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Tokuei Sako,1,* Junichi Adachi,2,3 Akira Yagishita,2,3,† Makina Yabashi,3 Takashi Tanaka,3 Mitsuru Nagasono,3 and
Tetsuya Ishikawa3

1Laboratory of Physics, College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan
2Photon Factory, Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

3RIKEN, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
(Received 29 August 2011; published 16 November 2011)

The two-photon resonance ionization probability of atoms in strong extreme-ultraviolet free-electron laser
(EUV FEL) pulses has been investigated by the model of time-dependent wave packet propagation of a light-
coupled multilevel atom. Under the simulation within the model assuming single-mode FEL pulses, the ionization
probability Pion has shown characteristic dependences on the scaled coupling parameter Ugi between two levels
of the ground (g) and intermediate (i) resonance states, namely, Pion ∝ (Ugi)n, with n being equal to ∼2, less
than 1, and ∼1 for the small, medium, and large Ugi regimes, respectively. This power dependence of the
ionization probability has been interpreted due to Rabi oscillations between g and i states. To compare with
recent experimental results on the same condition, the multimode nature of self-amplitude spontaneous emission
(SASE) FEL pulses has been managed in the simulation. Then, the recent experimental laser-power dependence
of the two-photon resonance ionization of He [Sato et al., J. Phys. B 44, 161001 (2011)] has been well described
by that for the large Ugi regime of the simulation, i.e., n ∼ 1. Thus, the observed linear laser-power dependence
has been rationalized as being caused by the strong Rabi oscillations between the (2p)–(1s) states.
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I. INTRODUCTION

The new tunable extreme-ultraviolet free-electron laser
(EUV FEL) from the Spring-8 Compact SASE Source (SCSS)
[1,2] has provided a new opportunity to investigate funda-
mental quantum phenomena, i.e., the interaction between a
two-level atom and high-intensity, high-frequency radiation.
Suppose that one tunes the laser frequency of a light pulse of
roughly 100-fs duration to a transition frequency of the atom.
A photon in the pulse brings the atom from the ground state
to its excited state, and then the atom in the excited sate in
the strong light field emits a photon with the same phase and
frequency as the laser light. This cycling process of absorbing
and emitting photons is called Rabi oscillations [3]. During the
cycle the time-dependent quantum state of the atom coupled
with the light field is usually in a superposition of [(ground
state) + (N + 1) photons] and [(excited state) + N photons].
The oscillating coupled system can be ionized by absorbing
one more photon in the same light pulse. As a result, the
end of the light pulse probes the oscillating system. Thus,
such a resonance two-photon ionization process is completely
different from the sequential nonresonance ionization, which
has been studied in recent years by high-intensity FEL
lights [4–8]. The ionization probability of such nonresonance
multiphoton processes is well described by lowest-order
perturbation theory, i.e., according to the theory, expected to
be valid at the laser intensity I < 1015 W/cm2; the ionization
probability Pion should increase with I as Pion = σn × I n,
where σn is the generalized n-photon cross section and n is
the number of photons needed for ionization [9]. On the other
hand, the ionization probability of high-intensity resonance
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multiphoton ionization would have a different dependence
on I because of Rabi oscillations between the ground and
intermediate resonance states, as early theoretical studies
indicated their importance [10,11].

Recently, pioneering experimental reports on resonance
multiphoton ionization of atoms by strong EUV FEL lights
have appeared [12–16]. Among these studies Miyauchi et al.
[14] and Sato et al. [16] have revealed that the ionization
probability deviates strongly from the conventional I n scaling
for nonresonance multiphoton ionization. We note here that a
deviation from the I n scaling law was also reported long ago
in the multiphoton ionization of atoms by visible and infrared
lasers [11,17]. (See also a review by Burnett et al. [18] for
the suppression of ionization of atoms by nonperturbative
light-atom interaction beyond the multiphoton regime.) To
understand the observed nonperturbative laser-power depen-
dence in the high-frequency regime of EUV FEL, we have
performed in the present study a numerical simulation of the
time-dependent ionization probability by solving the time-
dependent Schrödinger equation for a light-coupled three-
level atom modeling the resonance two-photon ionization of
atoms, assuming single-mode FEL pulses. A nonperturbative
time-independent approach such as the Floquet approach
[19–23] may also be used to rationalize the deviation from the
power law, but it is not suitable for describing nonstational
dynamical Rabi oscillations that occur within short laser
pulses.

