively, it is possible to allow the
optimal field to be discovered in the laboratory, rather than
calculated, through a recursive set of feedback experiments
[24]. In this fashion, the measured response of the nuclear
system to a trial field serves as input for a pattern-recognition
algorithm that can identify attributes of the pulse necessary for
accomplishing the desired effect and thus suggest improved
fields until a sufficient response is attained.

Following thelatter logic, adaptive feedback control (AFC)
implements a closed-loop, adaptive learning strategy in the

laboratory and has been broadly applied for the optical control
of chemical, physical, and biological systems [5]. In this
approach, a set of (often random) initial trial pulse shapes
is first crafted and applied to the quantum system. The
resultant signal corresponding to each field (e.g., radiative
emission from the target state) is subsequently detected, and
its overall strength provides a measure of the efficacy of the
field. All but the most successful fields are discarded (i.e.,
through selection pressure), and an evolutionary algorithm
subsequently designs a new generation of candidate solutions
based upon attributes of the selected successful fields. This new
collection of trial fields is then introduced into the sample,
and the feedback process leading to iterative refinement of
the optimal field continues until a reasonable convergence
criterion is reached. The defining advantage of this strategy
is that only the most rudimentary knowledge of nuclear
transition energies and state couplings are needed in order to
properly select the laser frequencies. The adaptive learning
process is model free and thus incorporates all available
state-to-state couplings, dipolar and otherwise. Additionally,
the algorithm automatically adapts the pulse form to account
for any experimental uncertainties between the photon source
and target.

Successful utilization of AFC is predicated upon a high duty
cycle of laser operation and signal acquisition. For instance, the
Linac Coherent Light Source (LCLS) at the Stanford Linear
Accelerator Center (SLAC) generates hard x-ray laser pulses
at a repetition rate of 120 Hz [25]. Similarly, the planned
European x-ray free-electron source (XFEL) will operate at
27 kHz [26]. These repetition rates are favorable for adaptive
feedback control techniques, provided that signal integration
times are reasonable (see forthcoming discussion).

(2) Laser specifications. Although most nuclear excited
states lie at energies well beyond the accessible range of
any near-future laser sources, several nuclei possess long-
lived (microseconds to nanoseconds), excited states within
approximately 10 keV of the ground state, which corresponds
to a photon wavelength of λ � 0.12 nm. Such hard x-ray
photons are only currently available with free-electron laser
(FEL) sources. Yet, even with photon sources that enable
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resonant interaction, very high peak intensities are necessary
in order to overcome the intrinsically small interaction dipoles.
Last, as with all coherent control experiments, the field action
must be exerted on a coherent time scale for the system.
Consequently, ultrafast, high-intensity, coherent hard x-ray
light sources are obligatory for direct nuclear quantum control.

Several currently available and planned free-electron laser
sources are able to resonantly drive nuclear transitions below
10 keV. For instance, the currently functioning LCLS source at
SLAC can operate over the window 0.15 nm � λ � 1.5 nm,
which enables direct excitation of nuclear transitions below
8.2 keV [25]. Likewise, the XFEL facility will be able to
produce a maximum photon energy of 12.4 keV (λ = 0.1 nm).
The photon energy of these facilities is broadly tunable through
adjustment of both the electron beam energy and the magnetic
field strength of the undulator. Thus, any nuclear transition
in the interval 1–10 keV can be directly accessed with these
sources.

Due to the extraordinarily short length scales inherent
in nuclei (on the order of 10−15 m), direct radiation-matter
coupling strengths are quite small. Consequently, in addition
to the requisite hard x-ray photon sources, very high laser
intensities are concurrently mandatory to efficiently populate
nuclear excited states. For example, the peak electric field E0

necessary to directly induce a complete, resonant population
transfer between the ground state and the target excited state
(i.e., a π pulse) is given by E0 = πh̄/μ1τ , where τ is the
pulse duration, and the transition electric dipole moment μ1

is on the order of 10−34 C m. Assuming a τ � 100 fs pulse,
this inversion is achieved with an electric field strength of
E0 ∼ 3 × 1013 V/m, which corresponds to a peak intensity
of I0 ∼ 1 × 1020 W/cm2. The laser radiation at LCLS is
capable of delivering a peak power of 8 GW at λ = 0.15 nm
[25]. A focal diameter of 2 μm is readily achievable with
beryllium lenses at the facility, which provides a peak intensity
of I0 = 2.5 × 1017 W/cm2. Although less than the intensity
necessary for full inversion, this peak intensity would permit
meaningful control within the perturbation limit.

