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We present a nonperturbative theory to describe multielectronic processes occurring in the course of collisions
between an ion and a molecule. The approach is based on the expansion of the electronic scattering wave function
onto asymptotic mono- or multicenter states with proper translational conditions and includes both static and
dynamical electronic correlations. Therefore, it has a wide application range around intermediate impact velocities
v ≈ ve, where ve is the averaged electron velocity in the initial state. As a first application, we report results on
single- and double-electron capture processes in He2+-H2 collisions for impact energies ranging from 0.01 to
25 keV/u. Special emphasis on the prediction of cross sections for double-electron capture into doubly excited
states of helium is addressed.
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I. INTRODUCTION

The study of ion-molecule collisions and the detailed
knowledge of the cross sections for the various electronic
processes occurring in such events present a great interest in
various domains such as astrophysics [1], plasma (e.g., fusion
plasma [2]) physics, and in the medical sciences; for example,
hadrontherapy [3,4] in which the ions are advantageous with
respect to photons because hadrons allow better control of
the dose distribution. It is also of fundamental importance
since theoretical investigations, supported or motivated by
experimental research, pave the long way for better under-
standing and modeling of dynamical many-body quantum
systems. Indeed, even with present-day supercomputers, it
is still not possible to evaluate routinely cross sections of
electronic processes for impact energies ranging from the
molecular (reactive) regime to the perturbative regime. This
is true especially for many-electron, polynuclei systems, but
there are still many unsolved problems and disagreements for
problems with one active electron (see, e.g., [5]).

Scattering systems involving ions, diatomic molecules
and one- and two-electron bound-bound transitions provide
benchmark systems to test new approaches and their computer
implementations for further extension to larger molecular
targets (e.g., H2O). Among them doubly charged ions are
optimal projectiles to avoid the further complexity of dealing
with large many-folds for the description of the dominant pro-
cesses so that the α-particle–dihydrogen-molecule collision
is the unavoidable reference system: it is a true two-electron
system involving partners whose structures are well known and
provides therefore a probe for the study of multicenter effects
and of the influence of correlation on electronic processes.
It has therefore been thoroughly studied over the last four
decades.

In the seventies and eighties the experimental investigations
of the He2+-H2 scattering system were focused on single-
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electron processes: let us mention, among others, the studies
performed at high impact energies (above 300 keV/u) by
Hvelplund and Andersen [6] for electron transfer, at lower
energies (down to 5 keV/u) by Rudd and collaborators [7]
for ionisation and electron transfer and the numerous studies
of state-selective single-electron transfer (see, e.g., [8–10]).
In more recent years double-electron processes, (e.g., double
transfer or transfer ionisation) were addressed by several
groups [11–17]. One of the important problems to elucidate
was the dominance of single- versus double-transfer processes
at low (keV) impact energies (cf. [12,14,17]).

Theoretically the study of single- and double-electron
processes in ion-molecule collisions is not an easy task
when taking into account the electronic correlation and the
multicenter features of the target. This particular challenge has
therefore been often bypassed by the effective center approxi-
mation [18], which describes the electronic degrees of freedom
of a randomly oriented target. Except at very low energies
where quantal calculations are unavoidable nonperturbative
approaches refer to the semiclassical approximation and to a
pure molecular picture of the (N + 1)-center scattering system
(i.e., molecular orbital close-coupling methods, or MOCC),
with inclusion of proper translational factors, as described in
Delos [19]. (See, for example, the important and thorough
theoretical developments proposed by the Madrid group,
[20] and [21] for He2+-H2 collisions, and by Kimura and
collaborators [14,22]). Other parallel approaches have been
developed, such as the asymptotic theory described recently
in Khoma et al. [23], in which the coupling matrix elements
are approximately evaluated using asymptotic conditions. The
pending methods to the MOCC ones are the atomic orbital
close-coupling (AOCC) treatments which are based on the
expansion of the scattering wave function onto states of the
isolated collision partners and are therefore more suitable for
intermediate impact energies. They are the extension of the
methods developed in ion-atom collisions [24] and so far
are confined to (quasi-)one-electron ion-diatomic-molecular
target systems [25]. An alternative method, the so-called basis
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generator method, has been recently extended from atomic to
molecular targets (cf. the work of Lüdde and collaborators [26]
for water molecule targets). It should be mentioned that various
approximated simple models to describe single capture (and
ionisation) for high impact energies have been developed, such
as, for example the classical trajectory Monte Carlo (CTMC)
method [27,28] or scaling rules definitions [29].

The present work is devoted to the description of a non-
perturbative semiclassical method which extends the AOCC
approach [25,30] to two-active-electron ion-molecule colli-
sions. The aim is to provide a reliable tool to calculate cross
sections for dominant electronic processes at intermediate
impact energies that require taking into account both static and
dynamic electronic correlations (cf. the discussion in Ref. [31]
for double-electron processes in ion-atom collisions) and the
multicenter features of the target. Our second objective is the
evaluation of cross sections for double-electron capture into
autoionizing states in low- and intermediate-energy He2+-H2

collisions in order to predict further extensions to low impact
velocities of the single-electron interferometric experiments
proposed theoretically by Barrachina and Zitnik [32] and
performed a few years later by Chesnel and collaborators [33].

The present paper is organized as follows: The first section
describes in detail our theoretical treatment and the second
section is devoted to the presentation of the specific model for
the collision system under consideration and of the results
stemming from intensive calculations: emphasis is on the
description of the one- and two-electron transfer processes,
at the level of total cross sections, in comparison with ex-
perimental and theoretical data, and differential semiclassical
probabilities. The presentation of the specific cross sections
of double-capture to autoionizing states is the object of the
final part of the paper, with discussion of the feasibility of the
experiments in the low-energy range for which little is known.
After concluding remarks the paper ends with two appendices
giving the details on (i) the method which has been developed
to compute the various and complex matrix elements required
in our theoretical model and (ii) the basis set which has been
used in the calculations.

