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Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects
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The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems
in a static electric field, originally developed for the axially symmetric case [Phys. Rev. A 82, 023416 (2010)], is
generalized to arbitrary potentials. This approach is used to rederive the asymptotic theory of tunneling ionization
in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously
known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment
of the unperturbed system and, hence, applies to polar molecules. Accounting for dipole effects constitutes an
important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The
theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic
molecular ion HeH2+ in the 2pσ state.
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I. INTRODUCTION

An atom or molecule placed into a static electric field can
be ionized. In weak fields, the ionization occurs by tunneling
of an atomic electron through a potential barrier separating
the potential well inside the atom from the asymptotic region.
This is the tunneling regime. As the field grows, the barrier
becomes lower, and in sufficiently strong fields, the electron
can escape from the atom through a classically accessible
window over the barrier. This is the overbarrier regime.
The boundary between the two regimes naturally separates
the weak- and strong-field cases. An essential element of the
theory of field ionization in the time-independent framework
consists in recognizing the fact that, in the presence of an
external electric field, the atomic bound states turn into the
complex-energy eigensolutions to the stationary Schrödinger
equation satisfying the regularity and outgoing-wave boundary
conditions. Such solutions in the general context were first
introduced in [1] and are called Siegert states (SSs). In the
weak-field case, the imaginary part of the energy eigenvalues
is small, and the SSs originating from unperturbed bound
states represent slowly decaying quasistationary states. As
the field grows, the energy eigenvalues move deeper into the
complex plane, and eventually the SSs lose their physical
meaning as stationary states. All the characteristics of the
ionized electrons, e.g., the ionization rate and the transverse
momentum distribution (TMD) in the outgoing flux, can be
expressed in terms of the properties of the SSs, so the study of
the field ionization amounts to studying the SSs.

In addition to characterizing the ionization in a static
electric field, the properties of the SSs determine the dynamics
of ionization in the interaction of atoms and molecules
with low-frequency laser pulses. It should be noted that the
terminology commonly used in the time-dependent problem is
different from the static case: the field is regarded as weak only
if the laser-matter interaction can be treated perturbatively,
while in the tunneling regime, it is referred to as “strong.” The
tunneling regime of ionization by laser pulses is treated in the
Keldysh theory [2,3] and strong-field approximation [4–7]. In
spite of the name, these theories apply only in the weak-field

(in the static sense) case, which can be seen from the fact
that the weak-field asymptotics of the ionization rate and
TMD in a static field emerge in their formulation [3]. In
the adiabatic theory of ionization of atoms by intense laser
pulses, which was originally developed for a one-dimensional
model [8] and is currently extended to the three-dimensional
case [9], all parts of the theory, from the solution of the
time-dependent Schrödinger equation to the photoelectron
momentum distribution, are expressed in terms of the SS
originating from the initial bound state. To implement the
adiabatic theory, one must be able to construct the SS. This
theory is uniform in terms of the amplitude of the laser
field and applies to the tunneling as well as overbarrier
regimes, provided that the SS is calculated exactly. Thus, both
approximate analytical methods of constructing SSs in the
weak-field case and exact numerical techniques required in
the overbarrier regime are of interest for applications.

An efficient approach to constructing the SSs of atomic
systems in a static electric field in the single-active-electron
approximation based on the adiabatic expansion in parabolic
coordinates was proposed recently [10]. Parabolic coordinates
play a special role in the theory of field ionization because
both the asymptotic Coulomb tail of the atomic potential and
the interaction with the field allow separation of variables
in this coordinate system [11]. This enables one to expand
the SS eigenfunction in terms of adiabatic channels that are
coupled by the non-Coulombic part of the potential in the
atomic core and become uncoupled in the asymptotic region.
The multichannel problem can then be efficiently solved
numerically using the slow variable discretization method [12]
in combination with the R-matrix propagation technique [13].
In Ref. [10], the parabolic adiabatic expansion approach
was formulated and demonstrated by calculations for axially
symmetric potentials, which correspond to atoms and linear
molecules aligned along the direction of the electric field. One
of the goals of this paper is to generalize the formulation
of [10] to arbitrary potentials without any symmetry, that is, to
arbitrarily oriented molecules. The numerical implementation
of the generalized approach and its illustration by calculations
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of the orientation dependence of the ionization rate of the
hydrogen molecular ion will be presented elsewhere [14].

The parabolic adiabatic expansion approach [10] also
provides a new theoretical framework for the asymptotic
analysis of tunneling ionization in the weak-field limit (deep
tunneling regime). It is well known that the standard pertur-
bation theory can not yield the ionization rate; at the same
time, the problem can be treated using asymptotic methods,
as in the semiclassical approximation [11]. The application
of asymptotic methods to this problem was pioneered by
Oppenheimer [15] and Lanczos [16], but it took decades before
the correct weak-field asymptotics of the ionization rate for the
basic system of hydrogen in the ground state was obtained [11].
Later, similar results were obtained for a short-range potential
[17], an arbitrary state in a central atomic potential [18,19],
and an arbitrary state of the hydrogen atom [20,21]. These
results pertaining to atoms constitute the foundation of the
asymptotic theory of tunneling ionization. Their extension to
molecules was initiated in [22], where the asymptotics of the
ionization rate for a homonuclear model with two identical
short-range potentials was obtained. Very recently, the results
for this model in the heteronuclear case with two different
short-range potentials were reported [23]. An attempt to extend
the atomic results [18,19] to the general molecular case beyond
model treatment was undertaken in Ref. [24]. The formulas
for the ionization rate presented in Ref. [24] for axially
symmetric molecules aligned along the direction of the field
and arbitrarily oriented molecules were constructed by analogy
with the atomic case rather than derived from the Schrödinger
equation. As shown below, in addition to some inconsistency
from the viewpoint of the asymptotic theory in the latter case,
these formulas are lacking a very important physical factor: the
possible existence of a permanent electric dipole moment of
the molecule. Meanwhile, polar molecules are very abundant
and correspondingly important. The role of the dipole effects
in polar molecules was recognized in Ref. [23]. Recently,
dipole effects have attracted much attention in experiment
and theory on strong-field ionization [25–31] and high-order
harmonic generation [32–35]. A wish to clarify the situation
with molecules has prompted us to rederive the asymptotic
theory of tunneling ionization on the basis of the parabolic
adiabatic expansion approach. This is the main goal of this
paper.

The paper is organized as follows. In Sec. II A, we
generalize the formulation of the parabolic adiabatic expansion
approach [10] to arbitrary potentials. The derivation of the
weak-field asymptotics of the tunneling ionization rate is
presented in Sec. II B. The resulting formulas are compared
with previous theories in Sec. II C. The theory is illustrated
by comparison of the asymptotic formulas with accurate
numerical results in Sec. III. We first discuss the simplest
case of atomic hydrogen in the ground state, then consider a
set of model polar molecules, and then present the results for
the molecular ion HeH2+. Section IV concludes. The analysis
of the behavior of the different quantities under translations of
the origin of the coordinate system plays an important role in
the present theory. The choice of the coordinate origin in the
Schrödinger equation for the active electron is discussed in the
Appendix.

II. THEORY

A. Adiabatic expansion in parabolic coordinates

We consider a molecule treated in the single-active-electron
approximation interacting with an external static uniform
electric field F = F ez, F � 0. The stationary Schrödinger
equation for the active electron reads (atomic units are used
throughout the paper)[ − 1

2 � + V (r) + Fz − E
]
ψ(r) = 0, (1)

where the potential V (r) describes the interaction with the
frozen nuclei and all other electrons and the coordinate r
is measured from the center of mass of the molecule (see
Appendix). The internuclear configuration and orientation of
the molecule with respect to the field are represented by the
shape of the potential V (r) and can be arbitrary. The only
assumption regarding V (r) is

V (r)|r→∞ = −Z

r
, (2)

where Z is the total charge of the molecular ion. The direction
of the field is kept fixed, so the flux of tunnel-ionized electrons
is always directed toward z → −∞. We are interested in the
solutions to Eq. (1) satisfying the regularity and outgoing-wave
boundary conditions. Such solutions, called Siegert states,
exist only for a discrete set of generally complex values of the
electron’s energy E. The goal of this section is to formulate a
framework suitable for numerical construction and asymptotic
analysis of the SSs. Here, we generalize the parabolic adiabatic
expansion approach originally proposed in Ref. [10] for axially
symmetric potentials, which corresponds to atoms or linear
molecules aligned along the field, to any arbitrarily oriented
molecules.

It is convenient to use parabolic coordinates defined by [11]

ξ = r + z, 0 � ξ < ∞ (3a)

η = r − z, 0 � η < ∞ (3b)

ϕ = arctan
y

x
, 0 � ϕ < 2π. (3c)

We rewrite Eq. (1) in the form[
∂

∂η
η

∂

∂η
+ B(η) + Eη

2
+ Fη2

4

]
ψ(r) = 0, (4)

where

B(η) = ∂

∂ξ
ξ

∂

∂ξ
+ ξ + η

4ξη

∂2

∂ϕ2
− rV (r) + Eξ

2
− Fξ 2

4
(5)

is an operator acting on functions of ξ and ϕ and depending
on η as a parameter. For F > 0, this operator has a purely
discrete spectrum, and η is the only variable that can go
to infinity. The essence of the present approach consists in
treating η as a slow variable, like the internuclear distance in
the Born-Oppenheimer treatment of diatomic molecules [36]
or hyperradius in hyperspherical treatments of three-body
Coulomb systems [37,38] and chemical reactions [39,40]. We
emphasize that such an approach merely provides a convenient
adiabatic basis for expanding the solution to Eq. (4) and does
not imply any approximations as long as all nonadiabatic
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couplings are taken into account. The adiabatic basis is defined
by the equation

[B(η) − βν(η)]�ν(ξ,ϕ; η) = 0 (6)

supplemented by the regularity boundary condition at ξ = 0
and periodic boundary condition in ϕ. Here, ν is a discrete
multi-index enumerating the solutions. The eigenvalues βν(η)
and eigenfunctions �ν(ξ,ϕ; η) of B(η) also depend on η

as a parameter. For any η, the different eigenfunctions are
orthogonal and we normalize them by

〈�ν |�μ〉 ≡
∫ ∞

0

∫ 2π

0
�ν(ξ,ϕ; η)�μ(ξ,ϕ; η) dξ dϕ = δνμ.

