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Multiphoton Rabi oscillations between highly excited Stark states of potassium
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We have applied a nonperturbative resonant theory to study the Rabi frequency of microwave multiphoton
transitions between two Rydberg states of potassium in a static electric field. The Stark electric dipole moments
used to calculate the Rabi frequency are determined by the Stark states’ wave functions, which are obtained
by the diagonalization method. The frequencies of the Rabi oscillations are in good agreement with either
experimental ones or ones calculated by the time-dependent close-coupling method and the Floquet theory.
Furthermore, we are able to show that the size of avoided crossings between the (n + 2)s and (n,3) states can
be predicted from the Stark electric dipole moment and the difference of the two Stark states’ energy at a given
resonance.
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I. INTRODUCTION

In the last few decades, a lot of attention has been
paid to the behaviors of Rydberg atoms in external fields,
such as the study related to the Stark structure [1], the
positions and widths for avoided crossings of Rydberg atoms
in electric fields [2,3], microwave ionization [4–6], microwave
multiphoton Rabi oscillations [7], and frequency-modulated
excitation [8] of Rydberg atoms. The microwave multiphoton
resonances between (n + 2)s and (n,3) in Rydberg potassium
have been observed [9–12]. The initial state referred to
is labeled as an s state, despite the fact that the angular
momentum quantum number is not a good quantum number
in the static electric field. The wave function of this state
remains essentially unchanged below the avoided crossings
with the Stark manifold. The manifold state that the s state
first intersects is labeled by its parabolic quantum number
as the (n,3) state because it adiabatically connects to the nf

state in the zero field, and the wave function of this state
is a superposition of the wave functions of all states with
l � 3 due to the external electric field and thus is not a state
of definite parity. Consequently, the multiphoton resonances
between the Stark states of Rydberg potassium atom occur
when the separation between the levels is equal to an integer
times of the microwave frequency. In Fig. 1 we show the
Stark map of potassium in the vicinity of n = 19 (|m| = 0).
As shown in Fig. 1, the (19,3) states exhibit a linear Stark shift
and the 21s state has a small quadratic Stark shift. The 21s

and (19,3) states have an avoided crossing at 303.8 V/cm [13]
due to short-range interaction between the Rydberg electric
electron and the K+ core. We use arrows to indicate the
static fields at which the three- and five-photon resonances
occur for a microwave frequency of 9.1 GHz. The microwave
multiphoton process is well understood using Floquet theory
and Landau-Zener theory [7,8,10,12,14]. The connection
between Landau-Zener transitions in slowly varying field point
of view and multiphoton transitions in the photon point of view
have been examined.

In general, the major limitation of the conventional Floquet
techniques is that they are applicable only to a monochromatic
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problem where the Hamiltonian is periodic in time. Although
such a bottleneck has been circumvented with the development
of the so-called many-mode Floquet theorem (MMFT) [15],
the analytic treatment of the effective multi-mode Hamiltonian
is still a complicated task. The analytical two-mode Floquet
description of microwave multiphoton resonances between
(n + 2)s and (n,3) in Rydberg potassium has been constructed
by Lung Ko et al. [16]; it is effective only for the case of two
harmonically related fields. Furthermore, the Floquet analysis
of microwave multiphoton resonance based on a parameterized
two-level system requires the size of the avoided crossing and
the relative slope [8,14] between the Stark states of (n + 2)s
and (n,3), which are determined by experiment. Here, the
relative slope is the rate of change of energy with the amplitude
of the static electric field. In the Floquet analysis, the mean
value of the relative slope was used. In fact, the relative slope
between the Stark states of (n + 2)s and (n,3), which is not a
constant, usually varies with respect to the static field. Thus,
the Floquet analysis is somewhat a rough approximation for
these two-level systems of potassium. Because the multiphoton
Rabi frequencies at nonperturbative intensities are especially
important for understanding complicated multiphoton process,
so it is essential to give a more exact, pure theory description
of this problem.