In the following atomic units are used, unless otherwise
stated.

II. THE THEORETICAL APPROACH

To describe ion–diatomic-molecule collisions at interme-
diate impact velocities (i.e., when v ≈ ve, with ve being the
averaged electron velocity in the initial state), we use the well-
established impact parameter semiclassical method [24,34].
In this energy range a theoretical treatment must couple the
different open channels, including excitation, electron transfer,
ionization, and all multielectronic combined processes. For
example, in the next section we focus on the analysis of
(pure) single transfer, transfer excitation, and double transfer,
respectively,

P q+ + AB(0) −→

⎧⎪⎨
⎪⎩

P (q−1)+(k) + AB+(0)

P (q−1)+(k) + AB+(j )

P (q−2)+(k′) + AB2+(0),

(1)

where 0 (j,k,k′) represents schematically the ground (excited)
state of the collision partners. A nonperturbative quantum
treatment for the electrons is therefore adopted while the
projectile-target relative motion is described by classical
straight-line, constant velocity trajectories.

The two-electron time-dependent Schrödinger equation
(TDSE) (also called the eikonal equation) can then be written
as

[
H − i

∂

∂t

∣∣∣∣
�r1,�r2

]
�(�r1,�r2, �R(t)) = 0, (2)

with H being the electronic Hamiltonian

H =
∑
i=1,2

[
−1

2
∇2

i + VT (ri) + VP (| �ri − �R(t)|)
]

+ 1

|�r1 − �r2| , (3)

where the �ri are position vectors of the electrons with respect to
the center of mass of the target and the relative projectile-target
position �R defines the trajectory; that is, �R(t) = �b + �vt where
b and v are the impact parameter and velocity, respectively
(cf. Fig. 1). The term VT (ri) [VP (| �ri − �R(t)|)] defines the
effective electron-target [electron-projectile] core (AB2+ and
P q+, respectively) potential. Our approach is based on the rovi-
brational sudden approximation: the nuclei of the molecular
target are frozen during the collisions stage (i.e., fixed �RAB).
This assumption is valid in the keV/u energy range since the
electronic processes take place in a time range much shorter
(subfemtosecond) than the vibrational motion of any molecule
(>10 fs). The limit of this approximation will be discussed in
the next section for the collision system He2+-H2. Note that,
since in this approximation the core-core potential between
the two nuclei A and B is constant, it only contributes through
a common phase in the wave function and has thus been taken
out from the Hamiltonian.

�RAB

B

A

Θm
Φm

�vP

�b

P

�R(t)
e−1

�r1

e−2
�r2

FIG. 1. (Color online) Collision geometry. The impact parameter
�b and the relative velocity �v define the collision plane (xz) and the
projectile (P ) trajectory �R(t) with respect to the molecular target
represented by the two nuclei A and B, separated by internuclear
vector �RAB . The angles (�m,�m) define the molecular orientation
with respect to �v and �b.
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The time-dependent Schrödinger equation is solved by
expanding the wave function on a basis set of states of the
isolated collision partners

�(�r1,�r2, �R(t)) =
NT T∑
i=1

cT T
i (t)�T T

i (�r1,�r2)e−iET T
i t

+
NPP∑
j=1

cPP
j (t)�PP

j (�r1,�r2, �R(t))e−iEPP
j t

+
NT∑
k=1

NP∑
l=1

cT P
kl (t)

[
φT

k (�r1)φP
l (�r2, �R(t))

±φT
k (�r2)φP

l (�r1, �R(t))
]
e−i(ET

k +EP
l )t , (4)

where the T T , PP , T , and P superscripts denote states
(and corresponding energies) for which both electrons are
respectively on the target (AB), on the projectile (P (q−2)+) and
on the target and projectile (AB+ - P (q−1)+). The two-electron
states � are expressed as linear combinations of spin-adapted
(singlet or triplet) products of Gaussian-type orbitals (GTOs)
centered on A, B (target) or P (projectile):

Gαi,�,m(�r) = Y�,m(r̂)r�e−αir
2
, (5)

where the exponents αi are selected by optimization (cf.
Appendix B). The one-electron states φ are defined as linear
combinations of GTOs centered on A, B, or P . The sign +
or − in the last right-hand term of Eq. (4) is given by the
spin symmetry of the states (singlet and triplet, respectively).
For both electrons, the projectile states are augmented by
plane-wave electron translation factors (ETFs) [35],

χ (�r,t) = ei�v·�re−i 1
2 v2t , (6)

to ensure Galilean invariance of the results and to remove
spurious dipolar coupling terms in the final equations to be
solved [24].

The insertion of Eq. (4) into the TDSE results in a system
of first-order coupled differential equations (CDEs), which are
written in matrix form as

i S(�b,�v,t)
d

dt
c(t) = M(�b,�v,t)c(t), (7)

where c is the column vector of the time-dependent expansion
coefficients, cT T

i , cPP
j and cT P

ij [Eq. (4)], S and M are the over-
lap and coupling matrices, respectively. It should be stressed
that, within the present method, the electronic correlation, both
static and dynamical as discussed in Ref. [31], is taken into
account (cf. Appendix A). Moreover, the different channels
described within the basis sets [Eq. (4)] are coupled during
the dynamics; this is particularly important for multielectron
processes (as double capture), which can proceed through
several mechanisms. The CDEs are solved for a set of
initial conditions (electronic state, velocity, impact parameter,
and molecular target orientation at t → −∞) by a robust
predictor-corrector time-step method developed by Shampine
and Gordon [36]. The probability for a transition from the
initial state �T T

I to a final state �PP
F (or �T T

F , φT
f φP

f ′ ) for an

impact parameter �b, a fixed molecular orientation (�m,�m;

cf. Fig. 1), and a given projectile velocity �v, is given by the
coefficient cPP

F (respectively cT T
F and cT P

ff ′ ) as follows:

PI→F (v,�b,RAB,�m,�m) = lim
t→+∞

∣∣cPP
F (t)

∣∣2
. (8)