One possibility for further intensity augmentation is accel-
eration of the target nuclear ion into the control laser beam at
relativistic velocities [2,4,27]. In the rest frame of the nucleus,
the control electric field strength is augmented to EN =√

(1 + β)/(1 − β)E0, where β = v/c (Lorentz transformation
of the electric field). Hence, the pulse peak intensity in the
nuclear rest frame is increased to IN = [(1 + β)/(1 − β)]I0.
Target acceleration also blueshifts the perceived photon fre-
quency νN in the nuclear frame via the relativistic Doppler
shift to νN = √

(1 + β)/(1 − β)ν0. Thus, target acceleration
into the x-ray pulse potentially allows for the driving of
nuclear transitions with resonant energies higher than 10 keV;
alternatively, target acceleration enables the use of more
modest photon energies (e.g., 780-nm Ti:sapphire laser pulses)
to resonantly excite low-lying nuclear states. In addition to
increasing the effective laser-pulse intensity, the parameter
β may be chosen so that the blueshifted photon frequency
matches the resonant energy of a desired transition. However,
in addition to the increase in experimental complexity incurred
by ion acceleration, the use of an ion beam instead of a solid foil
target decreases the target number density by orders of magni-
tude, which dramatically increases the signal acquisition time.

The pulses generated by free-electron laser systems are
naturally ultrashort (τ � 100 fs), which stems from the high
gain associated with a spatially compressed electron bunch.
As a result, all of the x-ray photons may be delivered to the
nucleus on a coherent time scale. Because the radiation of a
free-electron laser builds up from noise (self-amplified spon-
taneous emission) rather than a coherent seed, the temporal
characteristics of the pulse are somewhat chaotic, and as a
result, these x-ray pulses possess a coherence time shorter
than the actual pulse duration. For instance, the x-ray pulses
at the LCLS facility consist of several hundred individual
spikes whose temporal structure varies on a shot-to-shot basis
[25]. Consequently, such rapid decoherence may affect both
the degree of quantum system control and, upon averaging,
produces a blurred image of the control landscape structure.

Finally, we note that the first excited nuclear state of
thorium-229 (229

90Th) lies only 7.6 eV above the ground state
[28]. Direct population of this state through a M1 transition
could potentially be controlled with up-converted, shaped
femtosecond light sources. Since this excitation energy is
below the second ionization energy of atomic thorium, it
should be possible to probe the nuclear excitation probability
through observation of the electronic hyperfine spectroscopic
structure. Unfortunately, however, ultraviolet emission from
this nuclear excited state has not been directly observed,
which currently precludes estimating the requisite control field
strengths.

(3) Pulse engineering. The implementation of AFC
methodologies is incumbent upon the availability of pulse-
shaping technology in the spectral region of interest. The vast
separation of energy levels (�E � 10 keV) that characterize
nuclear shell levels renders excitation of multiple eigenstates
(e.g., ladder climbing) within the pulse bandwidth impossible
with currently envisaged sources. Furthermore, the extraordi-
narily high field strengths already necessary for one-photon
interaction practically dismiss the possibility of multiphoton
excitation. Hence, initial direct nuclear control studies would
likely entail simple goals within an effective two-level system
and might include efficient population transfer or an extension
of nuclear spin techniques (NMR) to the realm of nuclear
shell excitation for the creation of coherences. Concentrating
only on two-level systems also eliminates the complexities
of E1 and M1 transitions simultaneously driven by the same
control field. Accordingly, the creation of pulse sequences
with a variable number of subpulses and spacings is of prime
interest.