In this paper we apply a nonperturbative resonant theory to
study the Rabi frequency of microwave multiphoton transitions
between the (n + 2)s and (n,3) Stark states of highly excited
potassium. By using the well-established B-spline expansion
technique [13,17–21] and a parametric model potential, we
obtain the Stark states’ wave functions by the diagonalization
method, and then the Stark dipole matrix elements, which
are related to the amplitude of the static electric field are
determined at the exact position where we calculate the Rabi
frequency. For two-mode multiphoton transitions, the nonper-
turbative resonant theory only requires that the multiphoton
Rabi frequency is far less than the waves’ frequencies; it
can be easily used for the two-level system driven by either
the so-called frequency-modulated field or two harmonically
related microwave fields, and two frequency-incommensurate
microwave fields. Furthermore, we find a formula for the size
of avoided crossings between the (n + 2)s and (n,3) states
through the comparison between the nonperturbative resonant
theory and Floquet theory.
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FIG. 1. Stark map of potassium in the vicinity of n = 19 (|m| =
0). The arrows indicate the positions of the three- and five-photon
resonances at 9.1 GHz

II. THEORETICAL METHOD

A. Nonperturbative resonant approach for multiphoton
resonant excitation

A general nonperturbative resonant approach (NPRA) to
problems involving multiphoton resonant excitation of atoms
was introduced by Avetissian et al. [22,23]. We consider a
two-level system in the presence of a electromagnetic field,
the Hamiltonian for the system is presented in the form

Ĥ = (ε1 + V11)|1〉〈1| + (ε2 + V22)|2〉〈2| + (V12 |1〉 〈2| + H.c.)

(1)

where

Vij = −dijFmw cos ωmwt (2)

and dij is the matrix element of the electric dipole moment,
Fmw is the amplitude of the microwave field, ωmw is the angular
frequency of the microwave field. The V11 and V22 account for
interaction due to the mean dipole moments and these terms
are very important for the multiphoton resonance. For our
two-level system, both (n,3) and (n + 2)s states are affected
by static and microwave fields, so, it is reasonable to contain
d11, or equivalently, V11 in Eq. (1). The wave function of the
system can be written in the form

|ψ(t)〉 = a1(t)e−i(ε1t+
∫ t

0 V11dt) |1〉 + a2(t)e−i(ε2t+
∫ t

0 V22dt) |2〉.
(3)

From the time-dependent Schrödinger equation

i
∂ |ψ(t)〉

∂t
= Ĥ |ψ(t)〉 (4)

we can obtain the equations for the probability amplitudes

i
da1(t)

dt
= V12e

−i[(ε2−ε1)t+∫ t

0 V22dt−∫ t

0 V11dt]a2(t),

i
da2(t)

dt
= V ∗

12e
−i[(ε1−ε2)t+∫ t

0 V11dt−∫ t

0 V22dt]a1(t), (5)

rewritten as

i
da1(t)

dt
= F12(t)a2(t),

i
da2(t)

dt
= F ∗

12(t)a1(t), (6)

where

F12 = V12e
−i[(ε2−ε1)t+∫ t

0 V22dt−∫ t

0 V11dt] (7)

and F ∗
12 denotes the complex conjugation of F12. With the help

of expansion in terms of Bessel function

eix sin α cos α = 1

x

∞∑
s=−∞

sJs(x)eisα, (8)

the function F12 can be represented in the following form

F12 =
∞∑

s=−∞
η12(s)ei(ε1−ε2+sωmw)t , (9)

where

η12(s) = − d12

d22 − d11
(ωmws)Js

(
(d22 − d11)

Fmw

ωmw

)
(10)

represent the coupling of levels by photons. The probabilities
of multiphoton transitions between these levels have maximal
values for the resonant transitions

ε1 − ε2 + nωmw � 0, n = ±1, ± 2, ± 3, . . . . (11)

Hence, the function F12 can be represented in the following
form

F12 = [�12 + f12] eiδt , (12)

where

�12 = − d12

d22 − d11
(ωmwn)Jn

(
(d22 − d11)

Fmw

ωmw

)
, (13)

f12 =
∑
s �=n

η12(s)ei[(s−n)ωmw]t , (14)

and f12 is a rapidly oscillating function on the scale of waves’
period. We introduce the resonance detunings

δ = ε1 − ε2 + nωmw. (15)

Following the nonperturbative resonant approach introduced
by Avetissian et al. [22,23] and separating slow and rapid
oscillations, we obtain the following set of equations for the
time average probability amplitudes:

i
d

dt

⎛
⎝ a1(t)

a2(t)

⎞
⎠ =

⎛
⎝ 
 �12

�∗
12 −
∗ − δ

⎞
⎠

⎛
⎝a1(t)

a2(t)

⎞
⎠ . (16)