Furthermore, the multimode nature of the EUV FEL pulses
has been taken into account in our simulation, and its effect
on the ionization probability has been examined. The result
has rationalized the strong deviation from the I 2 scaling
for the ionization probability of the resonance two-photon
process of He atom, which has been reported very recently
by Sato et al. [16]. More importantly, we have found that
the Rabi oscillation during the course of single-light-pulse
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duration plays the essential role in determining the resonance
two-photon ionization probability.

II. THEORETICAL MODEL AND COMPUTATIONAL
DETAILS

The excitation scheme of the present theoretical model, i.e.,
the two-photon resonance ionization of a model atom, which
is schematically illustrated in Fig. 1, is as follows: The target
atom in its ground state (denoted by |g〉) is resonantly excited
to an intermediate state |i〉 by absorbing one photon whose
energy h̄ω coincides with the energy difference between |i〉
and |g〉 [step (a)]. Then, the excited atom in |i〉 undergoes
two distinct processes; (i) returning to |g〉 by emitting the
same photon [step (b)] or (ii) being ionized to a virtual
state |v〉 in the ionization continuum by absorbing another
photon with the same energy [step (c)]. These three transition
processes induced by photons occur simultaneously as far
as the relevant levels are populated. Our theoretical model
describing this scheme thus consists of the three levels |g〉, |i〉,
and |v〉.

The general time-dependent Schrödinger equation for a
nonrelativistic N -electron atom coupled with a classical

FIG. 1. (Color online) A schematic illustration of the excitation
scheme in the present multilevel atom modeling the resonance
two-photon ionization of He. The three transition processes, (a)–(c),
induced by photons with energy h̄ω are indicated by orange (light
gray) arrows. The solid blue (dark gray) bars, |g〉 and |i〉, represent
the ground and intermediate resonance states, respectively, while
the dotted one, |v〉, represents the virtual state above the ionization
threshold that decays into the ionization continuum indicated by the
light green (light gray) area.

electromagnetic field is given in atomic units as
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where {�rk} (k = 1, . . ., N ), Z, and �A(�rk,t) represent,
respectively, the spatial coordinates for the kth electron,
the nuclear charge, and the vector potential at the position
of the kth electron and time t . In Eq. (1) the position of
the nucleus is fixed at the origin. There are a number of
practical ways for transforming this equation into a particular
form suitable for actual calculation thanks to the gauge
invariance of expectation values of observables under any
unitary transformations. Among others, the so-called length
gauge has been adopted in the present study. This is because
(i) the dipole approximation, that is, neglecting the position
dependence of the vector potential, such that �A(�rk,t) ∼= �A(t), is
valid for the present EUV FEL whose wavelength of ∼58 nm
is still much larger than a typical atomic size of ∼0.1 nm
and (ii) the transformed Hamiltonian becomes a simple sum
of the field-free atomic Hamiltonian and a dipole interaction
term in this representation, as shown by Eq. (2). By applying
the unitary transformation of

∏N
k=1 exp[i �A(t) · �rk] to the wave

function � on both sides of Eq. (1) and then introducing the
electric field vector of �E(t) = − ∂

∂t
�A(t), the time-dependent

Schrödinger equation for the transformed wave function �̃

becomes
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�rk

]
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where Ĥ0 on the right-hand side of Eq. (2) represents the
field-free atomic Hamiltonian, which is given explicitly as

Ĥ0 ≡ −
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2
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k −
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The atomic unit of electric field strength is the field felt by
an electron in the ground state of atomic hydrogen, Ea =
5.14 × 109 V/cm, and the corresponding intensity is Ia =
3.51 × 1016 W/cm2.