Electrons are injected into the LCLS accelerator from a pho-
tocathode driven by a frequency-tripled 780-nm Ti:sapphire
laser pulse [25]. Although high electron peak currents are
necessary for efficient gain in the undulator, the initial electron
bunches are not created with a spatial extent equal to that
of the final x-ray pulse length (i.e., ∼30 μm for a 100-fs
pulse); rather, they are created with a much larger spatial extent
(approximately 3 mm, corresponding to a ∼10-ps excitation
pulse) in order to avoid space-charge effects, and the electron
bunch is spatially recompressed to the final width with a
magnetic chicane only after reaching relativistic velocities.
It is relatively straightforward to temporally sculpt laser-pulse
sequences consisting of multiple subpulses, each of several
picoseconds duration. Since the longitudinal photoelectron

053429-7



WONG, GRIGORIU, ROSLUND, HO, AND RABITZ PHYSICAL REVIEW A 84, 053429 (2011)

distribution basically follows that of the exciting laser pulse,
it should be feasible to extend well-established Ti:sapphire
pulse-shaping methodologies for the creation of multiple
electron bunches with set spatial separations. Upon entering
the undulator, this controlled spatial distribution of electron
bunches is translated into an x-ray pulse sequence. Toward
this end, the LCLS is already developing the capability to
create multiple electron bunches with variable delays. While
x-ray pulse sequences with variable delay can be generated
with the front-end photoinjection system, pulse shaping of
the Ti:sapphire drive laser is not able to control the relative
phase between the eventual x-ray subpulses. Yet, due to the
diminished coherence time even within a single x-ray pulse,
this constraint is likely of minimal consequence.

While indirect x-ray pulse shaping is feasible, all of the
experimental constraints (e.g., finite bandwidth, fixed central
photon energy, limited temporal coherence, etc.) will likely
force a distorted path over the intrinsic nuclear control search
landscape described in Sec. IV. Realization of nuclear control
may entail an interplay between coherent and incoherent (e.g.,
optimal temporal energy deposition) control strategies. As
such, utilization of evolutionary-guided adaptive feedback
control strategies will likely be necessary for arbitrary ma-
nipulation of nuclear excitation probabilities.

(4) Transition yield detection. The relative degree of
excitation into the targeted nuclear state is most readily
determined through observation of radiative emission (i.e., x-
rays or γ -rays) from that state. Coherent atomic and molecular
control experiments are generally unable to ascertain absolute
transition yields and rather seek to increase the relative
transition probability. Similarly, x-ray or γ -ray emission
provides a convenient means for assessing the relative success
of a pulse shape in exciting the target state, and laser-driven
nuclear control would seek to increase radiative emission from
the target state as much as possible.

As outlined above, incorporation of AFC strategies relies
on signal acquisition (e.g., detection of the radiative emission)
in a timely manner. An order of magnitude estimate of this
emitted photon flux is possible utilizing parameters of existing
free-electron laser systems. Assuming coherent excitation of
the nuclear ensemble (i.e., the pulse duration is significantly
shorter than either the dephasing or relaxation time), a
transition electric dipole moment of about 10−34 C m, and
a maximum peak intensity of I0 � 2.5 × 1017 W/cm2 (LCLS
parameters), the transition yield for resonant nuclear excitation
is Pi→f ∼ 2.4 × 10−3. If an atomic nucleus is chosen such
that the lowest-energy transition is directly accessible with
the x-ray photon energy (hν � 8.2 keV), a solid foil sample
may be utilized, which has a volume density of about
1022 nuclei/cm3. With a spot diameter of 2 μm at the
laser focus and a foil thickness of 1 μm, approximately
3 × 1010 nuclei interact with the x-ray pulse. Correspondingly,
∼7 × 107 nuclei are excited into the first excited shell state per
laser pulse. Assuming a laser repetition rate of 120 Hz and a
radiative emission yield of 1.0, ∼3 × 109 x-ray photons are
emitted each second. With a reasonable detector, this photon
flux should permit incorporation of adaptive feedback control
methodologies on an acceptable time scale.