Here, �12 provides the coupling between state |1〉 and |2〉
and causes multiphoton transitions between them. 
 describes
the detuning from dynamic Stark shifts. When the resonance
condition is satisfied, the resonance detuning δ is neglected.
Then the analytical solution of Eq. (16) for the system situated
initially in the state |1〉 is

a2(t) = −i
�12√

�2
12 + 
2

sin
√

�2
12 + 
2t. (17)
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For a given microwave field, the population for upper level
|2〉 will oscillate between the two states as a function of time
given by the Rabi equation

P (t) = �2
12

�2
12 + 
2

sin2 (√
�2

12 + 
2t
)
. (18)

When the resonance condition is satisfied, the generalized
multiphoton Rabi frequency is 2�12. Thus, the microwave
multiphoton Rabi frequency can be predicted from the Stark
electric dipole moments, the amplitude Fmw, and the frequency
ωmw of the microwave field. Note that according to Eq. (18),
the maximum value of P (t) is 1 for resonance. If the maximum
value of P (t) is smaller than 1, obviously, the detuning 
 from
dynamic Stark shifts cannot be neglected.

The set of Eq. (16) has been derived using the assumption
that the amplitudes ai(t) are slowly varying functions on the
scale of the electromagnetic wave’s period that put in place the
restrictions: (|�12|,|
|) � ωmw.

B. Time-dependent close-coupling method

In this paper, we employ the time-dependent close-coupling
(TDCC) method used by Zhang et al. [14,24] and Jin et al.
[17] to solve the time-dependent Schrödinger equation. The
one-electron Hamiltonian for an alkali-metal atom in a static
electric field (the direction of field is taken along the z axis)
and a microwave field is as follows

H = H0 + Fz + zFmw cos ωmwt, (19)

where H0 = − 1
2∇2 + V (r) is the field-free Hamiltonian, F

is the amplitude of the static electric field. The wave function
ψ(t) of the potassium atom in the two fields obeys Eq. (4). The
one-electron potential model developed by Marinescu et al.
[25] can well describe the motion of the valence electron for the
alkali-metal atoms. The form of this potential, which depends
on the orbital angular momentum of the valence electron, l, is

Vl(r) = −Zl(r)

r
− αc

2r4
[1 − e−(r/rc)6

], (20)

where αc is the static dipole polarizability of the positive-ion
core, while the radial charge Zl(r) is given by

Zl(r) = 1 + (z − 1)e−a1r − r(a3 + a4r)e−a2r , (21)

where z is the nuclear charge of the neutral atom and rc is the
cutoff radius introduced to truncate the unphysical short-range
contribution of the polarization potential near the origin. αc is
the static dipole polarizability of the positive-ion core. Here
rc, a1, a2, a3, a4 are the l-dependent parameters, which have
been given in Ref. [25]. Due to the central symmetry of the
potential, the zero-field wave function has the following form:

�nlm = Rnl(r)Ylm(θ,ϕ), (22)

where n, l, m are principal, angular, and magnetic quantum
numbers, respectively. Ylm(θ,ϕ) is a spherical harmonic func-
tion, and Rnl(r) is the radial wave function.

By using the diagonalization method, in which the bases
are chosen from B-splines, we obtain the radial wave function
Rnl(r) in its numerical form. The detailed description of the
diagonalization method used in the calculation can be found
in Ref. [13]. These radial wave functions have the correct

number of nodes, and are orthonormal due to the distinctive
characteristics of B-spline functions.

Using the zero-field wave functions �nlm as a basis set, the
matrix elements of the Hamiltonian H1 = H0 + Fz are given
as

Hnlm,n′l′m = δnlm,n′l′mEnl + F 〈nlm|z|n′l′m〉. (23)

By diagonalizing the matrix of H1, we obtain the eigenvalues
Ek and the eigenvectors ψ

(s)
k of H1. ψ

(s)
k is referred to as the

Stark state wave function, which is a linear combination of the
zero-field wave functions �nlm, in the following form:

ψ
(s)
k =

∑
n

n−1∑
l=|m|

U
n1,n2
n,l (F )�nlm, (24)

where U
n1,n2
n,l (F ) are the elements of the unitary matrix that

projects the Stark states, labeled by the parabolic quantum
numbers n1,n2, on to the corresponding zero-field states.
Within the electric dipole approximation, the Stark electric
dipole moment dij may be written in the following form:

dij = 〈
ψ

(s)
i

∣∣P (1)
∣∣ψ (s)

j

〉
= 〈

ψ
(s)
i

∣∣rC(1)
0

∣∣ψ (s)
j

〉
. (25)