By relying on the resonance conditions, i.e., h̄ω = εi −
εg = εv − εi , where {εα} (α =g, i, v) denote the eigenenergies
of the respective states (i, g, and v), the time-dependent wave
function �̃ can be expanded in terms of these three field-free
states as

�̃(t) =
∑

α={g,i,v}
cα(t)|α〉. (4)

Since |v〉, |i〉, and |v〉 are the eigenstates of the field-
free Hamiltonian Ĥ0, they satisfy the following eigenvalue
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equations:

Ĥ0|α〉 = εα|α〉, (α = g, i), (5)

Ĥ0|v〉 = (εv − iγ )|v〉. (6)

As shown in Eq. (6), the imaginary part of the eigenenergy
−iγ is introduced for the virtual state |v〉 so that the
probability density for this state decays automatically into the
ionization continuum. By inserting (4) into the time-dependent
Schrödinger equation (2), the differential equation for the
expansion coefficients {cα(t)} (α = g, i, v) is derived as

i
d
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Assuming that the laser field is linearly polarized along the
z axis, the off-diagonal matrix elements in Eq. (7) can be
simplified such that

�E(t) · 〈α|
N∑

k=1

�rk|β〉 = E(t)Tαβ, ({α,β} ={g, i, v}), (8)

where E(t) and Tαβ represent the time-dependent electric field
along the polarization direction and the transition dipole matrix
elements along this polarization direction, respectively.

The differential equation (7) for the expansion coefficients
can be integrated by a standard computational technique, such
as a split operator method [24] or a higher-order symplectic
integrator method [25]. The procedure can be briefly outlined
as follows: The matrix on the right-hand side of Eq. (7) is split
into a sum of two matrices A and B, where

A ≡

⎛
⎜⎝

εg E(t)Tgi 0

E(t)Tig εi E(t)Tiv
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⎞
⎟⎠ , (9)

and
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0 0 −iγ

⎞
⎟⎠ . (10)

Then, Eq. (7) can be integrated for an infinitesimal time step
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The two exponential functions, exp(−i
tB/2) and
exp(−i
tA), involving a matrix as its argument are evaluated
as

exp(−i
tB/2) =
⎛
⎝ 0 0 0

0 0 0
0 0 exp(−γ
t/2)

⎞
⎠ (12)

and

exp(−i
tA) = CC−1 exp(−i
tA)CC−1

= C

⎛
⎝ exp(−i
tα1) 0 0

0 exp(−i
tα2) 0
0 0 exp(−i
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⎞
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respectively, where C is a matrix that diagonalizes A such that

C−1AC =
⎛
⎝α1 0 0

0 α2 0
0 0 α3

⎞
⎠ . (14)

Repeating the procedure defined by Eq. (11) gives the time-
dependent coefficients {cα(t)} (α = g, i, v) at any desired
time t . The resultant {cα(t)} (α = g, i, and v) give the
survival probability of the atom under the laser pulse as
ρ(t) = |cg(t)|2 + |ci(t)|2 + |cv(t)|2 with ρ(0) = 1. The time-
dependent ionization probability is then calculated as Pion(t) =
1 − ρ(t), which represents the proportion of atoms ionized
during the time 0 ∼ t . Because of the exponential decay factor
exp(−γ
t/2) that appears in Eq. (12) the probability density
at |v〉, |cv(t)|2, decays into the ionization continuum promptly,
and thus it is negligibly small throughout the simulation. It
is noted that the value of this γ parameter can be chosen
arbitrarily but should be large enough so as to prohibit an
unphysical backward transition from |v〉 to |i〉. Thanks to
this population decay through |v〉, ρ(t) decreases as the time
proceeds. After the electric field of the laser pulse diminishes
to practically zero, the survival probability ρ and the ionization
probability Pion remain unchanged.
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The laser intensity I is determined experimentally from the
energy per laser pulse that is divided by the focal spot size and
a pulse duration, i.e., the FWHM pulse width TFWHM. Then, the
time-dependent electric field E(t) of the laser pulse in Eq. (8)
is related to the laser intensity I as follows in atomic units:

I = 1

TFWHM

∫ ∞

−∞
dt |E(t)|2. (15)

From Eqs. (8) and (15), a useful parameter concerning the
ionization probability may be defined such that

Ugi = I |Tgi |2. (16)

This Ugi parameter controls the transition strength between
|g〉 and |i〉, i.e., processes (a) and (b) in Fig. 1. Although the
ionization probability depends on a similar parameter Uiv as
well, which controls the excitation from |i〉 to |v〉, the transition
probability for this process [(c) in Fig. 1] depends simply on I

linearly thanks to the no-return process from |v〉 to |i〉. Since
the absolute value of the ionization probability is not discussed
in the present study, we arbitrarily set, for example, Uiv =
0.01Ugi . Atomic units are used throughout the simulation.

III. RESULTS AND DISCUSSION

A. Two-photon resonance ionization by a single-mode
Gaussian pulse

In Fig. 2, the ionization probability obtained from the
simulation, modeling the resonance two-photon single ion-
ization of the He atom by a Gaussian laser pulse of E(t)
with TFWHM = 4134 (100 fs) and with h̄ω = εi − εg =
εv − εi = 0.780 (21.2 eV), is plotted as a function of the Ugi

parameter. Figure 2 shows that for sufficiently small values of
Ugi (e.g., Ugi ∼ 1 × 10−8) the ionization probability behaves
as a straight line with slope 2.0 in the log-log plot. This
clearly indicates that the ionization probability persists to the

FIG. 2. (Color online) The ionization probability of the multilevel
atom of the present study under a single-mode Gaussian laser pulse
of 100-fs duration for different Ugi . The three blue (dark gray) arrows
indicate the results for Ugi = 1.4 × 10−8, 3.4 × 10−7, and 1.1 ×
10−5, corresponding to a typical value in the large, medium, and
small regimes of Ugi, respectively.

FIG. 3. (Color online) The time evolution (a) of the electric field
of the laser pulse and of the probability densities among the three
levels for different Ugi : (b) 1.4 × 10−8, (c) 3.4 × 10−7, and (d) 1.1 ×
10−5. The solid green (solid light gray), red (solid dark gray), and
dashed blue (dashed dark gray) curves represent the densities for
the ground state |g〉, the intermediate resonance state |i〉, and the
virtual state |v〉, respectively. The density for |v〉 is negligibly small
throughout the simulation and is superimposed on the x axis (see text).
The thick orange (thick light gray) curve represents the ionization
probability Pion magnified by a numeral factor indicated in each plot.

I 2 power law even for the resonance case in this small Ugi

range. However, when Ugi exceeds 2 × 10−7, the ionization
probability starts to deviate downward from this straight line
and follows a nonmonotonous curve whose average slope is
less than 1.0. When Ugi increases further, the ionization curve
converges to a straight line with slope 1.0, as seen in Fig. 2.

