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Holographic power-law traps for the efficient production of Bose-Einstein condensates
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We use a phase-only spatial light modulator to generate light distributions in which the intensity decays as a
power law from a central maximum with order ranging from 2 (parabolic) to 0.5. We suggest that a sequence of
these can be used as a time-dependent optical dipole trap for all-optical production of Bose-Einstein condensates
(BECs) in two stages: efficient evaporative cooling in a trap with adjustable strength and depth, followed by an
adiabatic transformation of the trap order to cross the BEC transition in a reversible way. Realistic experimental
parameters are used to verify the capability of this approach in producing larger BECs than by evaporative cooling
alone.
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I. INTRODUCTION

In recent years, several techniques have been developed
with the aim of producing arbitrary time-dependent optical
potentials for ultracold atoms. A fast-scanning acousto-optic
deflector can paint optical potentials with various geometries
[1–3]. Alternatively, the diffraction of a laser beam by a
spatial light modulator (SLM) can produce both discrete [4–8]
and continuous [9–12] holographic traps. Arbitrary trapping
potentials are particularly appealing in view of quantum
information processing [13,14] and quantum simulation with
neutral atoms [15], the study of superfluid flow in engineered
waveguides [16], and for matter-wave interferometry.

To date, whenever light patterns produced with these
techniques are used to trap a quantum gas, the experimental
sequence requires an additional trap (optical or magnetic)
in which laser-cooled atoms are evaporatively cooled to
quantum degeneracy before being transferred into the optical
potential of choice. This procedure would be simplified
significantly if the laser-cooled atoms were trapped directly
in a holographic trap and were brought to degeneracy via a
dynamic transformation of the potential. Also, the required
apparatus is very compact: All that is needed to achieve
quantum degeneracy and any subsequent manipulation of the
quantum gas in the holographic trap are two crossed laser
beams each modulated by an SLM. In this paper, we present
power-law holographic traps suitable for this purpose, and
we devise a sequence comprising a first stage of evaporative
cooling, followed by a second stage in which the Bose-Einstein
condensate (BEC) transition is crossed reversibly by means
of a change in trap order, similar to the one described
in Ref. [17].

The paper is organized as follows: in Sec. II, we discuss
the method by which one can program an SLM to generate
power-law intensity distributions and we show the actual light
patterns produced by the physical device. A linear (order 1)
power-law optical trap, analogous to a quadrupolar magnetic
trapping potential, is suggested. We demonstrate the feasibility
of using a sequence of such light patterns as a time-dependent
trapping potential by verifying that the light level does not
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fluctuate as the SLM is refreshed. In Sec. III, we lay out the
adiabaticity conditions, with respect to the atomic motion in
the trap, which any sequence must satisfy. Section IV details
a fast and efficient evaporative cooling by trap deformation,
while in Sec. V, we analyze the adiabatic transformation of
the trap in the vicinity of the BEC transition. We find that a
large gain in phase-space density can be achieved during this
last stage with no significant atom loss. This contributes to
the overall efficiency of the scheme in terms of the fraction of
atoms left at degeneracy.

II. GENERATING HOLOGRAPHIC TRAPS

Using an iterative Fourier transform algorithm and an SLM,
we can create arbitrary light patterns, including power-law
intensity distributions I (r) of order α,

I (r) =
{

I (0)
[
1 − (

r
r0

)α]
, r � r0,

0, r > r0.
(1)

Atoms in this light field, via the ac-Stark effect, will experience
a conservative trapping potential for r � r0,

U (r) = A

(
r

r0

)α

, (2)

where r0 is the trap radius and A = 3πc2�I (0)/2ω3
0|δ| is the

trap depth [18]. Here, we assume light detuned by δ from the
atomic transition frequency ω0. � is the natural linewidth of
the atomic transition, and c is the speed of light.

A phase-only SLM consists of an array of liquid-crystal
pixels, which can be oriented individually. These can be used
to manipulate the profile of a laser beam in the far field by
imparting a controlled spatially varying retardation on the
light. The far-field pattern can also be realized by focusing
the phase-modulated laser beam using a lens.