It necessary to point out that the off-diagonal element about
operator r experiences a rapid decrease when the quantum
number difference between the two related states increases,
so only those eigenvectors whose eigenvalues are close to the
states we considered are to be selected as the bases. This fact
ensures a finite character for the set, but high accuracy to the
calculation. Using ψ

(s)
k as the basis set, the time-dependent

wave function of the potassium can be written as

ψ(t) =
∑

k

ak(t)ψ (s)
k e−iEkt , (26)

where ak(t) is the coefficient of the expansion. Substituting
Eq. (26) into Eq. (4), we obtain a set of coupled equations.
Solving these equations by Runge-Kutta algorithm, we can
get ak(t). Then the probability of the outer electron inhabiting
in the state k is

Pk = |ak|2 . (27)

Using the above formula, we can calculate the state-to-state
transition probability, from which the Rabi oscillations can
be observed. The long-time average transition probability is
expressed as follows:

P = 1

τ

∫ τ

0
Pk(t)dt, (28)

where τ is the duration chosen to be long enough for the
average. By means of the above formula, we can obtain
the multiphoton transition probability and the multiphoton
resonance spectra are obtained by scanning the static field.

III. RESULTS AND DISCUSSION

A. Stark electric dipole moments

In numerical calculation, the 21s and the (19,3) are the
interested states, so the basis set should be in the neighborhood
of the two states. For simplicity, the form (n,li ∼ lj ) denotes
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TABLE I. The calculated Stark electric dipole moments, which
are given in atomic units.

F(V/cm) |d11| |d12| |d22|
287.37 44.323 8.455 467.534
285.62 44.020 7.629 467.712
287.2 44.293 8.367 467.551
271.2 41.688 4.249 468.937
255.4 39.223 2.867 470.053
239.8 36.809 2.156 471.007
239.7 36.794 2.153 471.013

the contiguous manifold states (n,li), (n,li + 1),..., (n,lj ). The
basis set is formed from the zero-field wave functions for
(17,2 ∼ 16), (18,2 ∼ 17), (19,0 ∼ 18), (20,0 ∼ 19), (21,0 ∼
20), (22,0 ∼ 1). The total number of these basis wave functions
is 93. By making this approximation, the computing time is
saved largely with little accuracy lost. In order to test the
convergence of this approximation, we have used a much larger
basis set by taking 418 zero-field wave functions for (10,2 ∼
9), (11,2 ∼ 10), (12,0 ∼ 11), (13,0 ∼ 12),..., (30,0 ∼ 29),
(31,0 ∼ 1). The relative deviation of the energy of the 21s

Stark state at F = 280 V/cm derived from the two basis sets
is within 0.0001.

In the calculation, the multiphoton resonance spectra are
obtained by scanning the static field from the position of the
avoided crossing between the 21s and (19,3) states to zero
field for a fixed microwave field, and the positions of the
N-photon resonances (N = 1,2,3, . . .) are obtained accurately.
The Stark states’ wave functions are obtained by diagonalizing
the Stark Hamiltonian with the fixed static electric field for a
given resonance. Stark electric dipole moments dij are then
determined [1,12]. In Table I, we list the values of the Stark
electric dipole moments for the one- to four-photon resonances
at 9.1 GHz, and the values of Stark electric dipole moments
for the carrier resonance and the third sideband resonance are
also listed.

B. Microwave multiphoton Rabi oscillations

The main results in this paper are the microwave multipho-
ton Rabi frequencies. According to NPRA theory, the coupling
between the 21s and (19,3) states due to a microwave field
is given by Eq. (13), and the generalized multiphoton Rabi
frequency is 2�12. We can also obtain the multiphoton Rabi
frequency directly through numerical experiment by the TDCC
method since P (t) is a standard sine or cosine function of time.
In addition, the multiphoton Rabi frequency can be derived
from Floquet theory [7] as follows:

�mwN = �0JN

(
(k − αF )Fmw

ωmw

)
, (29)

where �mwN is the N -photon transition Rabi frequency, �0 is
the size of the avoided crossing between the Stark states, JN

is a Bessel function of order N , k is the relative slope between
the (n + 2)s and (n,3) states or the dipole moment of the
(n,3) Stark state [12], and α is the dipole polarizability of the
(n + 2)s state. For the 21s state, α/2π = 0.195 MHz/(V/cm)2

[7]. In the present calculation, the size of the avoided

crossing �0 between 21s and (19,3) states is 340.8 MHz
and the relative slope of the 21s and (19,3) states is k/2π =
604 MHz/(V/cm).

