
PHYSICAL REVIEW A 84, 052712 (2011)

Proton-impact excitation of lithium using a time-dependent close-coupling method
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A time-dependent close-coupling method, formulated within the framework of a rotational function expansion
in two-dimensional cylindrical coordinates, is used to investigate excitation processes in proton-lithium collisions.
As a first check, the calculated Li(1s22s) → Li(1s22p) excitation cross sections are compared and shown to be
in reasonable agreement with the previous Cartesian lattice time-dependent Schrödinger equation results for
collision energies at 5, 10, and 15 keV. As a result, additional calculations are carried out to determine the cross
sections not only for the Li(1s22s) → Li(1s22p) transitions, but also for the Li(1s23l) transitions for a wider
range of proton-impact energies from 2 to 50 keV. Reasonable agreement is found when further comparison of
the dominant Li(1s22p) excitation cross sections is made with data obtained from crossed-beams experiments
and other close-coupling methods. With the present extensive and large-scale calculations, the convergence for
the reported results is also addressed, especially for the less-dominant Li(1s23l) transitions, with respect to the
box sizes, number of coupled channels, and propagation time.
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I. INTRODUCTION

Excitation processes of atomic lithium, the simplest quasi-
one-electron atom, due to proton-impact is not only of
fundamental interest, but also of practical importance for
diagnostics of magnetically confined fusion plasmas by means
of lithium beam spectroscopy [1,2]. Analysis of the emission
lines of the injected lithium atoms at the edge of a tokamak
plasma enables one to extract valuable information, such as
radial electron density, concentrations and temperatures of
impurity ions in the plasma. Reliable diagnostics therefore
require accurate determination not only of electron-transfer
cross sections, but also of excitation cross sections.

Experimental measurements of excitation cross sections
based on a crossed-beams technique for a lithium target were
carried out a number of years ago by Aumayr et al. [3–5].
On the theoretical side, there has been quite a number of
predictions [6–11], since quasi-one-electron lithium is a good
candidate for testing theoretical treatments of one-electron
processes in few-electron atomic systems. Among the several
theoretical methods used to treat the excitation processes
in ion-atom collisions, the most elaborate and accurate
methodologies are the atomic (or molecular) orbitals basis-set
expansion methods [7,8,11] and the direct numerical solution
of the time-dependent Schrödinger equation (TDSE) on a
multidimensional lattice [9]. The latter method discretizes the
TDSE on either a uniform or nonuniform three-dimensional
(3D) spatial mesh and the resultant lattice TDSE is readily
solved using a parallel supercomputer.

Although the lattice TDSE method has proven success-
ful in describing not only one-electron excitation but also
capture and ionization processes found in a number of
fundamental ion-atom collision systems (e.g., p + H [12,13],
p + Li [9,14,15], and Be4+ + H [16]), a significant amount
of computation time is required. For a realistic ion-atom
collision problem and for a given projectile incident energy,
the typical computation time for a TDSE calculation (based
on a semiclassical impact-parameter approximation) grows
like N3Nb, where N is the number of grid points and Nb

is the number of impact parameters. This N3Nb factor is

a main concern as it restricts the capability of the method,
even with the available massively parallel supercomputers, for
accurately treating larger ion-atom collision systems. For the
same reason, the study of the energy-dependent inelastic cross
sections has to be restricted to a handful of energy points.
Furthermore, extending the method to higher dimensions
will make the computation even longer. A better theoretical
approach to the problem, but based on reduced dimensionality
within the direct numerical solution of TDSE formalism, is
therefore worthwhile and highly desired.

As a possible solution, a three-dimensional TDSE method
was recently formulated within the framework of rotational
function close-coupling expansion in two-dimensional (2D)
cylindrical coordinates [17]. As a proof of principle and a
check, the method was employed to calculate excitation cross
sections from the ground state of the hydrogen atom to the
2l and 3l excited states for p + H collisions at a proton-
incident energy of 40 keV. The results were found to be in
good agreement with the 3D Cartesian lattice time-dependent
Schrödinger equation (LTDSE) as well as other competitive
theoretical calculations. Here, we extend the 2D cylindrical
time-dependent close-coupling (TDCC) method to investigate
the direct excitation of Li(1s22s) due to 2 to 50 keV proton
impact.