The corresponding cross section for a given molecular orien-
tation can be calculated from these probabilities as follows:

σIF (v,RAB,�m) =
∫

d2 �bPI→F (v,�b,RAB,�m,�m), (9)

where the dependence upon �m disappears after integration
over �b. In order to compare our predictions with experimental
data which are generally performed with an isotropically
oriented target sample, the cross sections in Eq. (9) must be
averaged over the molecular orientations as

σ tot
IF (v,RAB) = 1

2

∫ π

0
d�m sin �mσIF (v,RAB,�m). (10)

Since the computations of the probabilities are rather de-
manding, especially when involving numerous target ori-
entation [Eqs. (9) and (10)], we have chosen to evaluate
cross sections directly comparable with experimental data
through an approximated averaging procedure using only three
characteristic molecular orientations; namely (�m,�m) =
(0,0), (0, π

2 ), (π
2 , π

2 ):

σ tot
IF (RAB) = 2π

3

[
�(v,RAB,0,0) + �

(
v,RAB,0,

π

2

)

+ �

(
v,RAB,

π

2
,
π

2

)]
, (11)

with

�(v,RAB,�m,�m)

=
∫ +∞

0
bPI→F (v,b,RAB,�m,�m)db. (12)

The approximation in Eqs. (11) and (12) has been proven
to give good estimates of the total cross sections [5,20]. At
this level, the cross sections depend upon the value of the
molecular target internuclear distance RAB . They should then
be evaluated for different values of RAB and averaged over
the initial vibrational ground-state distribution. However, it
has been shown that considering only the equilibrium distance
value is sufficient to obtain accurate cross sections [5,30].
In the following we therefore consider only a molecular
target fixed at the equilibrium geometry (the so-called Franck-
Condon approximation; cf. [20]).

To conclude the presentation of this method, we summarize
the various stages which should be performed to obtain
the cross sections: (i) optimization of the GTO exponents
[Eq. (5)] to describe the two-electron states of each of the
isolated collision partners, (ii) diagonalization of the one- and
two-electron Hamiltonians for each of the isolated partners
using the set of GTOs obtained in the first stage, (iii) evaluation
of the S and M matrix elements on a set of grid points along
the projectile trajectories (cf. Appendix A), (iv) integration in
time of Eq. (7) for a set of initial conditions, and (v) evaluation
of total cross sections using Eqs. (11) and (12).
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III. RESULTS AND DISCUSSION

In this section, after a presentation of the basis set used
in the calculations, cross sections for single capture, transfer
excitation, and double transfer are presented. A detailed com-
parison with a selection of experimental and theoretical data
primes the discussion concerning the validity of the existing
data and the possible reasons for remaining disagreements.

A. Model of He2+-H2 collisions

To obtain probabilities and cross sections for the important
processes occurring in He2+-H2 collisions in the low- to
intermediate-energy range under consideration (i.e., from
10 eV/u to 25 keV/u), the method presented above is used
for the Hamiltonian H defined as in Eq. (3) with

VT (ri) = − ZA∣∣�ri − 1
2

�RAB

∣∣ − ZB∣∣�ri + 1
2

�RAB

∣∣ ,
(13)

VP (| �ri − �R(t)|) = − ZP

| �ri − �R(t)| ,

ZA = ZB = 1, ZP = 2, and the internuclear distance RAB of
H2 kept fixed at its equilibrium value (i.e., RAB = 1.4 a.u.).
The TDSE is solved with scattering states [Eq. (4)] developed
onto several basis sets of various sizes and built from different
sets of GTOs in order to check the accuracy and convergence
of the results. The cross sections presented in the following are
obtained by using a basis set composed of, besides numerous
pseudostates, the well-identified lowest states of the different
structures involved: 16 He states (6 bound states + 10 doubly
excited states), 4 H2 states, 10 He+ states and 6 H2

+ states
combined into 60 antisymmetrized products of these states.
Note that only singlet spin states are included in the basis
set since the initial state, the ground state of H2, is a singlet
state and no spin transitions are allowed in the Hamiltonian.
The two-electron states are obtained by optimization (genetic
algorithm) of a set of 17 GTOs (12 for � = 0 and 5 for � = 1;
cf. Table II in Appendix B) for He and 7 s-type GTOs on
each center for H2 (Table III in Appendix B). To decrease
the number of matrix elements to be computed during the
dynamical stage of the calculations, the one-electron He+
and H2

+ states are then obtained from the same respective

sets of GTOs. The quality of the states are estimated by
comparing their energy to the experimental or exact values.
The energy of the first bound states of the various atomic
and molecular structures and of some autoionizing states of
He included in the calculations are reported in Table I in
which the good agreement with available data can be seen.
The sets of GTOs presented above allow also the inclusion of
97 pseudostates (probability absorbers) to describe ionization
channels. Note that this basis has been selected using two
criteria: (i) large enough to describe accurately the important
target and projectile states and (ii) still computationally
tractable. Concerning the latter, the present basis is at the limit
of our computer capacity and tests of convergence have been
performed by comparing the present results with those from a
slightly smaller basis set (reduced by 2 GTOs � = 1 on target
and 1 GTO � = 1 on projectile) for which the He, He+, H2,
and H2

+ states are somewhat less accurately represented: the
cross sections for single and double capture from these two
sets agree with each other within 10%, except for the weak
channels for which differences reach 25%. For double capture
into doubly excited states the cross sections are rather small
for the lowest considered energies (down to 0.8 10−18 cm2, see
below) and disagreement reaches 60% in this case only.

Finally, to solve Eq. (7) for a given set of initial conditions
(impact velocity, impact parameter, and molecular orienta-
tion), the matrix elements were evaluated at 200 mesh points
along the projectile trajectory, starting and ending when the
centers are 60 a.u. apart. These two parameters, trajectory
expansion and mesh points density, have been carefully tested
through norm conservation and convergence of the transition
probabilities. Finally, these latter have been evaluated for
20 impact parameters ranging from 0.5 to 10 a.u. to obtain
converged cross sections.