We first calculate the Rabi frequency between 21s and
(19,3) states in the microwave field using NPRA theory and
Floquet theory. In the calculation, we set Fmw = 7.236 V/cm,
ωmw/2π = 8 GHz and adjust the amplitude of the static
field, and we observe the single-photon Rabi oscillation
with the Rabi frequency �mw1 = 84.96 MHz. According to
Floquet theory and NPRA theory, the Rabi frequency is
83.19 MHz and 85.39 MHz, respectively. If one neglects the
quadratic Stark shifts of the 21s state, and uses a value of
k = 549 MHz/(V/cm) [8] for the relative slope, the Rabi
frequency is 81 MHz, which is in good agreement with the
experiment [8]. So NPRA theory works well in calculating
the Rabi frequency for microwave multiphoton transitions
between two Rydberg states of potassium in a static electric
field. Note that the one- and two-photon transitions are driven
by the microwave fields with very small amplitude, while
higher N-photon transitions require a constant additional
microwave field amplitude for each additional photon. In fact,
stronger microwave fields are required to drive the higher-order
transitions, which occur at lower static fields. We set the
microwave field frequency ωmw/2π = 9.1 GHz, and sweep
the static field for a fixed microwave field. Then the positions
of the multiphoton resonances are obtained accurately. In
Table II, we list the Rabi frequencies of the N-photon resonant
excitation for N = 1,2,3,4. One can see the good agreement
between NPRA theory, Floquet theory, and the numerical
results by TDCC except for the 4-photon transition with Fmw =
40 V/cm. Note that the TDCC is multistate description, which
relies more on the real behavior of the potassium atom, and
the results of TDCC are the calculated Rabi frequencies of the
multiphoton resonances from 21s to (19,2 ∼ 18) Stark states,
the grand total of 18 states that straddle the 21s and (19,3)
states are included in the calculations. They are considered as
the most accurate ones among these three methods. Obviously,
the results by NPRA theory are better than the ones from
Floquet theory in comparison with TDCC. Both the NPRA
theory and Floquet theory here are dealing with the two-level
system, but the NPRA theory is more accurate. The reason is
that in the NPRA description, the precise Stark dipole matrix
elements that are related to the amplitude of the static electric
field are determined at the exact position where we calculate
the Rabi frequency, but in the Floquet analysis, the mean value
of the relative slope was used.

TABLE II. The calculated Rabi frequencies for the ωmw/2π =
9.1 GHz microwave field, The values of Rabi frequencies are given
in units of MHz. N is the number of photons absorbed. The positions
of the multiphoton resonances F and the amplitudes of the microwave
fields Fmw are given in units of V/cm.

N = 1 N = 2 N = 3 N = 4 N = 4

Fmw 10 35 47 85 40
F 287.2 271.2 255.4 239.8 239.7
TDCC 102.04 135.00 106.96 142.15 33.77
NPRA 102.39 135.83 102.27 143.75 24.62
Floquet 100.02 131.56 98.82 135.99 23.48
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FIG. 2. (Color online) Rabi oscillations [21s, solid orange line;
(19,3), dotted violet line] for four-photon resonance at ωmw/2π =
9.1 GHz with Fmw = 40 V/cm.

In Fig. 2 we show the Rabi oscillations for four-photon
resonance at ωmw/2π = 9.1 GHz with Fmw = 40 V/cm. Note
that the maximum of the population for the upper-level
(19,3) state is smaller than 1, and it is equal to 0.67.
The steady-state transition probability is one half of the
maximum of the population for upper level (19,3) state, equals
0.335, and the resonance is weak enough. When the value
2�12 = 24.62 MHz is substituted into Eq. (18), we obtain
the dynamic Stark shift 
 = 8.64 MHz, which is required to
meet the resonance condition. When 
 is taken into account,
the corrected Rabi frequency is 30 MHz, which approaches
to the numerical result 33.77 MHz. If the microwave field
amplitude is increased, the multiphoton transition will be
brought into resonance by a larger dynamic Stark shift (e.g.,
the four-photon resonance at ωmw/2π = 9.1 GHz with Fmw =
85 V/cm).