In previous work [9], the 3D Cartesian LTDSE method
has been used to calculate the cross sections for Li(1s22s) →
Li(1s22p) and Li(1s22s) → Li(1s23l) states at three proton-
impact energies of 5, 10, and 15 keV. Although the results for
the dominant Li(1s22s) → Li(1s22p) excitation were found
to be in accord with the experimental data of Aumayr et al.
[3–5], the accuracy of the cross sections, particularly for the
weaker Li(1s23l) transitions, still remains uncertain due to
the above reasons. As a result, a detailed study is carried
out herein with emphasis on (i) the development of a local
exchange potential in cylindrical coordinates to describe a
quasi-one-electron atom such as lithium; (ii) checking whether,
by incorporating such a potential into the recently developed
cylindrical time-dependent close-coupling (TDCC) method,
one could reasonably reproduce the previous results from
the LTDSE calculations and other benchmarked theoretical
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data; (iii) a convergence study for the present excitation
cross sections with respect to different box sizes, number of
coupled channels, and propagation time; and (iv) a proper
energy-dependent study of the excitation cross sections; that
is, at least a decade of energy points.

The rest of the article is organized as follows: a review of
the time-dependent close-coupling method in the cylindrical
representation is presented in Sec. II, the results for excitation
cross sections from the ground state of atomic Li to the
1s22p and 1s23l configurations are presented and discussed in
Sec. III, and a brief summary is given in Sec. IV. Atomic units
(a.u.) are used throughout unless otherwise indicated.

II. THEORETICAL METHOD

We shall briefly recapitulate the essence of the time-
dependent close-coupling method in cylindrical coordinates
[17]. For a bare-ion projectile with a nuclear charge of Zp

colliding with a one-active-electron atomic target with a
nuclear charge of Zt , we solve the time-dependent Schrödinger
equation given by

i
∂�(�re,t)

∂t
=

{
−1

2
∇2 − Zt

| �re| + VHX(re) − Zp

|�re − �rp(t)|
}

×�(�re,t), (1)

where VHX(re) is the Hartree-Slater local exchange potential
and �re and �rp denote the target electron position vector and the
projectile ion position vector, respectively.

The total electronic wave function can be expressed in
cylindrical coordinates and expanded in rotational functions:

� (�re,t) =
∑
m

Pm(ρ,z,t)√
ρ

�m(φ), (2)

where �m(φ) = eimφ√
2π

. Substituting Eq. (2) into Eq. (1) results
in time-dependent close-coupling equations in the cylindrical
representation (TDCC ρz), given by

i
∂Pm(ρ,z,t)

∂t
= Tm(ρ,z)Pm(ρ,z,t)

+
∑
m′

Vm,m′ (ρ,z,t)Pm′(ρ,z,t), (3)

where

Tm(ρ,z) = K(ρ,z) + m2

2ρ2
− Zt√

ρ2 + z2
+ VHX(ρ,z), (4)

K(ρ,z) is the kinetic energy operator, VHX(ρ,z) is the Hartree-
Slater local exchange potential in cylindrical coordinates, and

Vm,m′ (ρ,z,t) = −Zp

∑
λ

(re,rp)λ<
(re,rp)λ+1

>

∑
q

(λ − |q|)!
(λ + |q|)!

×P
|q|
λ (cos (θe))P |q|

λ (cos (θp)). (5)

In this collision-energy regime, it is reasonable to as-
sume a straight-line-trajectory approximation, such that re =
(ρ2 + z2)1/2, cos (θe) = z/re, rp = [b2 + (z0 + vt)2]1/2, and
cos (θp) = (z0 + vt)/rp, where P

|q|
λ ( cos (θ )) is an associated

Legendre function.
The TDCC equations are readily solved using lattice

techniques to obtain a discrete representation of the wave

functions Pm(ρ,z,t) and all associated operators on a uniform
ρz mesh. The lowest-order finite difference representation of
the kinetic energy operator is given by

Ki,jPi,j (t) = −
{

[c+
i Pi+1,j (t) + c−

i Pi−1,j (t) − 2Pi,j (t)]

2(
ρ)2

}

−
{

[Pi,j+1(t) + Pi,j−1(t) − 2Pi,j (t)]

2(
z)2

}
, (6)

with the coefficients c+
i = (ρi+1/2)/

√
ρiρi+1 and c−

i =
(ρi−1/2)/

√
ρiρi−1.