(7)

Since the operator B(η) depends on E, the solutions to Eq. (6)
are generally complex. Note, however, that there is no complex
conjugation in Eq. (7): the operator B(η) is non-Hermitian but
symmetric. Consider Eq. (6) in the asymptotic region η → ∞.
By using Eq. (2), one can see that B(η) ceases to depend on η

as η → ∞:

B = B(η)|η→∞ = ∂

∂ξ
ξ

∂

∂ξ
+ 1

4ξ

∂2

∂ϕ2
+ Z + Eξ

2
− Fξ 2

4
.

(8)

The same holds for the solutions to Eq. (6). Let us introduce the
asymptotic adiabatic eigenvalues and eigenfunctions defined
by

βν = βν(η)|η→∞, �ν(ξ,ϕ) = �ν(ξ,ϕ; η)|η→∞, (9)

or

(B − βν)�ν(ξ,ϕ) = 0. (10)

This equation allows separation of variables, so the asymptotic
basis can be defined more explicitly. Because of the degeneracy
of the spectrum of B, the eigenfunctions of this operator are
not defined uniquely. One possible set of the eigenfunctions is

�nξ m(ξ,ϕ) = φnξ |m|(ξ )
eimϕ

√
2π

, (11)

where φnξ |m|(ξ ) and the corresponding eigenvalues βnξ |m| are
defined by[

d

dξ
ξ

d

dξ
− m2

4ξ
+ Z + Eξ

2
− Fξ 2

4
− βnξ |m|

]
φnξ |m|(ξ ) = 0,

(12a)

φnξ |m|(ξ )|ξ→0 ∝ ξ |m|/2, φnξ |m|(ξ )|ξ→∞ = 0, (12b)∫ ∞

0
φnξ |m|(ξ )φn′

ξ |m|(ξ ) dξ = δnξ n
′
ξ
. (12c)

Here, m = 0, ±1, ±2, . . . is the azimuthal quantum number
and nξ = 0,1,2, . . . enumerates the different solutions to
Eqs. (12) for a given value of |m|. The states �nξ ±m(ξ,ϕ)
with nonzero m are degenerate since βnξ |m| does not depend

on the sign of m. Thus, in the general case, we have

βν = βnξ |m|, (13a)

�ν(ξ,ϕ) =
{

�nξ 0(ξ,ϕ), m = 0
c|m|λ�nξ |m|(ξ,ϕ) + c∗

|m|λ�nξ − |m|(ξ,ϕ), m �= 0.

(13b)

The coefficients c|m|λ can be obtained by diagonalizing the
matrix of rV (r) in the subspace of the two degenerate states
for η → ∞, and λ = 1,2 enumerates the eigenvectors of this
matrix. Equations (13) show that in the asymptotic region the
multi-index ν is given by

ν = (nξ ,|m|,λ). (14)

By continuity, this classification of the solutions to Eq. (6) by
asymptotic quantum numbers can be applied to all values of
η. This specifies what will be meant by ν in the following.

The solution to Eq. (4) can be sought in the form

ψ(r) = η−1/2
∑

ν

fν(η)�ν(ξ,ϕ; η). (15)

By substituting this expansion into Eq. (4), one obtains a
set of ordinary differential equations defining the coefficient
functions fν(η):[

d2

dη2
+ Fη

4
+ E

2
+ βν(η)

η
+ 1

4η2

]
fν(η)

+
∑

μ

[
2Pνμ(η)

d

dη
+ Qνμ(η)

]
fμ(η) = 0, (16)

where the matrices

Pνμ(η) =
〈
�ν

∣∣∣∣ ∂�μ

∂η

〉
, Qνμ(η) =

〈
�ν

∣∣∣∣ ∂2�μ

∂η2

〉
(17)

represent nonadiabatic couplings. Taking into account Eq. (9),
these matrices vanish as η → ∞. It is convenient to introduce
a boundary of the coupling or core region ηc such that beyond
this boundary, all coupling terms in Eq. (16) can be neglected
within a desired accuracy. The uncoupled equations for η > ηc

can be written as[
d2

dη2
+ Fη

4
+ E

2
+ βν

η
+ O(η−2)

]
fν(η) = 0, (18)

where the explicit form of the term O(η−2) is immaterial for the
following discussion. For F > 0, the outgoing-wave solutions
to these equations satisfy

fν(η)|η→∞ = fνf (η), (19a)

f (η) = 21/2

(Fη)1/4
exp

[
iF 1/2η3/2

3
+ iEη1/2

F 1/2

]
. (19b)

Importantly, this asymptotics does not depend on βν , and
hence, apart from a constant coefficient fν , it is the same
for all channels. By substituting Eq. (19a) into Eq. (15), we
obtain

ψ(r)|η→∞ = η−1/2f (η)�(ξ,ϕ), (20)

where

�(ξ,ϕ) =
∑

ν

fν�ν(ξ,ϕ). (21)
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Thus, independently of the potential V (r), the outgoing-
wave solutions to Eq. (1) acquire a separable form in the
asymptotic region in parabolic coordinates. Equation (16) must
be solved subject to regularity boundary conditions at η = 0
and outgoing-wave boundary conditions (19) at η → ∞. This
is an eigenvalue problem. The real and imaginary parts of the
eigenvalue E define the energy and ionization width of the SS:

E = E − i

2
�. (22)

The eigenfunction is normalized by

1

4

∫ ∞

0

∫ ∞

0

∫ 2π

0
ψ2(r)(ξ + η) dξ dη dϕ = 1, (23)

which formally coincides with the normalization condition for
real bound states [11]. As can be seen from Eqs. (19b), (20),
and (22), ψ(r) exponentially grows as η → ∞. Therefore, the
integral in Eq. (23) should be regularized by deforming the
integration path in η from the real semiaxis into a contour in
the complex η plane (for more details, see [10]). We again note
that there is no complex conjugation in Eq. (23), which is a
general property of the theory of SSs [1,41–43].

The outgoing-wave boundary condition for Eq. (1) can be
also written in the form [10]

ψ(r)|z→−∞ =
∫

A(k⊥)eik⊥r⊥g(z,k⊥)
dk⊥

(2π )2
, (24)

where r⊥ = (x,y) = (r⊥ cos ϕ,r⊥ sin ϕ), k⊥ = (kx,ky) =
(k⊥ cos ϕk,k⊥ sin ϕk), and

g(z,k⊥) = e−iπ/122π1/2(2F )−1/6Ai(ζ ), (25a)

ζ = 2e−iπ/3

(2F )2/3

[
E − Fz − k2

⊥
2

]
. (25b)

Here, Ai(x) is the Airy function [44]. The function g(z,k⊥)
contains only an outgoing wave as z → −∞, and A(k⊥) is the
amplitude of the transverse momentum distribution of ionized
electrons in the outgoing flux. From Eq. (24), we have

A(k⊥) = 1

g(z,k⊥)

∫
ψ(r)e−ik⊥r⊥dr⊥

∣∣∣∣
z→−∞

. (26)

To calculate this integral, let us consider the asymptotics
defined by

z → −∞, r⊥ = O(|z|1/2), k⊥ = O(|z|0). (27)

In this limit, we have

ξ = r2
⊥

2|z| + O(|z|−1), η = 2|z| + r2
⊥

2|z| + O(|z|−1). (28)

By using Eqs. (19b) and (20), we obtain

ψ(r)

g(z,k⊥)

∣∣∣∣
z→−∞

= 1

|z|1/2
exp

[
ik2

⊥|z|1/2

(2F )1/2
+ iF 1/2r2

⊥
2|2z|1/2

]
�

(
r2
⊥

2|z| ,ϕ
)

. (29)

By substituting this into Eq. (26), the integral can be calculated
using the steepest descent method. The only saddle point
contributing to the integral is given by

r⊥ = |2z|1/2

F 1/2
k⊥, (30)

which agrees with Eq. (27). This saddle point has a simple
physical meaning [10]: the coordinate of an ionized electron
accelerated by the electric field at large times is (r⊥,z) =
(k⊥t, −F t2/2), independently of the initial conditions, which,
after eliminating the time t , leads to Eq. (30). By calculating
the integral in Eq. (26), we find

A(k⊥) = 23/2πi

F 1/2
�

(
k2
⊥
F

,ϕk

)
. (31)

The TMD is thus given by

P (k⊥) ≡ |A(k⊥)|2 = 8π2

F

∣∣∣∣�
(

k2
⊥
F

,ϕk

)∣∣∣∣
2

. (32)

This formula generalizes a similar result obtained in Ref. [10]
to arbitrary potentials V (r).