B. Nondissociative and dissociative single-capture processes

As mentioned in the introduction, single- and double-
electron capture processes in He2+-H2 collisions have been
studied extensively, experimentally [6–14,17,37,38] as well
as theoretically [14,21–23,39,40] and serious disagreements
between the existing results remain. In Fig. 2 the cross sections
for total single capture; namely, pure (nondissociative) single

TABLE I. Energies (a.u.) of the first bound and autoionizing (for He) states of the isolated collision partners computed with our GTO basis
set compared to reference values from Ref. [44] (He+ and He), from Ref. [45] (He autoionizing states), and from Ref. [46] (H2, H2

+). The
values for H2 and H2

+ are given for the internuclear distance RAB = 1.4 a.u.

He+ He H2
+ H2

State EGTO Eref State EGTO Eref State EGTO Eref State EGTO Eref

1s −2.000 −2.000 1S 1s2 −2.896 −2.904 σ −1.274 −1.275 1+
g −1.868 −1.888

2s −0.500 −0.500 1S 1s2s −2.144 −2.146 σ −0.611 −0.613 1+
u −1.399 −1.420

2p −0.499 −0.500 1P 1s2p −2.121 −2.124 σ −0.387 −0.397 1+
g −1.395 −1.407

3s −0.222 −0.222 1S 1s3s −2.060 −2.061 σ −0.243 −0.249
3p −0.221 −0.222
4s −0.125 −0.125 1S 2s2 −0.776 −0.778

1D 2p2 −0.674 −0.702
1P 2s2p −0.659 −0.693

1S 2p2 −0.599 −0.622
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FIG. 2. (Color online) Total single-electron capture cross sections
as function of impact energy. Theory: present results (black solid line);
Errea et al. [21] (note that the two sets of data with dash-dotted line
in Fig. 1 of Ref. [21] have been merged for readability) (red dashed
line); Kusakabe et al. [14] (blue dotted line); Shimakura et al. [22]
(green dash-dotted line). Experiments: Okuno et al. [12] (red full
circles); Figueira da Silva et al. [17] (black full squares); Kusakabe
et al. [14] (black full triangles); Rudd et al. [7] (blue open circles);
Shah and Gilbody [8] (green open squares).

transfer and transfer excitation, which leads systematically to
dissociative transfer for an H2 target [cf. Eq. (1)], are presented
as function of impact energies. Our results, represented by
the solid line, are compared with selected experimental and
theoretical data that are representative of the general tendencies
of the cross sections. As a common feature to the various sets of
results, the cross sections for single-electron capture present a
maximum at about 20 keV/u and decrease with impact energy
down to 2 keV/u, where they exhibit a plateau-like structure
down to about 100 eV/u. Then the experimental data show a
further decrease while our results continue to present a rather
flat behavior down to the lower energy that we considered,
10 eV/u. At that point we should stress again that our results
are the only ones which extend over such a wide domain of
energy (spreading on more than three decades), using the same
semiclassical coupled-channel treatment (two active electrons,
a complete molecular description of the target, same basis
set): indeed the data of Errea et al. [21] are confined in the
high energy domain and combine two models, MOCC with
2 electrons and for the highest energies 1-electron MOCC
together with the independent particle model (IPM), the data
of Shimakura et al. [22] extends on one decade of energy
and steam from coupled channel calculations using a pseudo-
molecular description of the target, finally the theoretical
results presented in Ref. [14] stem from MOCC and only
cover the low to intermediate energy range. Our results agree
well with the available data but overestimate the extension
of the plateau. The presence of this latter is characteristic of
the competition between two mechanisms which dominate in
distinct energy domains: at low energies and head-on collisions
(see the discussion below) the dissociative electron transfer
dominates but its contribution decreases steadily for increasing
velocities while the pure single capture channel is a distant
collision process (see below), leaving the ionized target H2

+

10
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10
-1

10
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10
1

E (keV/u)

10
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10
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10
1

σ 
 (1

0-1
6 cm

2 )

total single capture
single capture
transfer-excitation

0.02 0.063 0.2 0.63
v (a.u.)

FIG. 3. (Color online) Cross sections for total single capture
(solid line) and its two contributions, single capture (red dashed line)
and transfer-excitation (green dot-dashed line) cross sections, as a
function of impact energy and velocity.

in its ground state, and raises sharply to take over beyond about
2 keV/u (v = 0.3 a.u.; cf. Fig. 3). This behavior is in qualitative
agreement with the related data presented in Errea et al. [21]
and those obtained from the asymptotic model proposed by
Khoma et al. [23]. Note however that these two treatments give
an overestimation of the dissociative electron capture channels
which explains that both sets of results lie at the upper limit of
the experimental data while ours are at the lowest one.

As mentioned before the main disagreement between the
experimental results reported in Refs. [12] and [17] and our
results is related to the extension of the plateau structure down
to 10 eV/u. This difference shows the limit of the rovibrational
sudden approximation used in our calculations, cf. also [14].
At low collision energy the total single electron capture cross
sections are dominated by the transfer-excitation (cf. Fig. 3 and
[23]) which leads to the dissociation of the molecular target.
At lowest energy (10 eV/u; i.e., an impact velocity of about
0.02 a.u.), the molecular dissociation takes place in the same
time scale than the collision. Indeed in this energy domain
the dissociation velocity is of the same order of magnitude
than the collision velocity and the two target nuclei cannot be
assumed fixed during the collision; the rovibrational sudden
approximation breaks down and may give spurious results.
The lower experimental values of single-electron-capture cross
sections may then be due to the coupled dynamics of the two
electrons in the field of the three moving nuclei which may
favor orbiting, leading to the stabilization of He by double
capture processes (cf. next section). According to Fig. 2, one
may estimate the lower limit of validity of the rovibrational
sudden approximation to about 0.1 keV/u.