The initial condition for the solution of the TDCC equations
is given by

Pm(ρ,z,t = 0) = P2s0(ρ,z)�0(φ)δm,0. (7)

Transition probabilities for proton-impact excitation processes
are found by time propagating the close-coupling equations
based on an explicit algorithm given by

P (t + 
t) = −2i
tH (t)P (t) + P (t − 
t), (8)

where H (t) is the full time-dependent Hamiltonian. Tracing
the full time evolution of the wave functions, probabilities
for state-selective excitation for a given projectile energy and
impact parameter are obtained via

Pnlm(E,b) =
∣∣∣∣
∫

d�re�
∗
nlm (�re) � (�re,t → ∞)

∣∣∣∣
2

, (9)

and hence their corresponding excitation cross sections are
given by

σnlm(E) = 2π

∫ ∞

0
bdbPnlm(E,b). (10)

Note that a masking function is implemented in order to
eliminate the spurious reflection of the waves at the lattice
boundary.

III. RESULTS

A. Comparison with previous work

We first checked the present cylindrical coordinates TDCC
method against the previous Cartesian coordinates LTDSE
method [9] for proton-impact excitation of Li. The radial
Hartree-Slater local exchange potential is given by

VHX(re) = 2
∫

dr ′
e

P 2
1s(r

′
e)

re>

− α

(
24ρ(re)

π

) 1
3

, (11)

where α is a freely adjustable parameter, ρ(r) =
2P 2

1s(re)/(4πr2
e ) is the radial probability density, and P1s(re)

is the bound radial orbital obtained from solving the Hartree-
Fock equations [18] for Li+(1s2). Following previous work [9],
we diagonalize the radial Hamiltonian

H (re) = −1

2

∂2

∂r2
e

+ l(l + 1)

2r2
− Zt

re

+ VHX(re), (12)

for l = 0 and Zt = 3 on a 300-point radial mesh with

re = 0.2. For α = 0.74 the energy of the 2s state is in
good agreement with the experimental value of −5.39 eV
[19]. In order to prevent the Pm(ρ,z,t) wave functions from
collapsing into the Li(1s2) core during the time-propagation
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of the close-coupling equations, we may replace VHX(ρ,z)
with a pseudopotential VPP (ρ,z) constructed by eliminating
the inner node of the P2s(re) orbital based on an established
procedure [20]. Interpolation using re = (x2 + y2 + z2)1/2

and re = (ρ2 + z2)1/2 allows the construction of VPP (x,y,z)
and VPP (ρ,z). In the Cartesian-coordinate LTDSE method,
the ground and excited states were obtained by relaxation
of the Hamiltonian in imaginary time since diagonalization
of the Hamiltonian

H (x,y,z) = −1

2

(
∂2

∂x2
+ + ∂2

∂y2
+ ∂2

∂z2

)
− Zt√

(x2 + y2 + z2)
+VPP (x,y,z) (13)

was not feasible. Upon relaxation, the energy of the 2s state
was found to be in good agreement with the experimental
value of −5.39 eV [19], but the 2p states were found to be
at−3.12 eV, considerably higher than the the experimental
value of −3.54 eV [19]. In the cylindrical-coordinate TDCC
method the ground and excited states are obtained by diago-
nalization of the Hamiltonian

Hm(ρ,z) = K(ρ,z) + m2

2ρ2
− Zt√

ρ2 + z2
+ VPP (ρ,z). (14)

For the same choice of α = 0.74 the energy of the 2s

state is in good agreement with the experimental value of
−5.39 eV [19], but the 2p states were found to be at −3.13 eV,
again considerably higher than the the experimental value of
−3.54 eV [19]. See Table I for examples.