The main quantities characterizing the Siegert state and
related to observables are the complex eigenvalue E defining
its energy E and ionization width � [see Eq. (22)] and
asymptotic coefficients fν in Eq. (19a) defining the TMD
amplitude (31). It is instructive to discuss how these quantities
depend on the position of the coordinate origin in Eq. (1).
Consider a translation

r → r + a, (33)

where a is a constant vector. Equation (1) preserves its form
under this transformation if one simultaneously substitutes
E → E + Faz. Thus, � does not depend on the position
of the origin, but E does. The invariance of � follows
from the homogeneity of the field and is evident a priori;
an uncertainty in the definition of E is eliminated by the
prescription to place the origin at the center of mass of
the molecule (see the Appendix). In the asymptotic region
η → ∞, the transformation (33) amounts to η → η − 2az, so
the function (19b) remains unchanged. Taking into account
that the channel functions in Eq. (21) depend only on the
asymptotic behavior of the potential (2) and are also not
affected by the transformation, one can see from Eq. (20)
that the coefficients fν do not depend on the position of
the origin and, hence, the TMD amplitude (31) does not
either.

This completes the formulation of the present approach.
The values of E and fν can be obtained by solving Eq. (16).
An efficient numerical procedure to do this based on the slow
variable discretization method [12] was developed in Ref. [10]
for the case of axially symmetric potentials. An extension of
this procedure to arbitrary potentials is in progress [14].

B. Weak-field asymptotics

An advantage of having an accurate numerical procedure
to solve Eq. (16) is that this enables one to find E and fν

for arbitrary values of the electric field F . Meanwhile, even
approximate analytical results valid in the weak-field limit are
of great interest for applications. In this section, we discuss
the asymptotic solution of the above equations for F → 0.
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We begin with the unperturbed bound state. Let E0 < 0
and ψ0(r) be the energy and normalized wave function of a
bound-state solution to Eq. (1) for F = 0. We introduce the
dipole moment of the active electron

μ = −
∫

ψ∗
0 (r)rψ0(r) dr. (34)

The function ψ0(r) can also be expanded in the form (15).
We shall need its expansion only in the asymptotic region. Let
β(0)

ν = β
(0)
nξ |m|, �(0)

ν (ξ,ϕ), and φ
(0)
nξ |m|(ξ ) denote the asymptotic

adiabatic eigenvalues, eigenfunctions, and the solutions to
Eqs. (12), respectively, for F = 0 and E = E0. From Eqs. (12),
we obtain

β
(0)
nξ |m| = Z − κ

(
nξ + |m| + 1

2

)
, (35a)

φ
(0)
nξ |m|(ξ ) = κ

1/2s|m|/2e−s/2L̃(|m|)
nξ

(s), s = κξ (35b)

where

κ =
√

2|E0| (36)

and L̃(α)
n (x) are the normalized generalized Laguerre polyno-

mials [44]. The coefficients c|m|λ in Eq. (13b) do not depend
on F , so �(0)

ν (ξ,ϕ) is given in terms of φ
(0)
nξ |m|(ξ ) by the

same Eq. (13b). By solving Eq. (18) for F = 0, E = E0, and
βν = β(0)

ν , and retaining only the leading power of η for each
channel, one finds

ψ0(r)|η→∞ =
∑

ν

gνη
β(0)

ν /κ−1/2e−κη/2�(0)
ν (ξ,ϕ). (37)

Note that the bound-state solutions to Eq. (1) for F = 0 do not
acquire as simple a separable form in the asymptotic region as
the outgoing-wave solutions for F > 0 do [compare Eqs. (37)
and (20)]. We assume that E0, μ, and the coefficients gν in
Eq. (37) are known; these are the properties of the unperturbed
bound state needed for the following.

Now, we consider nonzero but weak fields; the exact
condition when the field can be treated as weak will be given
shortly. Let E and fν refer to that particular SS that coincides
with the unperturbed bound state for F = 0. Our goal is to
obtain the leading-order terms in the asymptotics of E and fν

for F → 0. Using perturbation theory, one finds

E = E0 − μzF + O(F 2). (38)

The presence of the linear Stark shift in this expansion is a
general property of polar molecules; this term is in the focus
of this paper. The higher-order terms can be neglected in the
leading-order approximation. It is well known [11] that all
terms in the expansion (38) are real, i.e., perturbation theory
enables one to find the real part E of the energy of the SS,
but does not yield the ionization width �. This is because
� is exponentially small in F as F → 0. The asymptotic
expansions of � and fν for F → 0 have the form

aF be−c/F [1 + O(F )], (39)

where the coefficients a, b, and c defining the leading-order
term are to be found. We note that, in the weak-field limit,
� becomes related to the TMD P (k⊥) and coefficients fν . By
omitting the derivation that is quite similar to the one presented
in Ref. [10], we obtain

� =
∫

P (k⊥)
dk⊥

(2π )2
+ O(�2) (40a)

=
∑

ν

�ν + O(�2), �ν = |fν |2 (40b)

where �ν is the partial width of the Siegert state corresponding
to ionization into channel ν. Thus, the problem of finding �

reduces to finding the coefficients fν . This can be done by
matching the asymptotics of Eq. (15) for F → 0 with Eq. (37)
in a matching region where both asymptotics apply. The term
with the electric field in Eq. (18) can be neglected for η 
κ

2/F . On the other hand, the asymptotics of the individual
terms in Eq. (37) obtained from the uncoupled equation (18)
become valid for η � 4|β(0)

ν |/κ
2, provided that 4|β(0)

ν |/κ
2 >

ηc. Thus, the matching region for channel ν is determined by

4
∣∣β(0)

ν

∣∣/
κ

2  η  κ
2/F. (41)

For this region to exist, we require

F  κ
4

4
∣∣β(0)

ν

∣∣ = κ
3

2|2Z/κ − 2nξ − |m| − 1| . (42)

This is the condition of validity of the weak-field asymptotics
of fν obtained below.

We turn to deriving the asymptotics. Let us rewrite Eq. (18)
in the form [

d2

dη2
+ p2(η)

]
fν(η) = 0, (43)

where

p2(η) = Fη

4
+ E

2
+ βν

η
+ O(η−2). (44)

We introduce a new variable

η = κ
2x

F
, x = Fη

κ
2
. (45)

Consider the limit

F → 0, η = O(F−1), x = O(F 0). (46)

In this limit,

p2(η) = κ
2

4

[
x − 1 − 2F

κ
2

(
μz − 2β(0)

ν

κ
2x

)
+ O(F 2)

]
.

(47)

Let ηt be the outer turning point defined by

p(η) = 0 → η = ηt = κ
2

F
+ O(F 0), (48)

and S(η) be the action

S(η) =
∫ η

ηt

p(η′) dη′. (49)
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The asymptotics of the outgoing-wave solution to Eq. (43) in
the limit (46) is given by

fν(η) = C exp[iS(η)]

p1/2(η)
, (50)

where the coefficient C is to be found by comparing Eq. (50)
with (19a). Equation (50) has a form of the standard semi-
classical (WKB) asymptotics [11], but the physical origin of

the small parameter is different. This equation holds under the
condition

d

dη

1

p(η)
 1 → |x − 1| � F 2/3

κ
2

. (51)

Taking into account Eq. (48), this means that it becomes valid at
a sufficient distance from the turning point ηt . By substituting
Eq. (47) into (49), for x > 1 we obtain

S(η) = κ
3

2F

[
2

3
(x − 1)3/2 − 2F

κ
2

(
μz(x − 1)1/2 − 2β(0)

ν

κ
2

arctan(x − 1)1/2

)
+ O(F 2)

]
. (52)

In the asymptotic region x � 1, in the limit (46), we have

S(η) = κ
3

2F

[
2

3
x3/2 − x1/2 − 2F

κ
2

(
μzx

1/2 − πβ(0)
ν

κ
2

)
+ O(F 2)

]
(53a)

→ F 1/2η3/2

3
− κ

2η1/2

2F 1/2
− μzF

1/2η1/2 + πβ(0)
ν

κ

. (53b)

By substituting this into Eq. (50) and comparing with Eqs. (19),
we find

C = fν exp

[
− iπβ(0)

ν

κ

]
. (54)

Let us analytically continue Eq. (50) using Eqs. (47) and
(52) from x > 1 to x < 1 through the upper half of the
complex x plane, all the way staying inside the region (51).
Assuming that condition (42) is fulfilled, there exists an
interval 4Fβ(0)

ν /κ
4  x  1 corresponding to the matching

region (41). In this interval, in the limit (46), we have

S(η) = iκ3

2F

[
−2

3
+ x − 2F

κ
2

(
μz + β(0)

ν

κ
2

ln
x

4

)
+ O(F 2)

]
(55a)

→ − iκ3

3F
+ iκη

2
− iκμz − iβ(0)

ν

κ

ln
Fη

4κ
2
. (55b)

By substituting this and Eq. (54) into Eq. (50), we obtain that
in the matching region fν(η) is given by

fν(η) = 21/2fν

κ
1/2

(
F

4κ
2

)β(0)
ν /κ

× exp

[
− iπ

4
− iπβ(0)

ν

κ

+ κμz + κ
3

3F

]
ηβ(0)

ν /κe−κη/2.

(56)

Comparing this with Eq. (37), we find

fν = κ
1/2gν

21/2

(
4κ

2

F

)β(0)
ν /κ

× exp

[
iπ

4
+ iπβ(0)

ν

κ

− κμz − κ
3

3F

]
. (57)

This formula is the main result of the derivation. It gives the
leading-order term in the asymptotic expansion (39) of fν and
holds under the condition (42).