For a given target intensity distribution in the focal plane
of the lens, we use the mixed-region amplitude-freedom
(MRAF) algorithm [11] to calculate the optimal phase pattern
in the SLM plane. This algorithm performs an optimization
procedure on a guess phase pattern by iteratively transforming
the light field between the SLM plane and the focal plane
of the lens (i.e., the output plane) by means of fast Fourier
transforms (FFTs). After each FFT, the desired intensity of
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FIG. 1. (Left) Far-field intensity distribution of a phase-
modulated laser beam. The plane is divided into a signal region
(inside the circle) containing a power-law distribution of order 2 and
a noise region where the intensity is unconstrained. The bright spot
in the bottom right is undiffracted light. This intensity distribution is
generated holographically by illuminating a phase retardation pattern
(right) on an SLM.

the light field is enforced on both planes. In particular, the
MRAF algorithm divides the output plane into two regions:
a signal region in which we restrict the intensity to match
our target pattern and a noise region in which the intensity is
unconstrained. This separation allows for increased accuracy
in the signal region. Phase freedom in the output plane is
permitted, while the intensity profile in the input plane is that
of the laser beam illuminating the SLM. The algorithm allows
accurate and fast (a few hundred iterations) calculations of
phase patterns to generate almost any arbitrary light pattern in
the signal region of the output plane. An example of a phase
pattern that generates a power-law intensity distribution of
order α = 2 is shown in Fig. 1.

The optimal retardation pattern calculated using the above
method is then applied to an SLM (HSP256, BNS), which
contains 256 × 256 nematic liquid-crystal pixels of 24 μm.
The SLM is illuminated with 1060 nm light generated by a
diode laser, and the diffracted beam, focused by an f = 50 mm
achromatic doublet lens, is detected by a CCD camera. The
MRAF-optimized phase pattern does not always produce an
accurate intensity pattern when applied to a physical device
due to imperfect device response and aberrations in the optical
system [11,12]. However, for the case of simple power-law
intensity distributions, we have found that the output is smooth
and accurate. In particular, we have generated power laws with
α ranging between 2 and 0.5. Figure 1 shows the light pattern
in the output plane as detected by the CCD camera, while
Fig. 2 shows the intensity profiles of α = 2 (parabolic) and
α = 0.5 distributions. At fixed order, we also have varied the
radius r0 between 27 and 103 μm. The size of the signal region
is chosen so that the uncontrolled intensity in the noise region
is well separated from the power-law pattern. This minimizes
the effect of the noise region on atoms loaded in the power-law
trap.

By applying a sequence of phase patterns to the SLM,
dynamic optical traps can be generated. Previously, it has
been noted [19] that dynamic light patterns generated by
ferroelectric liquid-crystal SLMs can be subject to substantial
intensity flicker due to the changes in the states of individual
pixels. We find that this problem also exists in our nematic

FIG. 2. Profiles of power-law intensity distributions with (top)
α = 0.5 and (bottom) α = 2. The measured curves (open circles)
are extracted from images, such as the one shown in Fig. 1, while
the predicted curves (solid lines) are determined by the MRAF
algorithm.

liquid-crystal SLM but can be solved by careful implementa-
tion of the MRAF algorithm. To achieve dynamic power-law
optical traps, we apply a sequence of phase patterns producing
power laws with α going from 0.5 to 2 in steps of 0.1 at 25 Hz.
In the lower trace in Fig. 3, intensity flicker occurs when the
order changes from 0.5 to 0.6, and to and from order 1. This is
because the initial guess phase used as the input to the MRAF
algorithm for orders 0.5 and 1 happens to be different from the
one used for all the other orders. Since the MRAF-optimized
phase pattern strongly depends on the initial guess, a significant
change is incurred in moving from one of these orders to any
of the others. In particular, 99.7% of the SLM pixels change
the phase shift they impart to the light by 0.7π on average. To
overcome this, the retardation patterns are recalculated using
the same guess phase for all orders. This results in a sequence
in which 70% of the pixels change their phase shifts at each

FIG. 3. Substantial flicker can occur as the SLM switches
between patterns (lower trace). By minimizing the level of phase
change per SLM pixel, this flicker can be removed (upper trace).
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step but only by 0.025π on average. As shown in the upper
trace of Fig. 3, we can no longer measure any flicker between
consecutive patterns.

To ensure that the two-dimensional intensity patterns gen-
erated by the SLM are suitable for three-dimensional optical
trapping of cold atoms, we verified that the beam maintains its
power-law profile for a propagation of, at least, 300 μm away
from the focal plane of the lens. This distance is greater than
the width of all the power-law distributions we realized, hence,
two perpendicular power-law beams, each tailored by an SLM,
can provide three-dimensional confinement as discussed later
in this paper. Alternatively, a light sheet can be used to add
confinement along the axis of the SLM beam.

