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Multiple ionization of Ar, Kr, and Xe in a superstrong laser field
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We report the numerical calculation of Ar9+ · · · Ar13+, Kr13+ · · · Kr17+, and Xe19+ · · · Xe23+ ion yield in the
laser field with intensity exceeding 1019 W/cm2. The results of the calculations agree with the experimental
data [K. Yamakawa et al., Phys. Rev. A 68, 065403 (2003)] (for the Ar ions) or qualitatively (for the Kr ions).
The theoretical results disagree with the experimental data for the Xe ions. We discuss the possible influence
of the relativistic effects on this disagreement between theory and experiment. We obtained the approximation
formula for the position of the maximum ionic population with the given ionization multiplicity Z depending
on the radiation intensity. This position is described by the power function of Z; the exponent is determined by
the dependence of sequential ionization potentials on Z value. We discuss the dependence of the approximation
formula parameters on the value of the FWHM of the laser pulse.

DOI: 10.1103/PhysRevA.84.053424 PACS number(s): 32.80.Fb

I. INTRODUCTION

In recent years, the formation of multiply charged atomic
ions (MCI’s) in a superstrong laser field with an intensity up to
1019 W/cm2 has been actively studied in experiments [1–12].
In Refs. [3,5] multiply charged Xe23+ ions which are record-
breaking for the optical frequency fields have been obtained,
and in Ref. [11] Xe24+ ions have been obtained.

Superstrong laser radiation has attracted increased interest
due to the manifestation of the relativistic effects in these
fields [13]. The first emergent relativistic effect is connected
with the influence of the magnetic component of the laser
radiation light field on a free electron motion. The trajectory
of the free electron motion is distorted under the influence of
the magnetic field. Therefore, the rescattering processes that
were connected with the returning of the electron to the parent
ion and were of importance in the formation of the multiply
charged ions in linearly polarized fields with less intensity [14]
lose their importance now. Experimental verification of the
rescattering suppression due to relativistic effects at ionization
multiplicity higher than 8 was noted in Refs. [1,2,5] and was
examined in Ref. [4]. As the rescattering process ceases to
dominate, the formation of the multiply charged ions occurs
due to the direct laser field impact on atoms or ions.

Single ionization is described well by the Ammosov-
Delone-Krainov (ADK) model [15–18], which is substantially
single-body. References [19,20] are devoted to the relativistic
generalization of this model. However, the probabilities of
multiply charged ion formation are described poorly by the
ADK model. We have developed the many-body theory
of tunnel ionization earlier in Refs. [21–26]. Within the
framework of this theory, it has been shown that for the ions
of multiplicity 2 and higher the inelastic tunnel effect (ITE)
appears to be quite essential, allowing to take into account
the filling of the ion excited states within the intermediate
stages of the process [23,24]. In the fields with FWHM less
than 5 fs, the collective tunnel effect can become dominant
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when some electrons are removed from an atom or an ion
simultaneously [25,26].

In Refs. [25,26], general expressions are presented for the
rate of the many-body tunnel ionization of ions with regard
to the p and d shells of atoms and ions, and the solution
method of the appropriate kinetic equations is stated. Herewith
inelastic and collective tunnel effects, as well as the fast
relaxation of magnetic quantum numbers of electrons due to
spin-orbit interaction (m relaxation) [6], have been taken into
account. The aim of this work is the comparison of the results
obtained within the framework of the many-body theory with
the experimental data from Refs. [3,5], where the formation of
Ar9+ · · · Ar16+, Kr13+ · · · Kr19+, and Xe17+ · · · Xe23+ MCI’s
by the linearly polarized pulse with the central wavelength
800 nm and the FWHM 25 fs is investigated. The results of the
calculations and comparison with the experiment are given in
Sec. II.

In Sec. III the approximation formula for describing the
position of the maximum of the formation probability of
the ions with the specified multiplicity Z depending on the
radiation intensity is derived. The existence of this maximum is
due to the competition of the process of increasing the number
of the multiplicity Z ions, formed from the ions with less
multiplicity (Z − 1), and that of decreasing their number due
to the formation of the ions with higher multiplicity (Z + 1).
A similar approximation formula was proposed in a recent
paper [12]; its accuracy, however, is not sufficiently high, as is
demonstrated in Sec. III.

The atomic units (h̄ = me = e = 1) are used hereafter,
except in specified cases.