C. Radio frequency multiphoton Rabi oscillations

Nole et al. [8] have presented a detailed experimental
study of the frequency-modulated excitation between the 21s

and (19,3) states. For fast modulation, the two-level atom
is driven by both the microwave and rf fields. In the limit
where the modulation frequency is large compared to �mw1,
the rf resonances are well separated. The rf multiphoton Rabi
frequency derived from Floquet theory is given by

�rfN = �mw1JN

(
kFrf

ωrf

)
, (30)

where JN is again a Bessel function of order N , but N refers
to the number of rf photons being absorbed. Frf is the rf field
amplitude, ωrf is the rf field frequency.

According to NPRA theory [22,23], with the help of
expansion in terms of Bessel function

eiα sin ωt =
∞∑

s=−∞
Js(α)eisωt . (31)

The extension to the calculation of the Rabi frequency for a
two-color multiphoton process in a two-level system is not

difficult, the coupling between the (n + 2)s and (n,3) states
due to a microwave and rf field is given by:

�′
12 = − d12

d22 − d11
(ωmw1n + ωmw2m)

× Jn

(
(d22 − d11)

Fmw1

ωmw1

)
Jm

(
(d22 − d11)

Fmw2

ωmw2

)
,

(32)

where Fmw1 and Fmw2 are the microwave and rf field am-
plitudes, and ωmw1 and ωmw2 are the microwave and rf field
angular frequencies, respectively. Note that the population for
upper-level |2〉 oscillates between the two states with a Rabi
frequency given by 2�′

12.
In the rf multiphoton resonances experiment [8], the

microwave amplitude was set to yield a microwave Rabi
frequency of �mw1 = 156 MHz, the rf frequency was set
as ωmw2/2π = 330 MHz ≈ 2�mw1, and its amplitude as
Fmw2 = 4.13 V/cm. By scanning the static electric field, a
well-separated rf multiphoton resonance spectra was obtained.
Next, they fixed the static field at an rf resonance and
measured Rabi oscillations for various rf field amplitudes.
Such measurements along with the theoretical predictions for
two rf resonances, the carrier and the third sideband, were
carried out.

Setting the microwave amplitude Fmw1 = 17.45 V/cm,
frequency ωmw1/2π = 9 GHz, and the rf field amplitude
Fmw2 = 4.13 V/cm, frequency ωmw2/2π = 330 MHz, re-
spectively, which are the same as those in the experiment,
then scanning the static field amplitude from 284 V/cm to
289 V/cm, the position of the N-photon rf resonance (N =
0,1,2,3) is obtained. The positions for the carrier resonance
and the third sideband resonance are 287.37 V/cm and
285.62 V/cm, respectively. Stark electric dipole moments dij

are then determined.
Note that the values of Stark electric dipole moments are

given in atomic units. When these values are substituted
into Eq. (32), we obtain the rf multiphoton resonance Rabi

FIG. 3. (Color online) The comparison between the theoretical
calculation (NPRA, solid violet line; Floquet, dashed orange line)
and the experiment (open circles) for various rf amplitudes with the
static field tuned to the carrier resonance. Experimental data are from
Ref. [8]. The microwave and rf parameters are given in the text.
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FIG. 4. (Color online) The comparison between the theoretical
calculation (NPRA, solid violet line; Floquet, dashed orange line) and
the experiment (open circles) for various rf amplitudes with the static
field tuned to the third sideband resonance. Experimental data are
from Ref. [8]. The microwave and rf parameters are given in the text.

frequencies. Figure 3 shows the results for various rf ampli-
tudes at the carrier resonance while the experimental results
and results by Floquet theory are also presented. Figure 4
shows the similar results for the third sideband resonance. In
Figs. 3 and 4, we can see the good agreement between NPRA
theory, Floquet theory, and the experimental results.

D. The size of avoided crossing

In general, the energy difference of two relevant levels is
a function of the electric field. The minimal value of this
function is at the point where the position of avoided crossing
is defined, and the size of avoided crossing is defined as this
minimal value. By scanning the static field [2,13,21], one can
calculate the position and the size of a avoided crossing.