In order to clarify the origin of this strong deviation
from the I 2 power law, the time evolution of the probability
distribution among the three levels, i.e., |cα(t)|2 (α = g, i, and
v), is examined and plotted in Fig. 3 for Ugi = 1.4 × 10−8,
3.4 × 10−7, and 1.1 × 10−5. In Fig. 3, the alternating electric
field of the laser pulse is shown in Fig. 3(a). Figure 3(b)
(Ugi = 1.4 × 10−8), in a weak-field regime, shows that the
probability in the ground state |cg(t)|2 indicated by the solid
green (light gray) curve starts to decrease from unity at around
t = 150 fs, when the amplitude of the laser pulse rises close
to its peak. Synchronizing with the decrease in |cg(t)|2, the
probability in the intermediate state |ci(t)|2 [solid red (dark
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gray) curve] as well as the ionization probability Pion(t) (thick
orange curve) appears and increases until around t = 300 fs,
when the laser field becomes so small it is unable to ionize the
atom further. Figure 3(c) (Ugi = 3.4 × 10−7), at the beginning
of the deviation from the straight line, shows that |cg(t)|2
decreases sharply after passing through t = 150 fs and becomes
zero at t = 222 fs. Synchronizing with this decrease in |cg(t)|2,
the probability in the intermediate state |ci(t)|2 increases
sharply and becomes almost unity at the same time, when
|cg(t)|2 becomes zero. Then, in turn, |cg(t)|2 increases and
|ci(t)|2 decreases. This is a clear indication of the beginning of
a Rabi oscillation between the ground and intermediate states.
Since the laser pulse is not long enough with respect to the
period of the Rabi oscillation in this regime, |cg(t)|2 and |ci(t)|2
converge to a constant value before completing their latter half
cycle of oscillation. Therefore, since the ionization proceeds
via |i〉, the decrease of the probability being in the i state
prohibits efficient ionization. It is noted that if the probability
|ci(t)|2 were increasing monotonously after the peak time of
t = 222 fs, the ionization probability would increase further
as well and would follow the prediction by the I 2 power law.
As can be seen in Fig. 2, however, the ionization probability
becomes smaller than the prediction from the lowest-order
perturbation theory when Rabi oscillations take place.

This suppression of ionization probability due to the Rabi
oscillations is evidently revealed in the result for Ugi = 1.1 ×
10−5 displayed in Fig. 3(d). As indicated by the third arrow in
Fig. 2, this value of 1.1 × 10−5 for the interaction strength Ugi

deeply penetrates into the regime, where the laser-intensity
dependence of the ionization probability deviates significantly
from the I 2 power law and exhibits being almost linear with
respect to I . The time evolution of the probabilities for the
g and i states clearly manifests the Rabi oscillations of four
and a half cycles. The ionization probability Pion(t) increases
step by step, passing the rising edge of the probability for
the intermediate i state, |ci(t)|2, and staying almost unchanged
during the period of time when |ci(t)|2 decreases to zero due to
the second half cycle of Rabi oscillation. When the interaction
strength Ugi , or, equivalently, the laser intensity I , becomes
larger, the number of cycles for the Rabi oscillations in the
laser pulse increases. In the further inspection of Fig. 3(d),
it should be noticed that the number of decreasing edges in
|ci(t)|2 is the same as that of the rising edge. Reflecting this,
the cycle averages of the probability densities for the i and g

states become almost equal to each other; that is, the survival
probability is equally shared by the i and g states. As a result,
the probability density for the i state becomes independent of
the value of Ugi in this large Ugi regime. Then, the ionization
probability depends only on the one-way excitation from |i〉
to |v〉 [process (c) in Fig. 1], giving a linear dependence on I .

B. Multimode effects

It may be noted that the EUV FEL pulses generated
from the SCSS are not ideal single-mode Gaussian pulses
but are multimode in nature [1,2]. Therefore, the results
of numerical simulations obtained in the previous section
assuming a single-mode laser pulse are not directly compared
with the relevant experimental data. Therefore we have
performed further numerical simulations using numerical data

FIG. 4. (Color online) (a) An example of the FEL pulses
employed in the simulation and (b) its energy-domain spectrum.

for self-amplitude spontaneous emission (SASE) FEL pulses
forE(t).