II. KINETIC EQUATIONS

According to Refs. [23–26], the formation of multiply
charged ions due to the tunnel effect is a multichannel cascad-
ing process. In conditions of the experiments from Refs. [3,5]
it includes single-electron tunnel cascading transitions which
can be accompanied by ionic core excitation.

Multiple ionization of neutral atoms in the tunnel mode by
a laser pulse is described by the set of the kinetic equations for

053424-11050-2947/2011/84(5)/053424(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.68.065403
http://dx.doi.org/10.1103/PhysRevA.84.053424


ALEKSEI S. KORNEV, ELENA B. TULENKO, AND BORIS A. ZON PHYSICAL REVIEW A 84, 053424 (2011)

the populations of various ionic states Cf [23],

dCf

dt
=

f −1∑
f ′=0

Wf →f ′(t)Cf ′ −
ftot∑

f ′=f +1

Wf ′→f (t)Cf , (1)

f = 0,1, . . . ,ftot,

C0(−∞) = 1, C1(−∞) = · · · = Cftot (−∞) = 0. (2)

Indices f , f ′ in Eqs. (1) enumerate the ionic states.
Wf ′→f (t) is the rate of tunnel transition from state |f ′〉 to state
|f 〉 taking into account the laser field F nonmonochromaticity
by introducing the pulse envelope F (t). Equations similar to
(1) have been used in a recent study [30] to describe multiple
ionization by free electron laser radiation.

In order to obtain the explicit form of Wf ′→f (t), the
appropriate rate of tunneling in the monochromatic linearly
polarized laser field with the amplitude F [25] is taken as the
basis:

Wκlm(F ) =
√

6

π

(2l + 1)

2m+1m!

(l + m)!

(l − m)!
C2

κlQ
2κ2

×
(

2Fa

F

)2ν−m− 3
2

exp

(
−2Fa

3F

)
. (3)

Here, l and m are the orbital and magnetic quantum numbers
of the electron, respectively:

κ = √
2Ej , Ej = E

(0)
j + �j, Fa = κ3, ν = Z/κ,

E
(0)
j is the j th ionization potential of the parental atom or ion,

�j is the energy of the core excitation, Fa is the residual ion
electric field strength on the Bohr orbit, Z is the charge of the
residual ion, and Q is the overlap integral. The dimensionless
constant Cκl in expression (3) is determined by the asymptotic
behavior of the single-electron wave function of a free atom
(or an ion). For p and d shells the overlap integrals have been
calculated in Refs. [23,25,26]. Many-body effects are taken
into account by choosing the �j and Q parameters.

Hereafter we will be interested in the ionization of the
deep shells at laser intensity higher than 1017 W/cm2. The
total ionization of the outer shells of the neutral atoms
occurs in the range 1014–1016 W/cm2 [23,24]. Therefore
all atoms in the pulse front can be regarded to be ionized
up to the term l4l+2(1S0). Thus the states |lk(αSL)JMJ 〉
correspond to the indices f and f ′, where L and S are the
total orbital momentum and the spin, respectively, of the
atomic shell containing k electrons with orbital momentum
l; J and MJ are the total angular momentum of the shell
( J = L + S) and its projection on the polarization vector
of the laser radiation, respectively; α are the rest quan-
tum numbers. In particular, f = 0 should be understood
here as the state |[Ar8+]2p6(1S0)00〉, |[Kr8+]3d10(1S0)00〉,
|[Xe8+]4d10(1S0)00〉, or |[Xe18+]4p6(1S0)00〉, etc. The quan-
tity Cf should be regarded as the ratio between the ionic
concentration nf in the state |f 〉 and the concentration of
neutral atoms ntot in a gaseous target (or n0 = ntot in the pulse
front):

Cf (t) = nf (t)/n0(−∞),
ftot∑
f =0

nf (t) = n0(−∞).

The dependence of the laser intensity on the time of a laser
pulse is chosen in the Gaussian form,

I (t) = I exp

[
− t2

τ 2
ln 2

]
, (4)

where I is the peak intensity and τ is the FWHM. Remember
that the field amplitude F = 1 a.u. corresponds to the intensity
of linearly polarized radiation 3.51 × 1016 W/cm2.

At the peak intensity of the linearly polarized laser radiation
�1016 W/cm2 the photoelectron trajectory becomes 8-like due
to the Lorentz force effect [27]. Rescattering on the parental
ion will be unlikely, as is demonstrated in the experiments
[1,2,4,5]. We can neglect the rescattering effects since the ions
of high multiplicity (8 . . . 24) are created at the intensities
from the range 1017–1020 W/cm2. Thus, in the present work,
formation of MCI’s is regarded as a result of the direct impact
of the laser radiation on atoms and ions.