III. ADIABATICITY CONDITIONS

In the previous section, we showed that the size and order
of a power-law trap can be varied dynamically by refreshing
the phase pattern on the SLM. Moreover, the trap depth can
be controlled by varying the optical power illuminating the
SLM. This gives full flexibility in designing sequences. How
fast a sequence can be implemented then is limited by the
requirement that changes in the trapping potential must be slow
compared to the thermalization time, which is determined by
the elastic collision rate. Additionally, changes must be slow
with respect to the motion of the atoms in the trap. In the
case of a harmonic trap characterized by a frequency ω, any
compression or expansion of the trap must satisfy dω/ω

dt
� ω

[20].
Similarly, in our generic power-law trap, such an adia-

baticity condition can be formulated for each of the three
parameters (radius, depth, and order), given that they can
be varied independently. The condition, therefore, is that the
relative change in a parameter per unit time be much less than
the characteristic oscillation frequency of an atom in the trap.
For the traps considered in this paper, this is on the order

of
√

A/m/r0 where m is the atomic mass [21]. Hence, the
adiabaticity conditions can be written as

�k/k

�t
� 1

r0

√
A

m
, (3)

where k = A,r0,α. The SLM can vary α and r0 in small but
discrete steps, and it takes �t ≈ 10 ms to change from one
pattern to the next, as estimated by the duration of the flicker
shown in Fig. 3. For the transformations considered below,
�α = 0.1, �r0 � 3 μm, and the characteristic oscillation
frequencies are several kHz. These parameters ensure that
Eq. (3) is satisfied for k = r0,α. The trap depth, on the other
hand, can be varied continuously, hence, �A can be taken
as the total change over a sequence, and �t can be taken as
the total duration of that sequence. We expect the evaporative
cooling sequence and the adiabatic transformation described
below to last about 1 s, for which Eq. (3) is satisfied.

IV. EVAPORATIVE COOLING SEQUENCE

In the remainder of the paper, we assume that two
power-law-shaped laser beams are crossed to form a three-
dimensional trap. For simplicity, we assume that this trap is
spherically symmetric (which can be realized by modifying
the aspect ratio of the light distributions shown in Sec. II), but
our results are also valid in the case of asymmetric traps as
long as the trap order is the same in all directions.

As for any all-optical scheme, our approach is suitable
for all internal states, atomic mixtures, and molecules. In the
following, we use 87Rb as an example. Laser-cooled atoms
from a magneto-optical trap can be captured into a broad
(radius r0 = 50 μm) 910-μK-deep parabolic (α = 2) optical
trap. This is the deepest trap shown in Fig. 4(a). Following
Eqs. (1) and (2), an optical power of 14 W in each beam is
needed for such a trap at a wavelength of 1060 nm.

From experiments in which similar conditions have been
realized in practice [22], we take, as our starting point,
N = 3 × 105 atoms with a temperature T = 91 μK, resulting

FIG. 4. The evolution of the trap profile for creating a BEC. (a) A power-law trap of order 2 is decreased in depth and width such that atoms
are evaporatively cooled at constant elastic collision rate. (b) Following evaporation, the trap is adiabatically transformed from order 2 to order
0.5 to reach the critical temperature at the end of the sequence. The inset shows the final stages of the adiabatic transformation in greater detail.
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in a phase-space density D = 10−4 and an elastic collision rate
κ ∼ 2000 s−1. This elastic collision rate is sufficiently high so
that a first stage of adiabatic compression is not necessary.
However, this could be included (by reducing the trap radius
and increasing the depth at constant power) if the starting
conditions required it, hence, evaporation can be optimized for
a broad range of experimental parameters. We note, moreover,
that the chosen initial atom number is conservative and that
increasing the trap size results in more atoms being captured
[22], ultimately leading to a larger condensate.

A possible evaporation sequence is shown in Fig. 4(a). The
trap depth is gradually lowered to force evaporation, while
the trap radius is adjusted to maintain optimal conditions. In
particular, we choose to keep the elastic collision rate constant,
as opposed to selecting a sequence of runaway evaporation.
Given our starting conditions, this ensures that the atomic
number density does not increase to the point where three-body
recombination losses become significant. The trap order is kept
at 2 because smaller values would result in decreased efficiency
of the evaporation process [23]. The efficiency is defined as

γ = −d ln D

d ln N
, (4)

which is equivalent to N ∝ 1/D1/γ ∝ T 3/2γ V 1/γ /N1/γ ,
where V is the effective volume occupied by the atoms.
This relation can be used to express the dependence of N

on V and T , which is then substituted in the condition for
the elastic collision rate κ ∝ T 1/2N/V = constant. Next, we
express T and V in terms of the trap depth and radius,
respectively: T ∝ A and V ∝ r3

0 , assuming the truncation
parameter η = A/(kBT ) is kept fixed throughout evaporation.
The condition for constant κ finally becomes

A(γ /2)+2

r
3γ

0

= constant, (5)

which is used to plot the intermediate steps of the evaporation
sequence in Fig. 4(a). For this, we assume γ = 3 and η = 10
(i.e., evaporation near stagnation), as typical for evaporation
in optical traps [22,24–26]. Similar to these experiments,
we expect evaporation to work on time scales of seconds.
Hence, the SLM needs to be refreshed at a rate less than
20 Hz to produce the intermediate steps. Given that this is
much smaller than the characteristic trap frequency, we do
not expect significant parametric heating [27] from residual
intensity flicker at the refresh rate.