By using Eq. (57), one can obtain the partial width �ν =
|fν |2 for ionization into channel ν. In practical calculations,
however, the bound-state wave function is usually given as
an expansion in terms of functions labeled by the azimuthal
quantum number m, so it is convenient to rewrite Eq. (37) as

ψ0(r)|η→∞ =
∞∑

nξ =0

∞∑
m=−∞

gnξ mηZ/κ−nξ −|m|/2−1

× e−κη/2φ
(0)
nξ |m|(ξ )

eimϕ

√
2π

. (58)

This corresponds to switching in the asymptotic region from
the adiabatic basis (13b) to the one defined by Eqs. (11) and
(12). The coefficients gν with λ = 1,2 [see Eq. (14)] can
be expressed in terms of gnξ ±m and the coefficients c|m|λ in
Eq. (13b). It can be shown that |g(nξ ,|m|,1)|2 + |g(nξ ,|m|,2)|2 =
|gnξ m|2 + |gnξ −m|2. Then, Eq. (40b) can be rewritten as

� =
∞∑

nξ =0

∞∑
m=−∞

�nξ m + O(�2), (59)

where �nξ m is the partial width for ionization into channel
(nξ ,m). By using Eq. (57), one obtains the leading-order term
in the weak-field asymptotics of �nξ m:

�nξ m = κ

∣∣gnξ m

∣∣2

2

(
4κ

2

F

)2Z/κ−2nξ −|m|−1

× exp

[
−2κμz − 2κ

3

3F

]
. (60)

Note that all �nξ m have the same value of c in Eq. (39) and differ
only in the powers b of F and coefficients a. This means that,
for F → 0, the error term O(�2) in Eq. (59) is smaller than not
only �, that is, the sum of all partial widths, but also each of the
partial widths �nξ m. Hence, in principle, it is allowed, within
the specified accuracy, to retain all channels in the sum (59).
This fact indicates an interesting possibility of constructing a
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generalized asymptotics of �, which would include all powers
of F in the preexponential factor in Eq. (39). However, it should
be understood that by retaining higher channels in Eq. (59),
one must simultaneously retain higher terms in the expansion
(39) of �nξ m; Eq. (60) is not sufficient for this purpose. In
the leading-order approximation, one must retain only the
dominant channel that corresponds to the minimum values of
nξ and |m| present in the expansion (58). In the important case
of axially symmetric potentials (atoms and linear molecules
aligned along the field), the dominant channel for bound states
with a given azimuthal quantum number m is (nξ = 0,m). The
leading-order term in the asymptotics of the total ionization
width in this case is

� = �nξ =0,m. (61)

The coefficient g0m needed to implement this formula is
explicitly given by

g0m =
√

κ
|m|+1

|m|! η1+|m|/2−Z/κeκη/2
∫ ∞

0

∫ 2π

0
ξ |m|/2

× e−κξ/2−imϕψ0(r)
dξ dϕ√

2π

∣∣∣∣
η→∞

. (62)

Thus, to obtain �, one needs to know κ, μz, and only one co-
efficient g0m characterizing the unperturbed bound-state wave
function. In the most general case, when the potential V (r)
does not have any symmetry (arbitrarily oriented multiatomic
molecules), the dominant channel is (nξ = 0,m = 0) and the
total ionization width is given by

� = �nξ =0,m=0. (63)

The values of μz and g00 in this case depend on the orientation
of the molecule with respect to the field implicitly contained
in the potential V (r) and wave function ψ0(r). As is seen from
Eq. (60), � factorizes into a product of two factors, one of
which, namely, |g00|2e−2κμz , depends on the orientation of the
molecule but does not depend on F , and the other depends
only on F and κ. This means that, in the weak-field limit,
the dependence of � on the orientation of the molecule is the
same for all F . In the same approximation, the TMD (32) in the
general case (no symmetry) does not depend on the orientation
of k⊥ and is given by

P (k⊥) = �00
4πκ

F
exp

[
−κk2

⊥
F

]
. (64)

Note that Eqs. (63) and (64) agree with Eq. (40a).
With explicit asymptotic formulas for E , �, and fν at hand,

let us check whether these quantities depend on the position
of the coordinate origin in Eq. (1) in the way that they should.
One can see that, under a translation (33), the dipole moment
(34) and coefficients in Eq. (37) undergo transformations
μ → μ − a and gν → gνe

−κaz . Thus, E given by Eq. (38)
changes as E → E + Faz. The right-hand side of Eq. (57)
remains unchanged, so fν , and hence �nξ m given by Eq. (60),
do not depend on the position of the origin. All this agrees
with conclusions drawn from Eq. (33) in the end of Sec. II A
for arbitrary values of F , which confirms consistency of the
asymptotic formulas.

Equations (60), (61), and (63) are of main interest for
applications. As discussed below, an important difference of
these formulas from previous theories is the presence of the
term with the electronic dipole moment μz in the exponent.
This term does not appear for atoms, except for a special
case of hydrogen in excited states, but is an essential factor
for polar molecules. Importantly, without this term, Eq. (60)
would not be invariant under translations (33). One can notice
that the two terms in the exponent in Eq. (60) coincide with
the first two terms in the expansion of −2κ

3(F )/3F in powers
of F , where κ(F ) = √

2|E | and E is given by Eq. (38). This
partly justifies a physically motivated attempt to account for a
linear Stark shift, so much important for polar molecules, by
substituting κ(F ) for κ into the atomic ionization rate (see,
e.g., [25,26]). However, such an ad hoc procedure can not
ensure, of course, that some other parts of the formula should
not be changed as well (see also the discussion in Ref. [28]).
The present derivation guarantees that Eqs. (61) and (63) with
�nξ m given by Eq. (60) give the leading-order term in the
asymptotic expansion (39) of �.

C. Comparison with previous theories

The asymptotic theory of tunneling ionization of atoms
and molecules in the weak-field case has a long history
containing a number of fundamental results. Our discussion
would be incomplete without comparing the formulas derived
above with previous theories. The structure of the ionizing
system in the present approach, i.e., whether we deal with
an atom or molecule, how this molecule is oriented with
respect to the field, etc., is described by the potential V (r).
The symmetry properties of the potential determine which
channels are present in the expansion (58) and, hence, what
is the dominant channel defining the leading-order term in
the asymptotics of the ionization rate �. The hydrogen atom
is a very special case in this sense since this is the only
system for which Eq. (2) applies at all distances. As a
consequence of the O(4) symmetry of the Coulomb potential,
the different adiabatic channels in our formalism for hydrogen
(and hydrogen only) are exactly decoupled and, therefore,
the weak-field asymptotics can be defined for each channel
(nξ ,m) separately. For all atoms other than hydrogen, the
azimuthal quantum number m is still conserved, but there is
a nonadiabatic coupling between channels with the different
values of nξ . Hence, the leading-order contribution to � in
this case comes from the channel (nξ = 0,m). The same
holds for linear molecules aligned along the field, when the
potential V (r) is axially symmetric about the direction of
the field. As discussed above, in the most general case, for
potentials without any symmetry, the dominant channel is
(nξ = 0,m = 0). Historically, these cases have been treated
separately by the different authors. Since the present theory
covers all these cases, we believe it is worthwhile to consider
them in more detail.

1. Hydrogen in the ground state

The hydrogen atom in the ground 1s state is the first system
for which a correct weak-field asymptotics of the ionization
rate was obtained [11]. In this case, Z = 1, κ = 1, μz = 0, and
ψ1s(r) = e−r/

√
π . The dominant channel coincides with the
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only channel present in the expansion (58) and corresponds to
(nξ ,m) = (0,0). From Eq. (62), we find g00 = √

2. By inserting
these values into Eq. (60), from Eq. (61) or (63), we obtain

�1s = 4

F
exp

[
− 2

3F

]
, (65)

which coincides with the well-known result [11].

2. Hydrogen in excited states

The Schrödinger equation for hydrogen allows separa-
tion of variables in parabolic coordinates (ξ,η,ϕ) [11]. The
different bound states are labeled by parabolic quantum
numbers (n1,n2,m), with n = n1 + n2 + |m| + 1 giving the
principal quantum number. In this case, Z = 1, κ = 1/n, and
μz = −3n(n1 − n2)/2. There is again only one channel in the
expansion (58) with (nξ ,m) = (n1,m). The bound-state wave
functions are known analytically [11]. It can be shown that

ψn1n2m(r)|η→∞ = (−1)n2
√

2

n3/2
√

n2!(n2 + |m|)!
(

η

n

)n2+|m|/2

× e−η/2nφ
(0)
n1|m|(ξ )

eimϕ

√
2π

. (66)

By comparing this with Eq. (58), we find

gnξ m = (−1)n2
√

2

nn2+|m|/2+3/2
√

n2!(n2 + |m|)! . (67)

Substituting all this into Eq. (60) gives

�n1n2m = 1

n3n2!(n2 + |m|)!
(

4

n3F

)2n2+|m|+1

× exp

[
3(n1 − n2) − 2

3n3F

]
, (68)

in full agreement with another well-known result [20,21]. It
can be often heard that the weak-field asymptotic formulas
for ionization rate hold under the condition F  κ

3, which
for hydrogen amounts to F  n−3. In this particular case,
the condition of validity of Eq. (68) can be specified more
precisely as F  [8n3(2n2 + |m| + 1)]−1 [45], which, up to a
factor of 4, coincides with Eq. (42).