From the comparison between the NPRA theory and
Floquet theory or the comparison between Eq. (13) and
Eq. (29), the size of the avoided crossing between the (n + 2)s
and (n,3) states can be written as

�0 = 2

∣∣∣∣ d12

d22 − d11

∣∣∣∣
E, (33)

where 
E is the difference of the two states’ energy at
the N-photon resonance. Thus, we suggest that the size of
avoided crossings between the (n + 2)s and (n,3) states can
be predicted from the Stark electric dipole moments and the
difference of the two Stark states’ energy. For the case of the
one- to four-photon resonant excitation in Table II, the size
of avoided crossings determined by Eq. (33) are 1.356 V/cm,
1.367 V/cm, 1.371 V/cm, 1.362 V/cm, and 1.363 V/cm,

respectively, and the mean value is 1.364 V/cm. By scanning
the static field, the calculated size of avoided crossings is
1.347 V/cm. Note the frequency sizes are converted to
field sizes by using the conversion factors 506 MHz/(V/cm)
given by Stoneman et al. [2]. Experimental result given by
Stoneman et al. [2] is 1.4 V/cm, and calculated results of
Stoneman et al. [2] and Jin et al. [13] are 1.3 V/cm and
1.34 V/cm, respectively. Excellent agreement is presented.
Note that we use the values of the difference of the two states’
energy directly instead of ωmwn. If the steady-state transition
probability equals 1

2 , one can use ωmwn as the value of the
difference of the two states’ energy at a given resonance, but
error from dynamic Stark shifts can not be neglected.

IV. CONCLUSION

In this article we have applied a nonperturbative resonant
theory to study the Rabi frequency for microwave multiphoton
transitions between two Rydberg states of potassium in a
static electric field, and this approach can be easily extended
to the calculation of the Rabi frequency for two-color or rf
multiphoton process. Our calculated results by NPRA theory
have been compared with experimental ones together with
theoretical ones by the TDCC method and Floquet theory. It
has been shown that the NPRA theory works very well in
calculating the multiphoton Rabi frequency. In conclusion, the
Rabi frequency of the microwave or rf multiphoton resonance
can be predicted from the Stark electric dipole moments, which
are determined by the Stark states’ wave functions at the exact
position where we calculate the Rabi frequency. It must be
emphasized that both the NPRA and Floquet theory are used to
tackle the problem of a general two-level system in microwave
fields. Only the numerical method we used is restricted to
the case of alkali-metal atoms. Hence, NPRA theory can be
directly used in other two-level systems, meanwhile, we can
also conclude that the known multiphoton Rabi frequency
dependence of Eq. (13) and Eq. (32) can be employed as a
method for measuring transition dipole moments between two
highly excited atomic states. Furthermore, the size of avoided
crossings between the (n + 2)s and (n,3) states can also be
obtained from the NPRA theory; further accurate calculation
is needed. This issue is currently under investigation.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant No. 11044007 and
the Specialized Research Fund for the Doctoral Program of
Higher Education of China under Grant No. 20096203110001.
Y. L. H. gratefully acknowledges the help of Professor Xiao-
Xin Zhou and is grateful to Dr. Cheng Jin and Xiao-Yong Li
for the help on the numerical methods and useful discussions.

[1] M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner,
Phys. Rev. A 20, 2251 (1979).

[2] R. C. Stoneman, G. Janik, and T. F. Gallagher, Phys. Rev. A 34,
2952 (1986).

[3] M. Gatzke, J. R. Veale, W. R. Swindell, and T. F. Gallagher,
Phys. Rev. A 54, 2492 (1996).

[4] H. B. van Linden van den Heuvell and T. F. Gallagher, Phys.
Rev. A 32, 1495 (1985).

053414-6

http://dx.doi.org/10.1103/PhysRevA.20.2251
http://dx.doi.org/10.1103/PhysRevA.34.2952
http://dx.doi.org/10.1103/PhysRevA.34.2952
http://dx.doi.org/10.1103/PhysRevA.54.2492
http://dx.doi.org/10.1103/PhysRevA.32.1495
http://dx.doi.org/10.1103/PhysRevA.32.1495


MULTIPHOTON RABI OSCILLATIONS BETWEEN HIGHLY . . . PHYSICAL REVIEW A 84, 053414 (2011)

[5] G. Benenti, G. Casati, and D. L. Shepelyansky, Phys. Rev. A 57,
1987 (1998).

[6] L. Perotti, Phys. Rev. A 73, 053405 (2006).
[7] M. Gatzke, M. C. Baruch, R. B. Watkins, and T. F. Gallagher,

Phys. Rev. A 48, 4742 (1993).
[8] M. W. Noel, W. M. Griffith, and T. F. Gallagher, Phys. Rev. A

58, 2265 (1998).
[9] L. A. Bloomfield, R. C. Stoneman, and T. F. Gallagher, Phys.