At the end of the evaporation sequence, the final trap radius
and depth are 20 μm and 84 μK, respectively, at which point,
D = 0.011 and N = 6 × 104 atoms remain in the trap. The
adiabatic transformation described in the next section is then
used to bring the sample to degeneracy.

V. ADIABATIC TRANSFORMATIONS

As shown in Ref. [17], the phase-space density of a
collisional gas can be increased adiabatically and reversibly,
without loss of atoms, by reducing the trap order. This is
different from compressing or expanding a trap while keeping
the same order, in which case, the temperature and the number
density change so as to keep the phase-space density constant.
In the following, we consider an adiabatic transformation in

which the trap order goes from α = 2 to 0.5, starting from the
parabolic trap at the end of the evaporation sequence [i.e., the
smallest trap in Fig. 4(a)]. We define our transformation such
that, at α = 0.5, the atoms reach the critical temperature for
BEC, i.e., T = Tc and D = 2.612.

For such a transformation to be reversible, it must be
slow compared to the thermalization time. We estimate that
the elastic collision rate during our sequence does not drop
significantly from the value of 2000 s−1 during evaporation,
so a sequence lasting about 1 s (as suggested in Sec. III)
satisfies this requirement. Therefore, we can impose that the
entropy S is constant during the transformation, with S defined
by Ref. [17]

S

NkB

=
{(

5
2 + 3

α

) g5/2+3/α(z)
g3/2+3/α(z) − ln(z), T � TC,(

5
2 + 3

α

) g5/2+3/α(1)
g3/2+3/α(1)

(
T
TC

)3/2+3/α
, T � TC,

(6)

where z = exp(μ/kBT ) is the fugacity with μ as the chemical
potential and gκ (z) = ∑∞

j=1 zj j−κ . Below Tc, μ = 0, and
therefore, z = 1. Above Tc, we find z by numerically solving
[28]

g3/2+3/α(z) = g3/2+3/α(1)

(
Tc

T

)3/2+3/α

. (7)

This results in the plots of entropy per particle versus T/Tc

shown in Fig. 5 for several trap orders. For the conservation
of entropy, the value S/NkB = 8.47 at the critical temperature
for α = 0.5 (see upper dotted line in Fig. 5) also must be
the entropy per particle at the beginning of the adiabatic
transformation, i.e., for α = 2. This corresponds to T/Tc =
4.7 and D1 = 0.011 in the parabolic trap, as achieved at the
end of the evaporation. From the conservation of entropy
and Eq. (7), we then can determine z(α) and T

Tc
(α) for the

intermediate steps of the adiabatic sequence.
To calculate the trap depth A(α) and size r0(α) required for

this sequence, we start by imposing A(α) = 10kBT (α) to avoid
further evaporation during the transformation. Second, the end
point of the sequence is determined by imposing a peak density
n = 1.8 × 1014 cm−3, which gives a moderate rate of atom loss

FIG. 5. The entropy of a Bose gas in a power-law trap of order
α as a function of (left) condensate fraction and (right) temperature
above and below Tc. The two dotted lines represent transformations
at constant entropy. By transforming from a power-law trap of order
2 containing a gas at T/Tc = 4.7 to a power-law trap of order 0.5,
the gas reaches the critical temperature (upper dotted line). Starting
from T = Tc in the α = 2 trap, an adiabatic transformation to α = 0.5
leads to a condensate fraction of about 0.6 (lower dotted line).
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FIG. 6. The temperature and critical temperature decrease by
changing the power-law order α until they are equal. The phase-space
density of the gas increases by about a factor of 230 to 2.612.

due to three-body recombination of 1 s−1 [29]. We then use the
critical condition nλ3

dB = 2.612 (with the thermal de Broglie
wavelength λdB = h/

√
2πmkBT ) to calculate Tc = 582 nK in

the α = 0.5 trap. To find the trap size r0(0.5), we consider the
expression for Tc in a generic power-law trap [30],

kBTc =
[

Nh̄3

(2m)3/2

6
√

πA3/α

r3
0 �

(
1 + 3

α

)
ζ
(

3
2 + 3

α

)
]1/(3/2+3/α)

, (8)

and we solve it for r0 to find r0(0.5) = 59 μm. Having fixed
the trap parameters at the start and the end of the sequence, for
simplicity, we assume a linear interpolation for r0(α). We use
Eq. (8), in conjunction with T

Tc
(α) from entropy conservation,

to determine T (α) and Tc(α) individually, as shown in Fig. 6.
The resulting trap profiles are shown in Fig. 4(b).