For atoms, the presence of a linear Stark shift in Eq. (38)
and the dipole term −2κμz = 3(n1 − n2) in Eqs. (60) and
(68) is unique to hydrogen and is a consequence of the O(4)
symmetry. The states with the same n and n1 > n2 (n1 < n2)
are stretched toward z > 0 (z < 0) and shifted up (down)
in energy by the field. It is instructive to consider how this
difference in the behavior of the energy is reflected in the
ionization rates of the states. In the case n1 > n2 (n1 < n2), the
term 3(n1 − n2) increases (decreases) the exponent in Eq. (68).
This tendency agrees with the general belief that weaker
bound states are easier to ionize. However, for sufficiently
small F , the preexponential factor behaves oppositely and can
overweigh the dipole term in the exponent. As a result, the
states with n1 < n2 shifted down in energy may have larger
ionization rate, contrary to what would be expected based on
the behavior of the binding energy alone [see, e.g., Fig. 1 in
Ref. [10] showing the rates for the (n1,n2,m) = (1,0,0) and
(0,1,0) states]. Although this conclusion is reached for the very
special and peculiar case of atomic hydrogen, it is generic to

polar molecules with a permanent dipole moment. We shall
return to this point below.

3. General atomic case

In the general atomic case, the potential V (r) differs
from Eq. (2) at short distances, so the O(4) symmetry of
the Coulomb problem is broken. But, it is still spherically
symmetric. The bound-state wave function is naturally ex-
pressed in the form ψnlm(r) = Rnl(r)Ylm(θ,ϕ). In the asymp-
totic region, it behaves as

ψnlm(r)|r→∞ = Cnlr
Z/κ−1e−κrYlm(θ,ϕ), (69)

where Cnl is a constant. The direction of tunneling z →
−∞ corresponds to θ = π . Using [the phase convention for
Ylm(θ,ϕ) is adopted from [46,47]]

Ylm(θ,ϕ)|θ→π = (−1)lQ(l,m)

|m|!
(

π − θ

2

)|m|
eimϕ

√
2π

, (70)

where

Q(l,m) = (−1)(|m|−m)/2

√
(2l + 1)(l + |m|)!

2(l − |m|)! , (71)

and noting that π − θ → 2
√

ξ/η for η → ∞ and ξ = const,
we obtain

ψnlm(r)|η→∞ = (−1)lCnl21−Z/κQ(l,m)√
κ

|m|+1|m|!
ηZ/κ−|m|/2−1

× e−κη/2φ
(0)
0|m|(ξ )

eimϕ

√
2π

. (72)

Thus, the dominant channel in this case is (nξ ,m) = (0,m). By
comparing Eq. (72) with Eq. (58), or using Eq. (62), we find

g0m = (−1)lCnl21−Z/κQ(l,m)√
κ

|m|+1|m|!
. (73)

Substituting this and μz = 0 into Eqs. (60) and (61) yields

�nlm = |Cnl|2Q2(l,m)

(2κ)|m||m|!
(

2κ
2

F

)2Z/κ−|m|−1

exp

[
−2κ

3

3F

]
.

(74)

In the non-Coulombic case, a weak-field asymptotics of
the ionization rate was first obtained for the 1s state in a
short-range potential [17]; the result agrees with Eq. (74). The
result for the general atomic case (an arbitrary bound state
in a central potential) was first obtained in Ref. [18]. The
formula for the ionization rate given in Ref. [18] contains a
misprint that was corrected in Ref. [19]. Later on, this result
was reproduced by other authors [48] and became known
as the Ammosov-Delone-Krainov (ADK) theory; a history
of the problem is discussed in Refs. [3,49]. Equation (74)
coincides with the original result [18,19]. As a special case, by
substituting into Eq. (74) Z = κ = 1, l = m = 0, and Cnl = 2,
which corresponds to hydrogen in the ground state [11], one
obtains Eq. (65).

4. Axially symmetric molecules aligned along the field

For axially symmetric molecules aligned along the direction
of the field, the projection of the electronic angular momentum
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m is still a good quantum number. The bound-state wave
function is therefore labeled by m. In the asymptotic region, it
is given by

ψm(r)|r→∞ = rZ/κ−1e−κr
∑

l

ClmYlm(θ,ϕ). (75)

In contrast to the atomic case [see Eq. (69)], here we
have a summation over the angular momentum l, which
is a consequence of the breakdown of spherical symmetry.
Proceeding as in the derivation of Eq. (72), we obtain

ψm(r)|η→∞ = Bm21−Z/κ√
κ

|m|+1|m|!
ηZ/κ−|m|/2−1

× e−κη/2φ
(0)
0|m|(ξ )

eimϕ

√
2π

, (76)

where

Bm =
∑

l

(−1)lClmQ(l,m). (77)

Thus, the dominant channel is again (nξ ,m) = (0,m). By
comparing Eq. (76) with (58), we find

g0m = Bm21−Z/κ√
κ

|m|+1|m|!
. (78)

Inserting this into Eqs. (60) and (61) gives

�m = |Bm|2
(2κ)|m||m|!

(
2κ

2

F

)2Z/κ−|m|−1

exp

[
−2κμz−2κ

3

3F

]
.

(79)

This result should be compared with the so-called molecular
Ammosov-Delone-Krainov (MO-ADK) formula [24]. An
important difference stems from the presence of the electronic
dipole moment μz in the exponent in Eq. (79). As shown
above, without this term, Eq. (79) is not invariant under
translations (33), and hence is not physically sensible. The
present convention defining the phases in Eq. (77) differs from
that in [24]. In our case, the orientation of the molecule is fixed
parallel to the direction of the field F ‖ ez; this determines
the asymptotic coefficients Clm in Eq. (75). The electron
tunnels out in the direction z → −∞ opposite to that assumed
in Ref. [24]. This explains an additional factor (−1)l in
Eq. (77), which comes from the parity of spherical harmonics.
Summarizing, Eq. (79) differs from the MO-ADK formula in
the axially symmetric case [24] by a factor exp(−2κμz).

For molecules without a permanent dipole moment, e.g.,
homonuclear diatomic molecules, μz = 0 and this difference
does not reveal itself. Even in this case, the present theory has
an advantage in the representation that may be important in
practical calculations. To implement Eq. (61), one needs to
know only one coefficient g0m given in terms of the molecular
wave function ψm(r) by Eq. (62). On the other hand, to
implement the MO-ADK formula [24], one has to find Clm

for all values of l that contribute to the sum in Eq. (77).

5. General molecular case

In the most general case of an arbitrarily oriented mul-
tiatomic molecule, the potential V (r) has no symmetry. A
diatomic molecule placed at a nonzero angle with respect to the

direction of the field also belongs to this case. Let � = (α,β,γ )
denote collectively three Euler angles defining the rotation
from the laboratory frame to a molecule-fixed frame [47]. The
bound-state wave function of the molecule will be labeled by
�. The generalization of Eq. (75) in this case reads

ψ�(r)|r→∞ = rZ/κ−1e−κr
∑
lm′

Clm′Ylm′(θ ′,ϕ′) (80a)

= rZ/κ−1e−κr
∑
lm′

Clm′
∑
m

D(l)
mm′(�)Ylm(θ,ϕ),

(80b)

where θ ′ and ϕ′ are the spherical angles of r in the molecule-
fixed frame and D(l)

mm′(�) is the Wigner rotation function [47].
In Eq. (80b), the summation over l and m′ accounts for the
breaking of spherical and axial symmetries in the molecule-
fixed frame, and the summation over m is a consequence of
the rotation between the frames. We follow the procedure of
the previous sections and rewrite Eq. (80b) as

ψ�(r)|η→∞ =
∑
m

Bm(�)21−Z/κ

|m|! ηZ/κ−|m|/2−1ξ |m|/2

× e−κ(ξ+η)/2 eimϕ

√
2π

, (81)

where

Bm(�) =
∑
lm′

(−1)lClm′D(l)
mm′(�)Q(l,m). (82)

Equation (81) requires an explanation. In contrast to Eqs. (72)
and (76), which indeed give the leading-order term in the
asymptotics of the bound-state wave function for η → ∞,
because of the summation over m, Eq. (81) contains also
higher-order terms with smaller powers of η. The procedure
that has led us to Eq. (81) is based on the expansion (70).
It can be easily seen that retaining higher-order terms in
this expansion would lead to the appearance of other terms
with smaller powers of η in Eq. (81). However, these terms
are not included, which introduces an inconsistency. Let us
proceed keeping this inconsistency in mind. By expanding the
right-hand side of Eq. (81) in terms of the complete asymptotic
basis φ

(0)
nξ |m|(ξ )eimϕ/

√
2π and comparing with Eq. (58), we find

gnξ m = δnξ 0Bm(�)21−Z/κ√
κ

|m|+1|m|!
. (83)

The fact that only the coefficients with nξ = 0 turn out to
differ from zero is a consequence of the inconsistency of
Eq. (81). Inserting Eq. (83) into (60) yields a partial ionization
rate for the channel (nξ = 0,m)

�nξ =0,m(β,γ ) = |Bm(�)|2
(2κ)|m||m|!

(
2κ

2

F

)2Z/κ−|m|−1

× exp

[
−2κμz − 2κ

3

3F

]
. (84)

This coincides with Eq. (79), where Bm is substituted
by Bm(�). Although the coefficients Bm(�) depend on
all three Euler angles �, from Eq. (82) and D(l)

mm′(�) =
e−imαd

(l)
mm′(β)e−im′γ [47], one can see that the rate (84) does
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not depend on the angle α of rotation of the molecule about
the laboratory z axis, that is, about the direction of the electric
field. This is a consequence of the homogeneity and, hence,
axial symmetry of the field.