The result of integrating the kinetic equations is a set of
values Cf (+∞) corresponding to the concentrations in each
ionic state after the laser-pulse completion.

It is important that the number of cascading channels grows
dramatically with the increase in the ionization multiplicity. In
addition, the emitted electrons may have various projections
of the orbital momentum m, leading to further branching of
the cascading process and, consequently, to an increase in the
number of ionization channels. For example, calculation of the
Kr17+ ion formation involves 1009 ionic states in Eqs. (1), and
the number of the possible ionization channels exceeds 105.

In the present work the energy levels necessary for calcu-
lations are taken from the appropriate database [28]. In the
absence of these data (for krypton and xenon), the appropriate
parameters are simulated using the AUTOSTRUCTURE code [29].
The output parameters Cf (+∞) are the functions of the
maximum intensity in the pulse (4). The calculation results
mentioned below are low-sensitive to the accuracy of the
energy level positions. In particular, a level variation of 5%
with respect to the result simulated by the AUTOSTRUCTURE

code does not significantly change the ionization probabilities
presented below in Fig. 2.

A. Ionic populations

Let the ionic charge be equal to Z. Then we obtain the
population of such a charged state after pulse completion
by means of summing up the appropriate populations for
multiplets |f (Z)〉,

C(AZ+,I ) =
∑
f (Z)

Cf (Z)(I ). (5)

For the Kr9+ · · · Kr18+ ions and FWHM = 25 fs, the plots
of dependence of various charged-state populations with d

shell on the radiation intensity are presented in Fig. 1. The
results are divided into two groups: (i) those obtained by taking
into account all sequential single-electron inelastic tunneling
transitions (at such FWHM the influence of the collective
tunnel effect is negligibly small [25,26]) and (ii) those obtained
by taking into account sequential single-electron tunneling
transitions only between the ground states of the multiply
charged ions (the ADK model). For ion multiplicity equal to
10 and higher, the substantial shift of the population maxima
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FIG. 1. (Color online) The total populations of the charged states
of krypton as functions of the peak intensity of a linearly polarized
laser pulse I (FWHM = 25 fs). Solid lines: the many-body model.
Dashed lines: the ADK model.

and of the plot form is noted, if inelastic channels are taken
into account. The possibility of the further ionization of Kr18+
up to the 3p shell is not taken into consideration.

B. Close-to-real intensity distribution

Let us calculate the MCI yield in the case of the close-
to-real distribution of the laser intensity corresponding to the
focused beam with the diffraction taken into account. In most
experiments (see, e.g., Ref. [6]) the ions are extracted from the
total focal volume rather than from its separate elements [31].
Therefore, in addition to the population, it is necessary to
obtain the absolute number of ions in the given states in the
focal volume.

Let us consider a focused laser beam with the Gaussian
distribution of the peak intensity over the cross-section
diameter,

I (r) = Ib(z) exp

[
− 2r2

r2
b (z)

]
,

where

rb(z) = r0[1 + (z/z0)2]1/2,

Ib(z) = I [1 + (z/z0)2]−1,

where r0 is the beam waist radius, I is the peak intensity
of the beam axis in the waist (the absolute intensity), z0 is
the Rayleigh range given by z0 = πr2

0 /λ, and λ is the laser
central wavelength. If we integrate C(AZ+,I (r)) over the
beam volume, we will obtain the following integral spatially
averaged ionic yield:

6P (AZ+,I ) = ntot

∫
C(AZ+,I (r)) d3r = ntot

λ

(
πr2

0

)2

×
∫ ∞

0
dζ (1 + ζ 2)

∫ I/(1+ζ 2)

0
C(AZ+,I ′)

dI ′

I ′ ,

(6)

where ζ = z/z0. Quantity (6) defines the absolute number of
Z-charged ions within the focal volume.

The relative yield of the above-listed MCI’s in the beam
with absolute intensity 2.6 × 1019 W/cm2 is presented in
Fig. 2. The experimental data are taken from Ref. [3].

FIG. 2. The relative yield of MCI’s with the given multiplicity Z

in the focused Gaussian beam. The central wavelength is 800 nm;
the absolute intensity is 2.6 × 1019 W/cm2; the FWHM is 25 fs.
Solid lines: the many-body model. Dashed lines: the ADK model.
Experimental data are taken from Ref. [3]. The experimental points
shown in each figure are normalized to the calculated Ar11+, Kr15+,
and Xe19+ yields, respectively, within the framework of the many-
body model.