The general discussion presented above concerning the
dependencies of the cross sections is supported by the analysis
of the transition probabilities of single-electron capture as
function of impact parameter. In Fig. 4 we show the re-
duced probabilities for the dominant single-electron-capture
channels at typical low (v = 0.05 a.u. or E = 0.0625 keV/u)
and large (v = 0.6 a.u. or E = 9 keV/u) velocities. In the
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FIG. 4. (Color online) Transition probabilities for nondissociative
(SC) and dissociative (TE) single-electron capture as a function of
impact parameter for velocities 0.05 a.u. (top panels) and 0.6 a.u.
(bottom panels) and three molecular orientations (�m, �m): (0,0)
(green dash-dotted line), (0, π

2 ) (red dashed line), ( π

2 , π

2 ) (black solid
line). Note that the main contributions for TE and SC channels are,
respectively, H2

+∗-He+(1s) at low v and He+(2�) at high v.

former case, capture to the K shell of He+, with simultaneous
target excitation, is largely dominant while L-shell capture
dominates the high-energy region, in agreement with the
conclusions of previous works (e.g., [22] and [23]). Moreover,
the figure shows that the single-electron-capture channel at low
velocity is active for near head-on collisions (b < 4 a.u.) for
which the orientation of the target with respect to the incoming
projectile play a major role. In this range a very precise
description of the transient three-center molecular structure
which forms and evolutes during the scattering event should
be considered. On the other hand, at high velocities the process
is dominated by distant collisions (up to b ≈ 8 a.u.) giving very
similar behavior for the probabilities for the three considered
orientations.

We turn now to the study of the double-capture channels,
which strongly compete with the single-electron-capture chan-
nels at low energies.

C. Double-capture processes

Unlike single-electron capture, for which all available
experimental results agree on the fact that the cross sections
drop at collision energies below 0.1 keV/u, the behavior of
double-electron-capture cross sections at low collision energy
is still not well understood. Two tendencies are represented by
both experimental and theoretical investigations: a fast and
continuous increase for decreasing energies or a decrease
below a few tens of eV/u. Figure 5 shows a series of
representative results for double-capture processes in the
energy domain ranging from 10 eV/u to 25 keV/u. The general
behavior of the cross sections presents a V-valley shape with
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FIG. 5. (Color online) Double-electron-capture cross sections as
function of impact energy. Theory: present results (black solid line);
Errea et al. [21] (red dashed line); Kusakabe et al. [14] (blue dotted
line); Shimakura et al. [22] (green dash-dotted line). Experiments:
Okuno et al. [12] (red full circles); Figueira da Silva et al. [17] (black
full squares); Kusakabe et al. [14] (black full triangles); Rudd et al. [7]
(blue open circles); Shah and Gilbody [8] (green open squares).

a minimum at about 5 keV/u. If the various data, including
ours, agree quite well for localizing the minimum and for
the absolute values of the cross sections for the high-energy
region, the results spread over one order of magnitude for
low energies. The experimental data from Okuno et al. [12]
(obtained by subtracting the single-capture cross sections
from the attenuation ones) and from Figueira da Silva et al.
[17] show a sharp increase for decreasing velocities—as a
resonant process generally does—while those of Kusakabe
et al. [14], confined to energies ranging from 100 to 500 eV/u,
show a slow decrease. Theoretically, two sets of MOCC
calculations [14,21] predict the latter behavior while the results
of Shimakura et al. [22], although based on an approximate
pseudo-molecular description of H2, show an increase of the
cross sections. Our results lie in the middle of these two
extreme tendencies, showing an increase, although weaker
than the experimental one. Comparing Figs. 2 and 5 in the
low-energy region, our data show a nearly equivalent weight
for single and double cross sections while Okuno et al. [12]
and Figueira da Silva et al. [17] predict a strong (factor 10)
dominance of double-electron capture over single-electron
capture.

To get further insight into the mechanisms responsible of
the double-electron capture channels, we show in Fig. 6 the
related reduced transition probabilities as a function of the
impact parameters for the same two characteristic collision
energies (62.5 eV/u and 9 keV/u) and the three molecular ori-
entations considered. Unlike single-electron capture, the same
channels—double-electron capture to He(1s2�)—dominate
the scattering for low and high energy with, in the latter
case, a non-negligible contribution from the He(1s2) channel
which takes over for energies above 20 keV/u. At high energy,
the probabilities have a smooth shape indicating a complex
coupled channel scheme, while for low energy they present
sharp peaks which are characteristic of processes occurring
at avoided crossings. This latter mechanism may explain the
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FIG. 6. (Color online) Transition probabilities for double-
electron-capture into He(1s2�) states as function of impact parameter
for velocities 0.05 a.u. (top panels) and 0.6 a.u. (bottom panels) and
for three molecular orientations (�m, �m): (0,0) (green dash-dotted
line), (0, π

2 ) (red dashed line), ( π

2 , π

2 ) (black solid line).

sharp increase of the cross sections for decreasing velocities
and it is only the very accurate description of the three-center
transient molecular structure which may produce ultimately
converged cross sections in this energy range. It is therefore
not surprising that our model, although highly refined but
especially designed for intermediate velocities, cannot handle
with optimal accuracy the description of such molecular
mechanisms. It is worth noting, however, that the sum of our
single-electron-capture and double-electron-capture cross sec-
tions for the lowest energies are close to the experimental sum,
supporting the discussion above. The molecular description of
the present approach (and calculations) may underestimate the
probability of the transition of a second electron toward He+
(leading to the neutralization of the projectile), in favor of a
single excitation of H2

+ (i.e., of transfer excitation) which is
shown to be overestimated in Fig. 2. We should mention finally
that this process, which is confined to near head-on collision
trajectories (cf. Fig. 6), presents an important dependency on
the molecular orientations. This could be probed in great detail
by experiments involving multicoincidence measurements, as
setups such as reaction microscopes [41] do.