In the general molecular case, the MO-ADK formula for
the ionization rate reads [24]

�MO-ADK =
∑
m

|Bm(�)|2
(2κ)|m||m|!

(
2κ

2

F

)2Z/κ−|m|−1

exp

[
−2κ

3

3F

]
.

(85)

First of all, it should be noted that, as in the axially symmetric
case, this formula does not account for a permanent dipole
moment of the molecule. Let us temporarily forget about
the dipole term and consider the case μz = 0, when this
important difference becomes immaterial. Then, �MO-ADK

coincides with the sum of the partial rates (84) over m.
This amounts to retaining in Eq. (59) only contributions
from the channels with nξ = 0 and neglecting all channels
with nξ > 0. As explained just below Eq. (60), there are
higher-order terms in the expansion (39) of the partial rates
(84), which are also neglected in Eq. (85). Retaining in
Eq. (85) the terms with m �= 0 and neglecting other terms with
the same powers of F is not consistent from the viewpoint of
the weak-field asymptotics. As can be seen from the derivation,
this inconsistency of Eq. (85) in the part concerning the neglect
of channels with nξ > 0 results from the inconsistency of
Eq. (81). In the present theory, the leading-order term in the
asymptotic expansion of the total ionization rate comes from
the channel (nξ = 0,m = 0) and is given by Eq. (84) with
m = 0. This coincides with Eq. (63), where the coefficient g00

is given in terms of the molecular wave function ψ�(r) by
Eq. (62) with m = 0. This result is valid under the condition
(42), which guarantees that terms with m �= 0 in Eq. (85)
are much smaller than the leading-order term with m = 0.
This circumstance reduces the effect of the inconsistency of
Eq. (85) in the weak-field limit (see also the discussion in
Sec. III B).

Returning to the dipole term, the present theory accounts
for the possible existence of a permanent dipole moment of
the molecule and, hence, applies also to polar molecules. The
dipole term was not included in the original MO-ADK theory
[24,50–52]. This term was also obtained for a heteronuclear
two-short-range potential model [23]. Its importance was
recently pointed out in the analysis of photoelectron angular
distributions from polar molecules [26,29,30], and inspired by
earlier work [53], insertion of the Stark-shifted energy into the
atomic tunneling rate formula was used in the interpretation of
a recent experiment on laser tunnel ionization from multiple
orbital in HCl [25]. Also, the effect of the Stark shift and
dipole moment was recently discussed in a model of high-order
harmonic generation [32] and in strong-field ionization based
on the solution of the time-dependent Schrödinger equation in
the single-active-electron approximation [27].

III. ILLUSTRATIVE RESULTS AND DISCUSSION

Having an accurate numerical method to calculate the
ionization rate, on the one hand, and asymptotic formulas
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FIG. 1. (Color online) Solid line: the ratio of the exact ionization
rate for atomic hydrogen in the ground state to the asymptotic results
obtained from Eq. (65). Dashed line: the asymptotic expansion for
this ratio up to the linear in F term [45].

applicable in the weak-field limit, on the other, in this
section we scrutinize the theory by comparing the exact
and asymptotic results. Before discussing polar molecules,
it is worthwhile to begin with the simplest system: atomic
hydrogen in the ground state. This example allows us to gauge
the accuracy of the results and make several observations that
apply to more general cases as well.

Figure 1 shows the ratio of the exact ionization rate of H(1s)
calculated by the method developed in [10] to the weak-field
asymptotic results obtained from Eq. (65). We note that, in
order to gauge the accuracy at the level of relevance for the
theory, a linear scale is needed; no difference can be seen when
exact and asymptotic rates are plotted in a logarithmic scale. In
particular, the ratio shown in Fig. 1 is a suitable characteristic;
we will consider such ratios also in the molecular examples
below. The solid curve in Fig. 1 is not continued to smaller F

because of a limitation of our numerical procedure [10]: the
rate is obtained from the imaginary part of the SS eigenvalue
E [see Eq. (22)], and the procedure in double precision fails
at sufficiently small F , when ImE becomes by more ten
orders of magnitude smaller than ReE. Despite this difficulty,
we see that the solid curve in Fig. 1 approaches unity as
F decreases. In the pure Coulomb potential, the different
channels in our formalism are exactly decoupled, so there
is only one contribution from the channel with nξ = m = 0
in Eq. (59). This means that a departure of the ratio shown
in Fig. 1 from unity is entirely due to higher-order terms in
the asymptotic expansion (39). Two higher-order terms in the
expansion of � for H(1s) are known analytically [45]. The
dashed line in Fig. 1 shows the analytical prediction of the ratio
including the linear in F correction term. One can clearly see
that the slope of the solid curve approaches that of the dashed
curve as F decreases, as it should be. This linear dependence of
the ratio on F in the weak-field limit confirms the structure
of the asymptotic series (39) and demonstrates the accuracy
of the present numerical procedure. Our first observation thus
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concerns the presence and importance of higher-order terms in
the expansion (39) of partial ionization rates. The discussion
above should make it clear that it is inconsistent to include
contributions from higher channels to the total ionization rate
(59) without including higher-order corrections to the partial
rate of the dominant channel.

We use this example also to discuss another inconsistency
of approaches that attempt to account for the Stark shift of the
energy of the state by amending the exponent in the tunneling
rate by means of the substitution −2κ

3/3F → −2κ
3(F )/3F

discussed in the end of Sec. II B. For H(1s), the energy (38)
including the second-order Stark shift is E = E0 − 9F 2/4
[11]. By inserting the corresponding field-dependent value
of κ(F ) into the tunneling exponent and expanding in F ,
for the coefficient of the linear in F term in the ratio shown
in Fig. 1, one would obtain 9/2 instead of the exact value
107/12 ≈ 8.92 [45]. We may say that the second-order Stark
shift accounts only for about one half of the correction to the
rate, while the other half comes from a consistent inclusion
of other terms of the same order in F , e.g., a field-induced
distortion of the 1s state. Thus, our second observation is that
the use of the Stark-shifted energy E instead of the unperturbed
one E0 in the tunneling exponent is not sufficient to account
for higher-order corrections in F .

Our third observation concerns the numerical accuracy of
the asymptotic results. As can be seen from Fig. 1, the error
of Eq. (65) reaches 10% already at F = 0.01, and at the most
interesting field strengths for applications, around F = 0.1,
Eq. (65) overestimates the ionization rate by a factor of 3.
The weak-field asymptotic formulas for the tunneling rate are
used in the Keldysh theory [3] and strong-field approximation
[6,7] for the analysis of the strong-field ionization and high-
order harmonic generation. It should be remembered that these
formulas, at least in the leading-order approximation, work
well quantitatively only in a very limited interval of F ; at
larger F , one has to resort to exact numerical calculations.

After this preliminary discussion, we turn to examples in
molecules. We consider diatomic molecules modeled by the
potential

V (r) = − Z1√
(r − r1)2 + ε

− Z2√
(r − r2)2 + ε

, (86)

where Zi and ri = (zi sin β,0,zi cos β), i = 1,2, are the effec-
tive charges and positions of the nuclei measured from the
center of mass of the molecule, β is one of the Euler angles in
Eq. (80b) defining the orientation of the molecule with respect
to the field, and ε is the softening parameter required in the
present numerical procedure. For this model, μz = μ cos β,
with μez being the molecular dipole moment for β = 0◦. The
“exact” results reported below are obtained by the method
developed in Ref. [10] and, therefore, are restricted to the
axially symmetric cases β = 0◦ and 180◦, when the molecule
is aligned along the field in two possible orientations. But,
the asymptotic results for HeH2+ will be presented also for
arbitrary values of β. We consider only σ states with m = 0,
so the wave functions do not depend on the azimuthal angle ϕ.
The bound-state energies E0 and wave functions ψ0(r) needed
to implement the asymptotic theory are obtained by diago-
nalizing the one-electron Hamiltonian with the potential (86)

using the direct product of two discrete variable representation
(DVR) basis sets in spherical coordinates r and θ constructed
from the Legendre polynomials [54]. A maximum radius of
30 a.u. is found to be sufficient to obtain accurate results for all
the models considered. The dipole moment μ is then calculated
from Eq. (34) using the DVR quadratures. The coefficient g00

in Eqs. (60) and (63) is obtained from ψ0(r) using Eq. (62)
and a fitting procedure applied at sufficiently large values
of η.

A. Model polar molecules

We first consider a set of three model polar molecules in
the ground σ state. The nuclear charges in the molecules are
(Z1,Z2) = (0.8,0.7), (1,0.5), and (1.2,0.3), so the total charge
in all the cases is Z1 + Z2 = 1.5. The positions of the nuclei
are defined by (z1,z2) = (−0.5,1.5), which correspond to the
nuclear mass ratio m1/m2 = 3. We choose a relatively large
softening parameter ε = 0.2. The energies and dipole mo-
ments for the three models are E0 = −0.585 217, −0.602 833,
and −0.641 018, and μ = −0.392 723, −0.003 249, and
0.273 680, respectively. From the numerical viewpoint, these
models present a rather simple case when both the field-free
bound state and the corresponding SS in the presence of the
field can be calculated very accurately. Such calculations are
needed to analyze and illustrate the reliability of our exact
method and asymptotic theory.