The results of calculation within the framework of the
many-body ITE model agree with the experimental data
for Ar ions quantitatively. For the Kr ions the theoretical
results slightly exceed the limits of the experimental errors.
Nevertheless, the theoretical data can be considered to be
in agreement with the experimental data qualitatively. The
experimental data for Xe21+, Xe22+, and Xe23+, which appear
underestimated compared to the many-body theory, can be
explained by the lengthening of the trajectory of the tunnel
electron motion due to relativistic distortion of this trajectory
by the magnetic field. Obviously, such lengthening of the
sub-barrier trajectory results in decreasing the tunneling rate.
As a result, the theoretical plots in Fig. 2 for Xe21+, Xe22+,
and Xe23+ ions will descend and approach the experimental
values. Note that in Refs. [19,20], the nonrelativistic tunneling
regime is indicated if the ionization multiplicity is �20.
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FIG. 3. The population of the Kr10+ charged state as a function
of the peak intensity of the linearly polarized radiation with
FWHM = 25 fs.

The results obtained with the single-body ADK model
do not reproduce qualitatively the cited experimental data
even if the absolute intensity of the pulse is regarded as
a fitting parameter. Note that for the interpretation of the
obtained experimental data, the authors of Ref. [3] had to
change the value of the absolute intensity of laser radiation in
the ADK model significantly. For example, the values 1.3 ×
1019 W/cm2, 4.1 × 1018 W/cm2, and 3.5 × 1018 W/cm2 were
taken for argon, krypton, and xenon, respectively.

Comparison with the experimental data from Ref. [5] is
difficult because of the large dispersion of the experimental
values.

III. DEPENDENCE OF POPULATION MAXIMUM ON
IONIC CHARGE

Let us consider the dependence of the charged-state
population with the specified Z on the radiation intensity I

in a spatially homogeneous beam in more detail (Fig. 1).
Every function (5) has its maximum at some point Imax

shown in Fig. 3, e.g., for the Kr10+ ion. In this section
the dependence of Imax on the ionization multiplicity Z is
investigated. In Ref. [12] the empirical dependence Imax ∼ Z2

is obtained for Xe1+ · · · Xe25+ ions in the case of circular
polarization of radiation by fitting this dependence to the
results calculated within the framework of the ADK model
by using the least-squares method. As is clear from the results
mentioned in the preceding section, the ADK model describes
the formation of the MCI’s unsatisfactorily even qualitatively.
In this section, a different approximation formula, which can
be supported theoretically, is obtained. For simplicity let us
consider the linearly polarized radiation and the ionization
multiplicity higher than 8, when the rescattering is suppressed
by the magnetic component of the laser field.

A. Three-ion ionization model

Let us estimate the dependence of Imax on the ionization
multiplicity Z and on the FWHM τ within the same shell. Let
us consider the simplest cascading model of the successive
ionization,

A(Z−1)+ W01(t)−→ AZ+ W12(t)−→ A(Z+1)+, (7)

which allows to reproduce the mechanism of the population
maximum formation qualitatively. Let us designate the popu-
lations of the appropriate charged states as Ci(t), i = 0,1,2,
and the transition rates between them as Wij (t). The kinetic
equations (1) for the cascade (7) take the form

dC0

dt
= −W01(t)C0(t),

(8)
dC1

dt
= W01(t)C0(t) − W12(t)C1(t),

dC1

dt
= W12(t)C1(t),

(9)
C0(−∞) = 1, C1(−∞) = C2(−∞) = 0.

The set of equations (8) with initial conditions (9) is solved
by quadratures. Let us give the expression for C1:

C(AZ+,I ) = C1(+∞)

= exp

[
−

∫ +∞

−∞
W12(t) dt

] ∫ +∞

−∞
W01(t)

× exp

{∫ t

−∞
[W12(t ′) − W01(t ′)] dt ′

}
dt. (10)

The expressions for the transition rates (3) depending on
the pulse envelope (4) have sharp maximum at t = 0,

Wij (t) ≈ Wij exp

(
−2Fa

3F

)
exp(−t2/τ 2

∗ ), (11)

where

τ 2
∗ = 3F

Fa ln 2
τ 2, (12)

where F is the electric field peak intensity in the laser pulse.
The dependence of the preexponential factor Wij on time will
be neglected and considered to be equal for all transitions:

W01 ≈ W12 ≈ w.