Cross sections for double-electron capture into the lowest
and most important doubly excited states of helium were
also computed. Those excited states are metastable and
decay by emitting an electron. The final states are then
equivalent to direct single capture and ionization, also called
transfer ionization. Therefore, in experimental investigations
based on the detection of both ions of He, these processes
contribute to the total single-electron capture. However, as
will be shown below, the double electron capture channels
into autoionizing states of helium are rather weak processes
and can only modify experimental cross sections marginally,
with no real implication for the discussion presented in
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FIG. 7. (Color online) Cross sections for double-electron capture
into doubly excited states of helium. Theory: present results (red
solid line). Experiments: Frémont et al. [42] (squares) and Martinez
et al. [16] (triangles).

the previous sections. The determination of converged cross
sections for these weak channels is a delicate issue, both
theoretically and experimentally; it thus represents a good
test for our collision code. Moreover, the knowledge of these
cross sections are required for the study of the feasibility at
low energies of an interferometry experiment performed by
Chesnel et al. [33,42] at high energy. Total cross sections for
double electron capture into doubly excited states of helium
are shown in Fig. 7, together with the only three available
measurements from [16,42]. The computed cross sections
are of the order of 10−17 cm2 at 25 keV/u and decrease by
a factor of about 10 from 25 keV/u to 100 eV/u impact
energy. Note that their contribution to the total single-electron
capture is about 10 times smaller than the direct double-
electron capture processes. Considering the complexity of the
calculations one may state that a good agreement is obtained
between our data and the experimental ones. However, the
decrease of the cross sections shown in our results do not
support the weak dependency which can be extrapolated from
the two lowest-energy experimental points. This tendency
prevents the extension of the experimental investigation of
Chesnel and collaborators to lower energies for the He2+-H2

collision system since cross sections of order of 10−18 cm2

will require unreasonable detection times to be statistically
relevant.

IV. CONCLUSIONS

In this paper we present a semiclassical close-coupling
approach to simulate ion-molecule collisions involving two
active electrons. This method is well adapted for keV/u
collision energy but the extension of its use at much lower
energies have been demonstrated. We have applied the method
for the predictions of the total cross sections for single- and
double-electron capture in He2+-H2 collisions for energies
ranging from 10 eV/u to 25 keV/u. We have shown that
the rovibrational sudden approximation used is valid for
collision energies above about 100 eV/u for the system
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considered. At lower collision energy, it overestimates the
single-electron-capture cross sections and more extensive
basis-set calculations or a converged three-center MOCC
approach are required. Cross sections for double-electron
capture into bound states and autoionizing states of helium
have been shown and compared to the available experimental
and theoretical data. Good agreement with the most recent
results have been achieved. The results reported in the
article show that the present method is a powerful tool to
study one- and two-electron processes in ion-molecule keV
collisions. The extension of the present method and computer
codes to polyatomic and polyelectronic molecular targets
is straightforward, although very demanding in computer
resources, memory, and CPU time. We are presently planning
this development, taking into account the electronic correlation
and the multicenter character of the target, in order to pave the
way to go beyond the effective single-center-target approx-
imations in quantal calculations (cf. e.g., [47]) or classical
independent-electron treatments [48] used to describe ion-H2O
collisions.

APPENDIX A: METHOD AND STRATEGY FOR
COMPUTATIONS OF DIFFERENT COUPLING

MATRIX ELEMENTS

To develop the new computer code we based the repre-
sentation of the scattering state on a Gaussian-type orbital
(GTOs) basis set which allow the analytical expression of
the required matrix elements of M and S [see Eq. (7)]
and, therefore, a considerable speedup of the calculations
over Slater-type orbital (STOs) expansions. Procedures for
the evaluation of one-electron and two-electron two-center
integrals have been presented respectively in Caillat et al. [30]
and Wang et al. [43] (and references therein). We report here
a modified version of the method which allows us to evaluate
two-electron three-center integrals. To build a completely
general procedure we based the computations of those matrix
elements on symbolic derivations of genuine integrals. We
present in the following the formalism for multicenter one-
electron integrals, two-center two-electron integrals extended
to three-center two-electron integrals by using well-known
translation properties of GTOs.

1. One-electron integrals computations

Multicenter one-electron integrals can be written in a general form as

I =
∫ ∞

0
dx

∫ ∞

0
dy

∫ ∞

0
dzrm1r ′m2r ′′m3xu1yv1zw1x ′ u2y ′ v2z′w2

× exp (−α1r
2 − α2r

′ 2 − α3r
′′ 2 + iμ�v · �r)

(r ′′)λ
(λ = 0,1; μ = 0, ± 1), (A1)

where u1,v1, . . . ,w2,m1,m2, and m3 are positive integers or zero. Vectors �r , �r ′, and �r ′′ are the electron coordinates with respect
to the origin, the projectile and potential center (�r ′ = �r − �R and �r ′′ = �r − �ρ), respectively. This general form allows us to define
all kind of useful integrals, with potential (λ = 1) or without (λ = 0, α3 = 0), with ETF (μ = 1) or without (μ = 0), as well as
for two centers ( �ρ = �R or �0) or three. The integral I is written as derivatives of the genuine integral Jλ as

I = lim
�a→ �μ�v

lim
�b→�0

(
−i

∂

∂ax

)u1
(

−i
∂

∂ay

)v1
(

−i
∂

∂az

)w1
(

−i
∂

∂bx

)u2
(

−i
∂

∂by

)v2
(

−i
∂

∂bz

)w2

×
(

−i
∂

∂α1

) m1
2

(
−i

∂

∂α2

) m2
2

(
−i

∂

∂α3

) m3
2

Jλ, (A2)

where Jλ is

Jλ =
∫ ∞

0
dx

∫ ∞

0
dy

∫ ∞

0
dz

exp (−α1r
2 − α2r

′2 − α3r
′′2 + i�a · �r + i �b · �r ′)

(r ′′)λ
(λ = 0,1). (A3)

and the powers m1, m2, and m3 must be even. The analytical form of Jλ can be expressed as