Figures 2 and 3 show the energy E and ionization rate �,
respectively, as functions of the field F for the three model
molecules. For each of the models, the results are shown for
two orientations of the molecule with β = 0◦ and 180◦. The
figures also display the first-order perturbation theory results
from Eq. (38), for the energy in Fig. 2, and the asymptotic
results from Eq. (63), for the rate in Fig. 3.

For the model in the upper panel of Fig. 2, the energy
E for β = 0◦ (β = 180◦) is shifted up (down) by the linear
term in Eq. (38) because μ < 0. For the model in the lower
panel, μ > 0, and the situation is inverted. In the middle panel,
because of a very small value of μ, the linear term in Eq. (38)
is negligible and the energies are shifted down by the second-
order Stark shift. In all the cases, a deviation of the exact results
from Eq. (38) becomes visible at fields about F � 0.02. When
the deviation sets in, the exact results are always lower than
the prediction of the first-order perturbation theory (38), in
accordance with the expectation inferred from the second-
order Stark shift.

As seen from Fig. 3, for all three models, the ionization
rate for the orientation with β = 0◦ is smaller than that for
β = 180◦. This tendency is reproduced by the asymptotic
formula (63). We note that, for the model in Figs. 2(a) and
3(a), the orientation with β = 0◦, the binding energy of which
is decreased by the field, has a slightly smaller ionization
rate than the orientation with β = 180◦, the binding energy
of which is increased. This ordering of the magnitudes of the
rates compared to that of the binding energies adds to the
point already touched upon in the discussion in Sec. II C 2.
Equations (60) and (63) show that the rate is determined by
three main characteristics of the unperturbed bound state: the
energy E0, the projection of the molecular dipole moment
along the field μz, and the coefficient g00 in the asymptotics
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FIG. 2. (Color online) The energy of the ground σ state
for three model polar molecules as a function of the field.
(a) (Z1,Z2) = (0.8,0.7), E0 = −0.585 217, μ = −0.392 723;
(b) (Z1,Z2) = (1,0.5), E0 = −0.602 833, μ = −0.003 249;
(c) (Z1,Z2) = (1.2,0.3), E0 = −0.641 018, μ = 0.273 680. Solid
(dashed) black curves: exact results for β = 0◦ (β = 180◦). Solid
(dashed) blue curves: the corresponding first-order perturbation
theory results [Eq. (38)].

of the molecular wave function (58). On the other hand, the
energy (38) depends only on two of these characteristics E0

and μz. So, it is clear that E alone is not sufficient to predict
�. Like in the case of excited hydrogen, the examples in
Figs. 2 and 3 show that it is not always the change of the binding
energy that dictates which orientation of the molecule with re-
spect to the field ionizes easier. Thus, for the model in the upper
panels of Figs. 2 and 3, the increase of the coefficient g00 when
the orientation is changed from β = 0◦ to 180◦ overweighs
the effect from the increase of the binding energy. At the
same time, for the model in the lower panels, the behavior of
the rates agrees with what is expected from the behavior of the
binding energies.
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FIG. 3. (Color online) The ionization rate for the same models
as in Fig. 2. Solid (dashed) black curves: exact results for β = 0◦

(β = 180◦). Solid (dashed) blue curves: the corresponding asymptotic
results [Eq. (63)].

In Fig. 4, we show the ratios of the exact and asymptotic
results for the ionization rates. Because of the limitation of our
numerical procedure discussed above, these results can not be
continued to smaller F . However, as is clear from the figure,
for all three models and both orientations of the molecules, the
ratios approach unity linearly as the field F decreases. One can
see that the asymptotic theory always overestimates the rates,
as in the case of atomic hydrogen (see Fig. 1; semiempirical
procedures to correct the tunneling rates were discussed in
Refs. [55,56]). These results pertaining to computationally
involved molecular systems with strong couplings between
the adiabatic channels provide an additional illustration of
the accuracy of the present numerical method and confirm
the consistency of the asymptotic theory. In particular, they
demonstrate that the theory correctly accounts for the presence
of the dipole moment of the model molecules. These are the
main conclusions to be drawn from this section.
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FIG. 4. The ratio of the exact and asymptotic ionization rates
shown in Fig. 3. Solid (dashed) curves: β = 0◦ (β = 180◦).

B. Molecular ion HeH2+

After having validated the theory by the comparison of the
exact and asymptotic results for model molecules, we now
turn to the analysis of a more realistic system. We consider
a one-electron molecular ion HeH2+ in the first excited 2pσ

state. This system has been considered previously in strong-
field studies involving the solution of the time-dependent
Schrödinger equation (see [57] and references therein). The
ground electronic state of HeH2+ is known to be repulsive, but
the Born-Oppenheimer potential for the first excited 2pσ state
has a minimum at the internuclear distance R = 3.89 [58].
We fix this equilibrium value of the internuclear distance and
model the molecule by Eq. (86) with the parameters (Z1,Z2) =
(2,1) and (z1,z2) = (−0.778,3.112), which corresponds to the
α-particle-to-proton mass ratio m1/m2 = 4. The softening
parameter is chosen to be ε = 0.1, smaller than in the
previous section. The bound-state energy and dipole moment

0.0 0.5 1.0 1.5
-2

-1

0

1

2

3

4z

r
⊥
 (a.u.)

z 
(a

.u
.)
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FIG. 5. (Color online) Schematic illustration of the orientation of
the molecule HeH2+ for β = 0◦ and the electron density distribution
(in arbitrary units) in the first excited 2pσ state for the equilibrium
internuclear distance R = 3.89. The coordinate origin is at the
center of mass, so the α particle and proton are placed at r1 =
(0,0, −0.778) and r2 = (0,0,3.112), respectively. For this system,
E0 = −0.939 749 and μ = −2.202 072.

for this system are E0 = −0.939 749 and μ = −2.202 072,
respectively. The exact energy of the 2pσ state for R = 3.89
is E0 = −1.045 349; the difference is due to the nonzero value
of ε.

Figure 5 illustrates the orientation of the molecule for
β = 0◦ and shows the electron density distribution in the 2pσ

state as a function of z and r⊥ =
√

x2 + y2. One can see that
the electron is almost completely localized near the proton and
only weakly affected by the presence of the α particle. Figure 6
shows the energies, ionization rates, and the ratios of the exact
and asymptotic results for the rates for two orientations of
the molecule with β = 0◦ and 180◦. We see that, for the
present system, the orientation with β = 0◦, which becomes
less bound in the presence of the field, has higher ionization
rate. The asymptotic theory again overestimates the ionization
rate, at least for sufficiently large values of F . The behavior
of the ratios shown in the lower panel of Fig. 6 at smaller F

differs from the previous cases (compare with Figs. 1 and 4).
Although the ratios do approach unity as F decreases, this does
not happen in that simple linear way as before. Unfortunately,
we can not continue the curves to smaller F . If calculations
for smaller F were possible, we would expect to see a linear
trend. The difference in the behavior of the ratios may be due
to the fact that now we consider an excited state, whereas in
the previous models, we have dealt with the ground state. The
more rapid variation of the ratios in the present case requires
a more detailed investigation.
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FIG. 6. (Color online) The energy (upper panel), ionization rate
(middle panel), and the ratio of the exact and asymptotic results for
the rate (lower panel) for HeH2+(2pσ ). Solid (dashed) black curves:
the exact results for β = 0◦ (β = 180◦). Solid (dashed) blue curves
in the upper and middle panels: the corresponding first-order
perturbation theory results for E [Eq. (38)] and the asymptotic results
for � [Eq. (63)], respectively.

We extend the analysis of the present system and consider
also the dependence of the ionization rate on the orientation
angle β. Although the exact results are available at the moment
only for two axially symmetric orientations, β = 0◦ and 180◦,
the asymptotic results can be obtained from Eqs. (60) and
(63) for any value of β. As follows from the discussion after
Eq. (63), in the leading-order approximation of the asymptotic
theory, the dependence of the ionization rate � on β factorizes
from its dependence on F and is represented by the product

|g00|2 exp(−2κμ cos β), (87)

where g00 given in terms of the rotated molecular wave
function ψ�(r) by Eq. (62) depends on β, but κ and μ do
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FIG. 7. (Color online) The definition of the angle β between the
molecule HeH2+ and the electric field F and the shape of the angular
dependence of the weak-field asymptotics of the ionization rate in
the 2pσ state (in arbitrary units). Solid black curve: the leading-order
asymptotic results from Eq. (63) obtained by plotting the function
(87). Dashed blue curve: the same results multiplied by 250.

not. In other words, in the interval of F where the asymptotic
theory is valid, the orientation dependence of the ionization
rate is independent of F and its shape is determined by the
function (87). In Fig. 7, we show the shape of the dependence
of � on β for HeH2+(2pσ ). We see from the figure that the
rate strongly peaks at β = 0◦. The function (87) decreases
monotonically from β = 0◦ to β = β0 � 61◦, where it turns
zero. Then, it increases up to β � 89◦ and decreases again
up to β = 180◦. The zero at β = β0 results from a zero
of g00 and reflects the fact that the unperturbed bound-state
wave function has a nodal surface along this direction (see
Fig. 5). The situation near β = β0 returns us to the notion
of the dominant channel in the leading-order approximation.
As follows from Eq. (60), in the general case, the dominant
channel is (nξ ,m) = (0,0). However, if there is an additional
parameter in the problem, like β in the present case, such
that the coefficient g00 turns zero or becomes very small at
a certain value of this parameter, then the contribution from
the next to the leading-order channel must be included. For
example, in the present case, near β = β0 one must include also
the channel (nξ ,m) = (0,1). Since g00 linearly turns zero, the
width of the interval of β near β = β0, where the contribution
from the channel m = 1 is not negligible compared to the
channel m = 0 in the week-field limit, is proportional to F 1/2

and tends to zero together with F . The relative role of the two
partial contributions to the total rate as functions of F and
β near β = β0 for each particular system requires a special
investigation. A work on these issues for neutral molecules of
interest for applications is in progress.