Let us approximate the sharp maximum in (11) by the Dirac
δ function:

Wij (t) ≈ τ∗
√

π w exp

(
−2Fa

3F

)
δ(t). (13)

The factor τ∗
√

π is introduced into this equation so that
the integrals of functions (11) and (13) with infinite limits are
equal. The dependence of the factor κ on Z in Eq. (3) is well
approximated by the power law,

κ ≈ βZδ, (14)

where δ ≈ 1 (Fig. 4). Thus,

Fa ≈ β3Z3δ. (15)

The substitution of (15) into (12) and (13) leads to the
expression

Wij (t) ≈ wτ

√
3πF

Z3δ
ij β3 ln 2

exp

[
− 2Z3δ

ij β3

3F

]
δ(t), (16)

where Z01 = Z, Z12 = Z + 1.

053424-4



MULTIPLE IONIZATION OF Ar, Kr, AND Xe IN A . . . PHYSICAL REVIEW A 84, 053424 (2011)

FIG. 4. The dependence of the wave number of the bound electron
on the charge: bullet points show the results of the calculation using
the AUTOSTRUCTURE code; solid line corresponds to the dependence
(14) fitted by the least-squares method.

Substituting (16) into (10) and assuming that Z 
 1 gives

C(AZ+,I ) ≈ 2ζ exp

{
−ζ

[(
1 − 3δ

2Z

)
e−3δξ 2/Z + 1

]}
, (17)

where

ξ 2 = 2Z3δβ3

3F

 1, ζ = wτ

√
π ln 2

2

e−ξ 2

ξ
. (18)

Based on the first inequality (18), the first factor in the
square brackets (17) can be neglected leading to the quite
simple function

C(AZ+,I ) ≈ 2ζ e−ζ ,

approaching maximum at

ζ = ζmax = 1. (19)

As can be seen from (18), the quantity ζ substantially
depends on the ξ parameter. In order to provide fulfillment
of (19) with arbitrary F and Z relating to the same shell,
the quantity ξ = ξmax must be kept constant. This implies the
desired relation,

Imax = γZ6δ. (20)

The C(AZ+,Imax) values can be obtained as a result of the
numerical solution of the complete set of kinetic equations
(1). Thereafter, the value of the γ constant is obtained as the
result of fitting by the least-squares method. Let us note that
the exponent in (20) does not depend on the pulse FWHM and
the polarization of radiation. These parameters affect the value
of constant γ only.

FIG. 5. The plot of W−2(θ2).

The Imax(τ ) dependence is also of interest. It is obtained
on the basis of (18) from the solution of the transcendental
equation with the τ parameter,

wτ

√
π ln 2

2

e−ξ 2

ξ
= 1,

and is given by the Lambert W function [32]:

ξ 2
max = 1

2W [(wτ )2π ln 2]. (21)

Now the estimation (20) is generalized in terms of (21) in
the following way:

Imax = γ̃ Z6δW−2[(wτ )2π ln 2],

where γ̃ is the a τ -independent constant.
Let us consider the limiting cases of this formula. For short

pulses (w2τ 2 � 1),

Imax ∼ Z6δ(wτ )−4.

For long pulses (w2τ 2 
 1),

Imax ∼ Z6δ

[
ln z − ln ln z − ln ln z

ln2 z
− ln ln z

ln z
+ ln2 ln z

2 ln2 z

]−2

,

where z = (wτ )2π ln 2.
At decreasing FWHM τ the positions of maxima shift

monotonically to increasing intensities. The plot of depen-
dence of the maximum position on the parameter θ ∼ τ is
presented in Fig. 5.

B. Comparison of different parametrizations
of Imax(Z) dependence

Let the set of maximums Ii corresponding to N suc-
cessive ionization multiplicities Zi within the same shell
(i = 1,2, . . . ,N ) be obtained by the numerical integration of
(1). Let us choose

Iapprox = γZk (22)

as an approximation formula containing γ and k parameters.
For comparison between the Ii exact values and their approx-
imate values (22) the least-squares method in the logarithmic
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scale is used. Let us create the defect of approximation in the
following form:

ρ2
I (k,γ ) = 1

N

N∑
i=1

log2
10

(
γZk

i /Ii

)
. (23)

After minimization of (23) over γ at fixed k we obtain

log10 γ = [log10 I ] − k[log10 Z], (24)

where

[x] ≡ 1

N

N∑
i=1

xi

is the Gaussian symbol for the arithmetical mean.
Expression (23) is calculated for γ derived from (24) for

three different k values. In the fist case, the value of k is
determined numerically giving the unconstrained minimum of
the defect (23). This k value will be called optimal. It will
correspond to the best approximation in the form of (22). In
the second case it is assumed that k = 2 according to Ref. [12].
Finally, in the third case it is assumed that k = 6δ, which was
obtained in Sec. III A. Let us remember that parameter δ arises
as a result of the wave number κ approximation by Eq. (14).