J1 = 2π3/2

B
√

α
exp (−α2R

2 − α3ρ
2 − i �b · �R)eA2/(4α)erf

(
B

2
√

α

)
, (A4)

for integrals with potential (λ = 1) and

J0 =
(

π

α

)3/2

exp (−α2R
2 − i �b · �R)eA2/(4α), (A5)

for integrals without potential (λ = 0), where the various parameters used above are defined as

α = α1 + α2 + α3, �A = i�a + 2α2 �R + 2α3 �ρ, �B = �A − 2α �ρ. (A6)

The derivatives defined in Eq. (A3) are then done symbolically directly in the FORTRAN computer code and then evaluated
numerically. Two-electron integrals are computed using the same strategy. However, more derivatives have to be performed as
presented in the following.
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2. Two-electron two-center integrals computations

Four types of two-electron two-center integrals have to be computed, namely, E, D, E′, and E′′, which are defined as

E =
∫ ∫

d�r1d�r2G
∗
αa,la ,ma

(�r1)G∗
αb,lb,mb

(�r P
2

)ei�v·(�r1−�r2)

|�r1 − �r2| Gαc,lc,mc

(�r P
1

)
Gαd,ld ,md

(�r2), (A7)

D =
∫ ∫

d�r1d�r2G
∗
αa,la ,ma

(�r1)G∗
αb,lb,mb

(�r P
2

) 1

|�r1 − �r2|Gαc,lc,mc
(�r1)Gαd,ld ,md

(�r P
2

)
, (A8)

E
′ =

∫ ∫
d�r1d�r2G

∗
αa,la ,ma

(�r1)G∗
αb,lb,mb

(�r P
2

) e−i�v·(�r2)

|�r1 − �r2|Gαc,lc,mc
(�r1)Gαd,ld ,md

(�r2), (A9)

E
′′ =

∫ ∫
d�r1d�r2G

∗
αa,la ,ma

(�r1)G∗
αb,lb,mb

(�r2)
ei�v·(�r1+�r2)

|�r1 − �r2| Gαc,lc,mc

(�r P
1

)
Gαd,ld ,md

(�r P
2

)
, (A10)

where �r P
i = �ri − �R is the position vector of electron i with respect to the projectile. As for the one-electron integrals, the four

kinds of two-electron, two-center integrals are defined in Cartesian coordinates. For instance, E is written as

Ẽ =
∫ ∫

d�r1d�r2r
na

1 e−αar
2
1 x

ua

1 y
va

1 z
wa

1 r ′nb

2 e−αbr
′2
2x ′ub

2 y ′vb

2 z′wb

2
ei�v·(�r1+�r2)

|�r1 − �r2| r
′nc

1 e−αcr
′2
1x ′uc

1 y ′vc

1 z′wc

1 r
nd

2 e−αdr2
2 x

ud

2 y
vd

2 z
wd

2 , (A11)

where we try to keep the ni (i = a, b, c, or d) equal to zero in order to have less computational efforts without loss of generality.
Integrals D̃, Ẽ′, Ẽ′′ are defined the same way and are all evaluated by derivations of the genuine integral I as

I (αa,αb,αc,αd ) =
∫ ∫

d�r1d�r2e
−αar

2
1 −αbr

′2
2−αcr

′2
1−αdr2

2
ei�v·(�r1+�r2)

|�r1 − �r2| exp(i�a · �r1 + i �b · �r ′
2 + i�c · �r ′

1 + i �d · �r2), (A12)

with, for example for Ẽ,

Ẽ = lim
�a,�b,�c, �d→�0

(
−i

∂

∂ax

)ua
(

−i
∂

∂ay

)va
(

−i
∂

∂az

)wa
(

−i
∂

∂bx

)ub

· · ·
(

−i
∂

∂dz

)wd
(

−i
∂

∂αa

) na
2

(
−i

∂

∂αb

) nb
2

(
−i

∂

∂αc

) nc
2

(
−i

∂

∂αd

) nd
2

I (αa,αb,αc,αd ). (A13)

Integral I is obtained analytically

I (αa,αb,αc,αd ) = π5/2

α1/2

exp[−(αc + αb)R2 − i(�b + �c) �R]

α
3/2
ac α

3/2
bd

exp

(
B2

4αac

+ D2

4αbd

)
M

(
1

2
;

3

2
; −β2

α

)
, (A14)

with

αac = αa + αc, αbd = αb + αd, α = 1

4αac

+ 1

4αbd

, B2 = B2
x + B2

y + B2
z , Bi = 2αcRi + i(ai + ci + vi),

D2 = D2
x + D2

y + D2
z , Di = 2αbRi + i(bi + di − vi), β2 = β2

x + β2
y + β2

z , βi = Bi

4αac

+ Di

4αbd

,

and M(a,b,z) are the confluent hypergeometric functions. Integrals D, E′, and E′′ are computed the same way but the derivatives
and the limits of the parameters are different.

3. Two-electron three-center integrals computations

For the treatment of ion-diatomic molecule collisions with
the close-coupling method, two-electron three-center integrals
have to be computed. To do so we use the properties of the
GTOs and methods similar to those presented above.

The product of two GTOs G1 and G2 centered respectively
on A and B:

G1 = x
l1
Ay

m1
A z

n1
A e−α1r

2
A, (A15)

G2 = x
l2
By

m2
B z

n2
B e−α2r

2
B , (A16)

can be written as a third Gaussian G3 centered on a third point
P :

G3 = G1G2 = x
l1
Ax

l2
By

m1
A y

m2
B z

n1
A z

n2
B

× exp (−α1α2AB2/γ ) exp
( − γ r2

P

)
, (A17)

with

γ = α1 + α2, �rP = α1�rA + α2�rB

γ
.
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Moreover, x
l1
Ax

l2
B can be written as

x
l1
Ax

l2
B =

l1+l2∑
k=0

xk
pfk(l1,l2,(PA)x,(PB)x), (A18)

with

fk(l1,l2,(PA)x,(PB)x)

=
i+j=k∑
i=0,l1

∑
j=0,l2

(PA)l1−i
x C

l1
i (PB)l2−j

x C
l2
j . (A19)

For an easier implementation in the code, the fk coefficients
can be written as

fk =
min(k,2l1−k)∑

q=max(−k,k−2l2)

C
l1
i C

l2
j (PA)l1−i

x (PB)l2−j
x ,

2i = k + q, 2j = k − q (A20)

where q increases by step of two.