Due to the fact that the emitted radiation occurs at the
same wavelength as the control pulse, time separation of

these two signals is necessary; however, since nuclear states
are generally long-lived (τ1/2 ∼ ns), it is straightforward to
separate the emitted γ rays or x rays from the excitation
pulse with time gating of the detector. Finally, as alluded
to above, for instances in which the nuclear excitation pulse
does not ionize every electron, a time-delayed probing of the
electronic-nuclear hyperfine splittings may provide a metric
of the efficiency of the nuclear excitation.

VI. CONCLUSIONS

In summary, this work examined the plausibility of direct
optimal manipulation of laser-driven nuclear transitions within
the context of quantum control. Specifically, the theoretical
formalism for coherent control of atomic and molecular
systems was extended to nuclear transitions. With the aid of
a connectivity graph analysis, the controllability of nuclear
systems utilizing both electric dipole and magnetic dipole
transitions was demonstrated. Upon establishing the likely
controllability of nuclear dynamics, the generic topology of
the control landscape was examined. The analysis revealed that
in the case of unconstrained controls, the landscape possesses
only critical values that correspond to perfect or null control.
Accordingly, under unconstrained conditions, climbing the
landscape to a global maximum in the laboratory entails
navigating a fitness landscape with no hindering suboptimal
traps. Due to the large landscape Hessian null-space, the
quantum control of nuclei enjoys intrinsic robustness to noise
in the immediate vicinity of an optimum. Collectively, these
results imply that the transition probability landscape is very
attractive for performing experimental optimal nuclear control.

After establishing these theoretical foundations, we ad-
dressed the various technological hurdles that must be over-
come in order to implement the principles of nuclear quantum
control in the laboratory. While existing free-electron laser
facilities are able to resonantly interact with nuclear transitions
below 10 keV, implementation of high-yield adaptive feedback
control is not currently feasible due to limits on both the peak
pulse intensities and the capability for creating arbitrary x-ray
pulse sequences. Nonetheless, fundamental studies exploring
the direct interaction of energetically accessible nuclear two-
level systems with ultrafast x-ray pulses is presently possible.
Such studies would provide the groundwork for future control
experiments as laser-pulse-shaping capabilities and temporal
coherence improve.

Due to the extreme photon energies and field strengths
necessary for direct interaction, present nuclear studies utilize
laser-accelerated high-energy particles (e.g., electrons, pro-
tons, and neutrons) or Bremsstrahlung radiation to indirectly
induce nuclear excitations and reactions with resonant energies
as high as several tens of MeV, including photodisintegration
and fission [3]. A basic distinction from the work in this paper
is that these interactions (radiation matter or collisional) are
incoherent. Yet it has been demonstrated that quantum control
may also operate in this regime dominated by incoherent
interactions [29], and the use of incoherent optimal control
for even modest increases in the yield of these relatively
low-efficiency processes would create important opportuni-
ties for the study and manipulation of high-energy nuclear
dynamics and merits further study. Of particular interest is
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the possibility of controlling the population or depopulation
of long-lived isomeric states, which may provide a pumping
mechanism for γ -ray lasers as well as the means to store energy
in nuclear batteries (see [30] for example). Incoherent control
strategies may also lead to increased photodisintegration
and fission yields, with important applications such as the
neutralization of hazardous radioactive waste and prospec-
tive next-generation energy sources [31]. Incorporation of
incoherent control strategies will also be beneficial in the
context of direct laser control since currently available x-ray
photon sources exhibit limited temporal coherence. In the end,
efficient manipulation of nuclear dynamics will likely rely on
an amalgam of coherent and incoherent control techniques.

In conclusion, the proposed extension of coherent control
methodologies to the nuclear scale offers an attractive frame-
work for driving laser-induced nuclear excitations. Such stud-
ies should also provide a means for increased understanding of
the structure and dynamical evolution of the atomic nucleus.
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