An example of the EUV FEL pulse obtained from the sim-
ulation code SIMPLEX [26] is presented in Fig. 4 for both time
and energy domains. The time-domain FEL pulse displayed
in Fig. 4(a) is largely different from the single-mode Gaussian
pulse displayed in Fig. 3(a) in that it has a complicated structure
due to interferences between different energy components, as
evidenced by Fig. 4(b). In actually obtainable FEL pulses, there
also exist some random fluctuations in the energy spectrum of
Fig. 4(b) [1,2]. That is, the shot-by-shot FEL pulses are not
identical to each other in the time domain as well as in the
energy domain. Therefore, first for a set of ten FEL pulses,
we have performed individually simulations by putting a set
of ten time-dependent electric fields, one of which is shown
in Fig. 4(a), intoE(t) in Eq. (7). A definition of the pulse
width TFWHM for the FEL pulses is not trivial owing to their
complicated interference pattern, as shown in Fig. 4(a). On
the one hand, in the experiment on the He atom, with which
we compare our simulation results in the next section, the
laser intensity was estimated by assuming TFWHM = 300 fs
[16]. Therefore, we have also adopted TFWHM = 300 fs for
consistency in our definition of laser intensity in Eq. (15).
Second, the individual results of the ionization probabilities for
the set of ten FEL pulses were averaged to give a representative
ionization curve as a function of Ugi . Finally, this averaged
curve as a function of Ugi was transformed in the curve as a
function of laser intensity I by the substitution of the absolute
value of transition dipole moment matrix element into Tgi in
Eq. (16). This enables us to compare the theoretical results
with the experimental ones in the scale of the laser intensity I .
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FIG. 5. (Color online) The ionization probability of the multilevel
atom of the present study under the FEL pulses for different Ugi . The
small orange (light gray) circles represent the results for each of the
ten shots of the FEL pulses. The red (dark gray) squares represent
their average.

Figure 5 represents the calculated ionization probabilities
for each of the ten FEL pulses (small orange circles) and their
averages (red squares). The red squares in Fig. 5, representing
the averaged ionization curve, show similar characteristics as
observed for the single Gaussian pulse; namely, the slope is
∼2 for the small Ugi regime and ∼1 for the large Ugi regime.
It may be noted that the region of the curve with a slope less
than 1.0 in the medium Ugi regime, which is seen for the
result of a single-mode Gaussian pulse, is less visible for the
averaged ionization curve of the FEL pulses. This is caused
by an averaging procedure over the results of the fluctuating
ionization probabilities for the individual FEL pulses, which
blurs the fine details.

The time evolution of the probability densities among the
three levels g, i, and v is plotted in Fig. 6 for the result
obtained using the FEL pulse represented in Fig. 4(a). The
Ugi parameters chosen for display are Ugi = 1.1 × 10−8,
3.0 × 10−7, and 1.1 × 10−5, which correspond to typical
values in the small, medium, and large regimes, respectively.
As shown in Figs. 6(b)–6(d), the ionization probability and
the probability densities for the g and i states are spiky,
not smooth, curves, although the overall trends are similar
to those of the corresponding results for the single-mode
Gaussian pulse. These spiky curves may be the reflection of
the spiky pulse of Fig. 6(a), which is caused by modulations
of the central frequency of the FEL pulse by other near-lying
frequency components, as seen in Fig. 4(b). These modulations
could accelerate or decelerate ionization probability every
moment by modifying the amplitude of the time-dependent
electric field, leading thus to fluctuations in the time-dependent
ionization probability.

C. Application to the two-photon resonance ionization of He

The averaged ionization probability curve using the SASE
FEL pulses obtained in the previous section, which is displayed
in Fig. 5, is now compared with the experimental laser-

FIG. 6. (Color online) The time evolution (a) of the electric field
of an FEL pulse and of the probability densities among the three
levels for different Ugi: (b) 1.1 × 10−8, (c) 3.0 × 10−7, and (d) 1.1 ×
10−5. See the caption to Fig. 3 for other remarks.

power dependence of the resonance two-photon ionization
of He through the (2p)-(1s) resonance transition [16]. For
the comparison, the horizontal axis Ugi used in displaying
the results of simulation is transformed to the laser-intensity
parameter I (in W/cm2), as mentioned in the previous section.
This can be simply done by substituting the value of the
squared dipole transition moment matrix element |Tgi |2 into
Eq. (16). The value |Tgi |2 = 0.177, which was calculated by
using the accurate Hylleraas wave functions [27], has been
adopted. The results, together with the experimental data, have
been plotted in Fig. 7 as a function of I .