The optical power needed for the final trap (α = 0.5) is
36 mW per beam, which is 0.26% of the power at the start of
evaporation. Such a large dynamic range can be achieved by
varying the power illuminating the SLM, e.g., with a motorized
rotating wave plate followed by a Glan-Taylor polarizer, and
by changing the power emitted by the laser [22]. Toward the
end of the adiabatic transformation, the trap is so shallow
that the effect of gravity cannot be neglected. It is possible to
compensate for it either with a magnetic-field gradient or by
designing tilted intensity patterns.

From Fig. 6, we see that the adiabatic transformation
achieves a significant gain in phase-space density. Intuitively,

the gas undergoes an expansion, and its temperature decreases.
However, the change in trap order causes an increase in peak
density, which is especially pronounced at the end of the
sequence. We estimate that only 5% of atoms are lost due to
three-body recombination for a sequence that lasts 1 s, which
justifies our assumption of constant atom number throughout
the adiabatic transformation. In conclusion, about 20% of the
laser-cooled atoms loaded into the initial optical trap remain
when the sequence terminates at the BEC transition, which is
higher than in any other all-optical technique implemented so
far.

If evaporation is continued to the BEC transition at the
same efficiency assumed in Sec. IV, 104 atoms remain in
the trap—which is only 3% of the initial atom number. In
this case, however, the adiabatic change in trap order (see
lower dotted line in Fig. 5) provides a different method to
cross the BEC transition in a reversible way, similar to the
dimple technique [31]. From the conservation of entropy, we
find that varying α from 2 to 0.5 leads to T/Tc � 0.89. A
condensate fraction NBEC/N � 0.6 is found using NBEC/N =
1 − (T/Tc)3/2+3/α [17], as shown on the left side of Fig. 5,
hence, NBEC � 6000 at the end of the adiabatic transformation.
Then, our sequence could be combined with in situ imaging
[32] to provide a reversible method to investigate the BEC
transition.

VI. CONCLUSIONS

We have used an SLM to holographically generate power-
law intensity patterns of different orders and sizes, and we
have shown how a sequence of these can be used as a
dynamic optical trap for fast and efficient production of BECs.
Starting from realistic assumptions, we have calculated the trap
parameters throughout the sequence. Also, we have presented
the adiabaticity criteria for a generic transformation that goes
beyond the standard case of the compression and expansion in
a harmonic trap. A future step will be the study of evaporative
cooling and adiabatic transformations in more complex trap
geometries.
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van Kempen, and B. J. Verhaar, Phys. Rev. Lett. 89, 283202
(2002).

[30] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.
Mod. Phys. 71, 463 (1999).

[31] D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur,
S. Inouye, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 81, 2194
(1998).

[32] M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfee,
D. M. Kurn, and W. Ketterle, Science 273, 84 (1996).

053410-6

http://dx.doi.org/10.1364/OE.16.002176
http://dx.doi.org/10.1088/0031-8949/2011/T143/014008
http://dx.doi.org/10.1038/nphys698
http://dx.doi.org/10.1038/nphys698
http://dx.doi.org/10.1098/rsta.2003.1211
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/PhysRevLett.106.130401
http://dx.doi.org/10.1103/PhysRevLett.78.990
http://dx.doi.org/10.1103/PhysRevLett.78.990
http://dx.doi.org/10.1080/0950034042000265596
http://dx.doi.org/10.1088/1367-2630/13/6/065022
http://dx.doi.org/10.1103/PhysRevA.64.051403
http://dx.doi.org/10.1103/PhysRevA.71.011602
http://dx.doi.org/10.1103/PhysRevA.71.011602
http://dx.doi.org/10.1103/PhysRevA.79.061406
http://dx.doi.org/10.1103/PhysRevA.79.061406
http://dx.doi.org/10.1103/PhysRevA.56.R1095
http://dx.doi.org/10.1103/PhysRevA.56.R1095
http://dx.doi.org/10.1103/PhysRevLett.89.283202
http://dx.doi.org/10.1103/PhysRevLett.89.283202
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/PhysRevLett.81.2194
http://dx.doi.org/10.1103/PhysRevLett.81.2194
http://dx.doi.org/10.1126/science.273.5271.84