Rev. Lett. 57, 2512 (1986).
[10] R. C. Stoneman, D. S. Thomson, and T. F. Gallagher, Phys. Rev.

A 37, 1527 (1988).
[11] Yong Li, Jian Guo Rao, and Bai Wen Li, Phys. Lett. A 221, 65

(1996).
[12] C. W. S. Conover, M. C. Doogue, and F. J. Struwe, Phys. Rev.

A 65, 033414 (2002).
[13] Cheng Jin, Xiao Xin Zhou, and Song Feng Zhao, Commun.

Theor. Phys. 47, 119 (2007).
[14] Xianzhou Zhang, Hongmin Jiang, Jianguo Rao, and Baiwen Li,

Phys. Rev. A 68, 025401 (2003).

[15] Shih-I Chu and Dmitry A. Telnovc, Phys. Rep. 390, 1
(2004).

[16] L. Ko, M. W. Noel, J. Lambert, and T. F. Gallagher, J. Phys. B
32, 03469 (1999).

[17] Cheng Jin, Xiao Xin Zhou, and Song Feng Zhao, Commun.
Theor. Phys. 44, 1065 (2005).

[18] E. Cormier and P. Lambropoulos, J. Phys. B 30, 77 (1997).
[19] Wenyu Liu, Jinhua Xi, Xinghong He, Lijin Wu, and Baiwen Li,

Phys. Rev. A 47, 3151 (1993).
[20] Xiao Xin Zhou and C. D. Lin, Phys. Rev. A 61, 053411 (2000).
[21] H. Song and Y. Li, Phys. Rev. A 78, 062504 (2008).
[22] H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. A 66, 033403

(2002).
[23] H. K. Avetissian, B. R. Avchyan, and G. F. Mkrtchian, Phys.

Rev. A 74, 063413 (2006).
[24] Xian zhou Zhang, Hong min Jiang, and Jian guo Rao, J. Phys.

B 36, 4089 (2003).
[25] M. Marinescu, H. R. Sadeghpour, and A. Dalgarno, Phys. Rev.

A 49, 982 (1994).

053414-7

http://dx.doi.org/10.1103/PhysRevA.57.1987
http://dx.doi.org/10.1103/PhysRevA.57.1987
http://dx.doi.org/10.1103/PhysRevA.73.053405
http://dx.doi.org/10.1103/PhysRevA.48.4742
http://dx.doi.org/10.1103/PhysRevA.58.2265
http://dx.doi.org/10.1103/PhysRevA.58.2265
http://dx.doi.org/10.1103/PhysRevLett.57.2512
http://dx.doi.org/10.1103/PhysRevLett.57.2512
http://dx.doi.org/10.1103/PhysRevA.37.1527
http://dx.doi.org/10.1103/PhysRevA.37.1527
http://dx.doi.org/10.1016/0375-9601(96)00529-4
http://dx.doi.org/10.1016/0375-9601(96)00529-4
http://dx.doi.org/10.1103/PhysRevA.65.033414
http://dx.doi.org/10.1103/PhysRevA.65.033414
http://dx.doi.org/10.1088/0253-6102/47/1/023
http://dx.doi.org/10.1088/0253-6102/47/1/023
http://dx.doi.org/10.1103/PhysRevA.68.025401
http://dx.doi.org/10.1016/j.physrep.2003.10.001
http://dx.doi.org/10.1016/j.physrep.2003.10.001
http://dx.doi.org/10.1088/0953-4075/32/14/316
http://dx.doi.org/10.1088/0953-4075/32/14/316
http://dx.doi.org/10.1088/6102/44/6/1065
http://dx.doi.org/10.1088/6102/44/6/1065
http://dx.doi.org/10.1088/0953-4075/30/1/010
http://dx.doi.org/10.1103/PhysRevA.47.3151
http://dx.doi.org/10.1103/PhysRevA.61.053411
http://dx.doi.org/10.1103/PhysRevA.78.062504
http://dx.doi.org/10.1103/PhysRevA.66.033403
http://dx.doi.org/10.1103/PhysRevA.66.033403
http://dx.doi.org/10.1103/PhysRevA.74.063413
http://dx.doi.org/10.1103/PhysRevA.74.063413
http://dx.doi.org/10.1088/0953-4075/36/20/004
http://dx.doi.org/10.1088/0953-4075/36/20/004
http://dx.doi.org/10.1103/PhysRevA.49.982
http://dx.doi.org/10.1103/PhysRevA.49.982