As shown in Fig. 7, the experimental data with the laser
intensity centered at around ∼3 × 1013 W/cm2 correspond
to the large Ugi regime where the slope of the ionization
curve is ∼1. The experimental data indicated by the green
circles agree well with the ionization curve of the simulation
indicated by the red squares. Indeed, a linear least-squares
fit to the experimental data has given a slope of 1.1 [16].
These observation rationalize the reason why the experimental
ionization probability has a linear power dependence despite
the fact that the He atom is ionized by absorbing two photons:
As has been seen in Fig. 6(d), the probability density in the
intermediate i state [the (2p) 1P state] saturates in the large
Ugi regime because of the high-frequency Rabi oscillations
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FIG. 7. (Color online) A comparison between the calculated and
the experimental laser-power dependences (Ref. [16]) of the two-
photon resonance ionization of He via the intermediate (2p) 1P state.
The red (dark gray) squares and green (light gray) circles represent
the calculated and experimental data, respectively.

between the g and i states. Therefore, the excitation from g

to i does not have any dependence on I in this large Ugi

regime, and the ionization probability thus has a linear intensity
dependence through the one-way excitation from i to v.

IV. SUMMARY

The present study reports on the results of time-dependent
numerical simulation for a light-coupled multilevel atom
modeling the resonance two-photon ionization of an atom by
strong EUV FEL pulses. The result for a single-mode Gaussian
pulse of 100-fs duration shows that the ionization probabilities

Pion have characteristic dependences on the scaling parameter
Ugi , namely, Pion ∝ (Ugi)n, with n being equal to ∼2, less
than 1, and ∼1 for the small, medium, and large Ugi regimes,
respectively. The time evolution of the probability densities
among the three states |g〉, |i〉, and |v〉, which represent,
respectively, the ground, intermediate, and virtual states,
has rationalized this nonmonotonous intensity dependence as
being caused by different frequencies of Rabi oscillations
between the |g〉 and |i〉 states for different Ugi . Further a
numerical simulation employing the numerical data of SASE
FEL pulses obtained from SIMPLEX has also been performed
in order to examine effects of the multimode, non-Gaussian
nature of SASE FEL pulses on the ionization probabilities.
It shows that the above-mentioned nonmonotonous intensity
dependence in the ionization probabilities persists for the
SASE FEL pulses, except that the region of the ionization curve
with a slope less than 1 in the medium Ugi regime is less clearly
visible than the case for the single-mode Gaussian pulse.
The Rabi oscillations between the ground and intermediate
states also persist for the results by the SASE FEL pulses,
although the time evolution of the probability densities and the
ionization probabilities gets significantly modulated owing to
the existence of other frequency components close to the main
component of the resonance atomic transition.

The present result of the ionization probability curve
obtained with the simulation showing the nonmonotonous
intensity dependence has been compared with the experimen-
tal laser-intensity dependence for the two-photon resonance
ionization of He measured recently by Sato et al. [16].
It is shown that the experimental data showing a linear
intensity dependence correspond to the large Ugi regime of
the simulation. The observed linear laser-intensity dependence
has been thus rationalized as being caused by the strong
Rabi oscillations between the ground (1s) 1S state and the
intermediate resonance (2p) 1P state of He.

ACKNOWLEDGMENTS

The authors thank Dr. Takahiro Sato, Dr. Atsushi Iwasaki,
Dr. Tomoya Okino, and Professor Kaoru Yamanouchi for
providing us with the experimental data. T.S. gratefully
acknowledges financial support from the Japan Society for the
Promotion of Science (Grants-in-Aid for Scientific Research
No. 23550025) and from the Nihon University Strategic
Projects for Academic Research.

[1] T. Shintake et al., Nat. Photonics 2, 555 (2008).
[2] T. Shintake et al., Phys. Rev. Spec. Top. Accel. Beams 12,

070701 (2009).
[3] C. Cohen-Tannoudji, J. Dupont-Roc, and C. Crynberg, Atom-

Photon Interactions: Basic Processes and Applications (Wiley-
VCH, Weinheim, 2004), pp. 203–204.

[4] H. Wabnitz, A. R. B. de Castro, P. Gürtler, T. Laarmann,
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