There are 36 kinds of two-electron three-center integrals
which can be sorted into the four types of two-electron, two-
center integrals presented before:

(i) of type E: 〈AP ||PB〉, 〈BP ||PA〉, 〈PA||BP 〉, and
〈PB||AP 〉,

(ii) of type D: 〈AP ||BP 〉, 〈BP ||AP 〉, 〈PA||PB〉, and
〈PB||PA〉,

(iii) of type E
′
: 〈AA||BP 〉, 〈AB||AP 〉, 〈AB||BP 〉,

〈AB||PA〉, 〈AB||BP 〉, 〈AP ||AB〉, 〈AP ||BA〉, 〈AP ||BB〉,
〈BA||AP 〉, 〈BA||BP 〉, 〈BA||PA〉, 〈BA||PB〉, 〈BP ||AA〉,
〈BP ||AB〉, 〈BP ||BA〉, 〈PA||AB〉, 〈PA||BA〉, 〈PA||BB〉,
〈PB||AA〉, 〈PB||AB〉, 〈PB||BA〉, 〈AA||PB〉, 〈BB||AP 〉
and〈BB||PA〉,

(iv) of type E
′′
: <〈AB||PP 〉, 〈BA||PP 〉, 〈PP ||AB〉 and

〈PP ||BA〉,
where, for simplicity, we note the states �I (I = A, B,
P) by the corresponding letter and A, B, P correspond to
the two centers of the molecular target and the projectile,
respectively. The bracket notation used is defined such
as; for example, the integrals 〈AB||PP 〉 of type E

′′
is

given by

〈AB||PP 〉 =
∫

d�r1

∫
d�r2x

ua

A1y
va

A1z
wa

A1e
−αar

2
A1x

ub

B2y
vb

B2z
wb

B2e
−αbr

2
B2

ei�v·(�r1+�r2)

|r12| x
uc

P 1y
vc

P 1z
wc

P 1e
−αcr

2
P 1x

ud

P 2y
vd

P 2z
wd

P 2e
−αdr2

P 2 , (A21)

which can be written as

〈AB||PP 〉 =
∫

d�r1

∫
d�r2

ua+uc∑
k=0

va+vc∑
l=0

wa+wc∑
m=0

fkx
k
S1ely

l
S1gmzm

S1Ke−γ r2
S1

ei�v(�r1+�r2)

|r12|
ub+ud∑
n=0

vb+vd∑
o=0

wb+wd∑
p=0

hnx
n
T 2ioy

o
T 2jpz

p

T 2Le−ωr2
T 2

=
ua+uc∑
k=0

va+vc∑
l=0

wa+wc∑
m=0

ub+ud∑
n=0

vb+vd∑
o=0

wb+wd∑
p=0

fkelgmhniojpI, (A22)

with

γ = αa + αc, ω = αb + αd, K = e−αaαc(AP )/γ , L = e−αbαd (BP )/ω, (A23)

�RS = αa
�RA + αc

�RP

γ
, �RT = αb

�RB + αd
�RP

ω
. (A24)

The coefficients (fk,el, . . . ,) in Eq. (A22) are given by the generic formula in Eq. (A20) and the integral I is expressed as

I =
∫

d�r1

∫
d�r2x

k
S1y

l
S1z

m
S1Ke−γ r2

S1
ei�v·(�r1+�r2)

|r12| xn
T 2y

o
T 2z

p

T 2Le−ωr2
T 2 , (A25)

with �rSi = �ri − �RS and �rT i = �ri − �RT . Finally, the integral I is rewritten as

I = KLe2i�v· �RS I ′, (A26)

where K and L are defined in Eq. (A23) and with the integral I ′ defined as

I ′ =
∫

d�r1

∫
d�r2x

k
S1y

l
S1z

m
S1e

−γ r2
S1

ei�v·(�rS1+�rS2)

|r12| xn
T 2y

o
T 2z

p

T 2e
−ωr2

T 2 . (A27)

The integral I ′ is then computed as E′′ [cf. Eq. (A10)].
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TABLE II. Parameters of the 17 (+10 when taking into account the m quantum numbers) GTOs used to describe states of He+ and He.

i � αi i � αi i � αi i � αi i � αi

1 0 0.007 89 5 0 0.156 60 9 0 8.891 43 13 1 0.031 59 17 1 1.212 18
2 0 0.025 74 6 0 0.231 60 10 0 17.097 29 14 1 0.112 96
3 0 0.097 86 7 0 0.899 67 11 0 28.517 21 15 1 0.230 68
4 0 0.128 37 8 0 2.722 46 12 0 75.299 00 16 1 0.295 76

APPENDIX B: OPTIMIZED GAUSSIAN-TYPE ORBITALS
FOR He2+-H2 COLLISIONS

The atomic and molecular states used in the present work
were obtained by diagonalization of the electronic Hamil-
tonian onto basis sets composed of Gaussian-type orbitals
(GTO)s. These latter are defined as

Gαi,�,m(�r) = Y�,m(r̂)r�e−αir
2
, (B1)

with the exponents αi of the GTOs optimized by a genetic
algorithm in order to accurately describe the one- and two-
electron bound states of the isolated collision partners. The

TABLE III. Parameters of the 7 GTOs centered on each nucleus
used to describe states of H2

+ and H2.

i � αi i � αi

1 0 0.020 64 5 0 0.796 66
2 0 0.118 73 6 0 4.019 96
3 0 0.174 13 7 0 25.764 3
4 0 0.238 97

optimized parameters for (He+, He) and (H2
+, H2) used in the

present calculations are listed in Tables II and III, respectively.
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