Finally, in Fig. 8, we illustrate the last and the most
informative element of the theoretical description of tunneling
ionization: the transverse momentum distribution (TMD). We
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FIG. 8. (Color online) The transverse momentum distributions
for tunneling ionization of HeH2+(2pσ ) in the field F = 0.1. The
distributions are normalized to their peak values at k⊥ = 0. Solid
(dashed) black curve: the exact results for β = 0◦ (β = 180◦). Solid
blue curve: the prediction of the asymptotic theory [Eq. (64)].

show the TMDs for electrons ionized from HeH2+(2pσ ) in the
field F = 0.1. The exact results were obtained by the method
developed in Refs. [10] and, hence, are restricted to axially
symmetric orientations of the molecule, β = 0◦ and 180◦. The
total ionization rates in these two cases differ by more than
two orders of magnitude (see Fig. 6). To bring the TMDs to
a common scale, we normalize them to their peak values at
k⊥ = 0. The asymptotic results after such a normalization are
given by the exponential factor in Eq. (64) and do not depend
on β. As can be seen from the figure, both exact TMDs for
β = 0◦ and 180◦ are slightly narrower than the prediction of
the asymptotic theory. This fact can be readily explained within
the present formalism. The exact TMD is given by Eq. (32).
Its shape is determined by the function �(ξ,ϕ) defined
in Eq. (21), where �ν(ξ,ϕ) are the eigenfunctions of the
operator (8). After separation of variables in Eq. (10), one
arrives at Eq. (12a). It can be seen that the field-dependent
term in this equation acts to confine the motion in ξ ; it reduces
the spatial extent of the solutions compared to the field-free
case. Through the substitution ξ → k2

⊥/F in Eq. (32), this
leads to narrowing of the TMD. The difference between the
exact TMDs for the two orientations of the molecule can not be
explained in such general terms and depends on the details of
the potential. We note that the Gaussian shape of the TMD (64)
resulting from the asymptotic theory is essentially maintained
in the exact results shown in Fig. 8. This is not generally
true for other systems and stronger fields, as discussed in
Ref. [10]. For larger values of F , when the contributions
from higher channels become important, the shape of the
TMD may qualitatively differ from the Gaussian centered
at k⊥ = 0.

IV. CONCLUSION

In this work, we have generalized the formulation of
the parabolic adiabatic expansion approach to the problem
of ionization of atomic systems in a static electric field,
originally developed for the axially symmetric case [10], to

arbitrary potentials. In particular, we have derived an exact
expression (32) for the transverse momentum distribution
of the ionized electrons in terms of the properties of the
corresponding complex-energy Siegert eigenfunction. This
opens a way to extend the numerical implementation of the
method [10] to arbitrarily oriented molecules in the single-
active-electron approximation [14]. The parabolic adiabatic
expansion approach is used to rederive the asymptotic theory
of tunneling ionization in the weak-field limit. In the atomic
case, the resulting formulas for the ionization rate coincide
with previously known results [11,17–21,48]. In addition,
the present theory accounts for the possible existence of a
permanent dipole moment of the unperturbed system and
hence applies to polar molecules. It is shown that, without
the dipole term, the asymptotic formulas for the ionization
rate are not invariant under translations of the origin of the
coordinate system and, hence, are not physically sensible. The
account for dipole effects constitutes an important advantage of
the present theory over the MO-ADK theory [24], which may
have far-reaching consequences for numerous applications in
the analysis of the ionization of polar molecules by intense
laser pulses and in high-order harmonic generation. The
present theory also has an advantage in the representation.
For example, from Eqs. (60) and (63), one can readily see that
the shape of the orientation dependence of the ionization rate in
the weak-field limit does not depend on F and is determined
by the function (87), where the coefficient g00 is an image
of the bound-state wave function defined by Eq. (62). All
this is not evident from the MO-ADK formula [24]. Hence,
this work clarifies, in the weak-field limit, which information
about molecular orbitals future experiments on time-resolved
strong-field ionization may be able to extract. The theory is
illustrated by calculations for several model polar molecules
and a realistic molecular ion HeH2+ in the 2pσ state. The
exact results for the energy and ionization rate obtained by the
method developed in Ref. [10] are always in good agreement
with the asymptotic results in the weak-field limit, which
confirms the accuracy of the former and consistency of the
latter.

The comparison of exact and asymptotic results is an
important element of this study, which enables one to gauge
the numerical accuracy of the asymptotic theory. One of the
general conclusions that should be drawn is that the asymptotic
formulas for the ionization rate work well quantitatively only
for very small values of the field F . For example, even
for F = 0.1, which corresponds to the field amplitude in a
laser pulse with intensity 3.5 × 1014 W/cm2, the asymptotic
theory overestimates the ionization rate of H(1s) by a factor
of 3. The present approach to the asymptotic theory of
tunneling ionization allows an extension beyond the leading-
order approximation. Such a development would be useful
for applications to the laser-matter interaction problem in the
situations where the exact results are not available.
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APPENDIX: ON THE POSITION OF THE COORDINATE
ORIGIN IN THE SINGLE-ACTIVE-ELECTRON

APPROXIMATION FOR MOLECULES

Equation (1) raises a question: Where is the electron’s
coordinate r measured from? Indeed, shifting the origin
of r results in changing the electron’s energy E. Such an
uncertainty in the definition of E is unphysical, of course.
For consistency of presentation, here we address this issue.
The uncertainty is eliminated by returning to the original
many-body formulation of the problem. It is sufficient to
consider a system of three particles as the simplest model
of a molecule. Let mi and qi , i = 1,2,3, be the masses and
charges of the particles, and ri be their coordinates in an
inertial laboratory frame. Let particles interact with each other
via pairwise potentials Vij = Vij (|ri − rj |) and form a bound
state in the absence of the field. Then, the Schrödinger equation
for the system in the presence of an electric field F in the
laboratory frame reads (we still use atomic units; mi and qi

should be considered as dimensionless parameters)[
−

∑
i

�i

2mi

+
∑
i<j

Vij − dLF − EL

]
�L(r1,r2,r3) = 0,

(A1)

where

dL =
∑

i

qiri . (A2)

We first separate out the center of mass of the system. Let

M =
∑

i

mi, Q =
∑

i

qi, rc.m. = 1

M

∑
i

miri . (A3)

We introduce the Jacobi coordinates

R = r2 − r1, r = r3 − m1r1 + m2r2

m1 + m2
, (A4)

and the corresponding reduced masses

μ12 = m1m2

m1 + m2
, μ12,3 = (m1 + m2)m3

M
. (A5)

By substituting EL = ε + Ec.m. and

�L(r1,r2,r3) = χ (rc.m.)�c.m.(r,R), (A6)

where χ (rc.m.) satisfies[
−�c.m.

2M
− Qrc.m.F − ε

]
χ (rc.m.) = 0, (A7)

we obtain[
− �R

2μ12
− �r

2μ12,3
+

∑
i<j

Vij − dc.m.F − Ec.m.

]

×�c.m.(r,R) = 0, (A8)

where
dc.m. = dL − Qrc.m. = d12 + d12,3 (A9)

and

d12 = μ12

(
q2

m2
− q1

m1

)
R, (A10a)

d12,3 = μ12,3

(
q3

m3
− q1 + q2

m1 + m2

)
r. (A10b)

Here, Ec.m., �c.m.(r,R), and dc.m. are the energy, wave function,
and dipole moment operator of the three-body system in
the center-of-mass frame. Note that dc.m. is invariant under
simultaneous translations of all particles, while dL is not if the
total charge of the system Q is nonzero. Note also that, in this
case, the center-of-mass frame is noninertial: it moves with
a constant acceleration QF/M with respect to the laboratory
frame. Let particles 1 and 2 be neutral atoms, atomic ions, or
bare nuclei, and hence they are heavy, and let particle 3 be an
electron, so m3 = 1 and q3 = −1. By substituting

�c.m.(r,R) = ψ(r; R)�(R) (A11)

and implementing the Born-Oppenheimer approximation [36],
we obtain[

− �r

2μ12,3
+ V (r; R) − d12,3F − E(R)

]
ψ(r; R) = 0,

(A12)

where V (r; R) = V13 + V23, and[
− �R

2μ12
+ V12 + E(R) − d12F − Ec.m.

]
�(R) = 0.

(A13)

The electronic energy E(R) and wave function ψ(r; R) are
the eigenvalue and eigenfunction of Eq. (A12) (supplemented
by appropriate boundary conditions) for a given internuclear
configuration R. The actual configuration R0 for which
Eq. (A12) is to be solved is determined by external with
respect to the electron’s dynamics factors and, hence, must be
specified from outside the electronic subproblem. For example,
in the present model, R0 is the equilibrium configuration
determined by Eq. (A13). In the limit m1 → ∞, m2 → ∞,
and m1/m2 = const, we have μ12,3 = 1, d12,3 = −r, and
r = r3 − rc.m.. Then, Eq. (A12) reduces to Eq. (1). We thus
conclude that the electron’s coordinate r in Eq. (1) should be
measured from the center of mass of the molecule. It is clear
that this conclusion applies to any polyatomic molecule treated
in the single-active-electron approximation.
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