Suppose the sequence of exact values κi corresponds to
the ionization multiplicities Zi . The parameters β and δ will
be determined by the least-squares method. Let us create the
approximation defect as follows,

ρ2
κ (δ,β) = 1

N

N∑
i=1

(βZδ
i − κi)

2, (25)

and find its constrained minimum over β at the given δ,

β = [Zδκ]/[(Zδ)2]. (26)

After the substitution of (26) into (25) the approximation defect
will depend only on δ. Its unconstrained minimum is found
numerically with respect to δ.

For estimation of approximation (22) at different k values let
us compare the approximation defect values ρI . The results of
analysis of different parametrizations (22) are given in Table I.
The plots of dependences (14) and (22) for the krypton and
xenon ions are shown in Fig. 6. Evidently, the value k = 6δ

slightly impairs the quality of the approximation (22). For
example, for the Kr9+ · · · Kr17+ ions, the approximation defect
at k = 6δ appears to be three times as much as at the optimal
k value. At the same time both above-mentioned methods of
approximation give approximately identical accuracy for the
Xe19+ · · · Xe23+ ions. It is explained by the higher charge of

TABLE I. Parameters of approximation (22).

Ions Kr9+ · · · Kr17+ Xe19+ · · · Xe23+

The optimal k 1.58 × 1012Z5.44 9.71 × 1012Z4.03

ρI 0.028 0.013
k = 6δ 8.48 × 1012Z4.74 1.90 × 1013Z3.84

ρI 0.068 0.015
k = 2 9.04 × 1015Z2 4.67 × 1015Z2

ρI 0.306 0.061

FIG. 6. The dependence of population maximum values Imax on
ionic charge Z for the Kr9+ · · · Kr17+ and Xe19+ · · · Xe23+ ions. Bullet
points correspond to the results of numerical integration of the kinetic
equation set (1) taking into account many-body effects. Continuous
lines correspond to the approximation (22) with different k values.
Solid line corresponds to the optimal k value; dashed line corresponds
to k = 6δ, and the δ parameter is derived from Eq. (14); dotted line
corresponds to k = 2. See explanations in Table I.

the xenon ions, for which the exponent in Eq. (3) appears to
be effectively higher with respect to the module than in case
of the krypton ions. As a consequence, approximation (13)
appears to be more reasonable for xenon than for krypton. The
difference between these two ways of approximation is due
to, on the one hand, the error under assumption (16) and on
the other hand, neglecting the rest channels excluded from the
three-ion model (inelastic tunneling, etc.).

The approximation parameter value k = 2 gives the value
of defect an order of magnitude higher compared to the above-
mentioned approximation methods. At the same time, using
k = 2 appears to be efficient for Z referring to the different
shells of the same ion [12].

IV. CONCLUSIONS

The performed calculations demonstrate that the computed
yield of Ar9+ · · · Ar13+ ions agrees with experimental data
quantitatively. The results of Kr13+ · · · Kr17+ ion formation
probability calculations are on the borders of experiment
errors. This can be considered as the qualitative agree-
ment between theory and experiment. Theoretical data for
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Xe21+ · · · Xe23+ ion formation lie above experimental values,
and the disagreement increases with the ion multiplicity
growth. In principle, this disagreement may be due to the non-
relativistic approximation in our theory. Taking into account
relativistic effects should result in decreasing the probability
of high multiplicity ion formation. This conclusion is based
on the fact that the relativistic effects distort the sub-barrier
electron trajectory. As a result, the trajectory lengthens and
the tunneling probability decreases [19,20]. We note that in
case this assumption is confirmed by relativistic calculations,
this would mean that in a superstrong light field the relativistic
effects for tunnel ionization become significant at ionization
multiplicity higher than 20. This multiplicity is much lower
than a typical relativistic nuclear charge equal to the inverse

value of the fine-structure constant, Z∗ = α−1 ≈ 137. We
should also pay attention to the fact that single-body ADK
theory significantly disagrees with the experimental data in all
cases.

The proposed simple parametrization of population maxi-
mum position dependence on ionization multiplicity and laser
pulse duration well reproduces the results of direct numerical
calculations.
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