To further cross check the present method against the
previous LTDSE results, we carried out the TDCC calculation
using the equivalent LTDSE parameters given in Ref. [9]
(e.g., a 160 × 320 mesh with 
ρ = 
z = 0.2 a.u. to form a
cylinder of ρ: 0 → +32 and z: −32 → +32, a set of 23 impact
parameters ranging from 0 to 20 a.u., and the same starting
and ending projectile-traveling journey). At 15 keV collision
energy, we found with the present approach the Li(1s22p)
cross section to be 37.0 × 10−16 cm2 while the LTDSE gave
a value of 34.9 × 10−16 cm2. At the lower energy of 5 keV,
the same state-selective excitation cross section turned out
to be 25.0 × 10−16 cm2 as opposed to the LTDSE value of

TABLE I. Lithium-atom binding energies (in eV) and energy gaps
(in eV) between the ground and higher states.

nl NIST [19] α = 0.74 α = 0.25 α = 0.74 [9]

2s −5.392 −5.397 −5.416 −5.38
2p0 −3.544 −3.130 −3.570 −3.12
2p±1 −3.129 −3.560
3s −2.019 −2.015 −2.026 −2.01
3p0 −1.558 −1.514 −1.563 −1.41
3p±1 −1.513 −1.560
3d0 −1.513 −1.416 −1.515 −1.51
3d±1 −1.416 −1.515
3d±2 −1.513 −1.514

E2s-2p 1.848 2.267 1.846 2.26

E2s-3s 3.373 3.382 3.388 3.37

E2s-3p 3.834 3.883 3.856 3.97

E2s-3d 3.879 3.949 3.901 3.87
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FIG. 1. (Color online) Proton-impact excitation cross sections for
the Li(1s22p) as a function of collision energy. Black circles with
solid line show present TDCC (α = 0.74), green triangles with dashed
line show present TDCC (α = 0.25), purple stars show LTDSE [9],
red squares with dotted line show B-spline AOCC method [11],
and blue diamonds with error bars show experimental measurements
[3–5].

22.8 × 10−16 cm2. This degree of agreement serves as a litmus
test for the present TDCC calculation.

With this level of confidence, we carried out additional and
larger TDCC calculations by increasing the spatial extent to ρ:
0 → +48 a.u. by z: −60 → +60 a.u. cylinder with uniform
step sizes of 
ρ = 
z = 0.2, and by considering that the
projectile travels for a longer distance; that is, from an initial
position of zi = −30 a.u. to a final position of zf = +240 a.u.
The scattering calculations were also carried out for 13
different collision energies ranging from 2.0 to 50.0 keV. The
resulting excitation cross sections on an absolute scale for
the Li(1s22s) → Li(1s22p) transition as function of collision
energy are shown in Fig. 1. Comparing the present large-scale
TDCC with the previous LTDSE results, the agreement again
appears to be reasonable. This indicates that a scattering
calculation carried out with a reasonable box size that could
accommodate the L-shell electron cloud will yield reasonable
excitation cross sections for Li(1s22p). But, as we will discuss
next, this may not the case for transitions to the weaker
M-shell.

B. Core-orthogonalization calculations

So far, we have shown that our TDCC and the LTDSE
results are in reasonable agreement for the same choice of
α. But with α = 0.74, the excited-state energies are found
to be less than satisfactory. Thus, improved excited-state
energies are much desired. Without doing the imaginary-time
Hamiltonian relaxation, we may obtain the ground and excited
states by diagonalizing the Hamiltonian

Hm(ρ,z) = K(ρ,z) + m2

2ρ2
− Zt√

ρ2 + z2
+ VHX(ρ,z).

(15)
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FIG. 2. (Color online) Impact-parameter-weighted Li(1s22p) ex-
citation probability as a function of impact parameter b. Black dashed
line shows present TDCC (α = 0.74) and red solid line shows present
TDCC (α = 0.25).

For the choice of α = 0.25, shown in Table I, not only do we
see that the energy of the 2s state remains in good agreement
with the experimental value of −5.39 eV, but also all the
excited states have been significantly improved and found to
be in good agreement with the experimental values.

Similar TDCC calculations are then carried out with core-
orthogonalization at each time step according to

P̃m(ρ,z,t) = Pm(ρ,z,t) − P1s0(ρ,z)
∫ ∫

dρ ′dz′P1s0(ρ ′,z′)

×Pm(ρ ′,z′,t) (16)

in order to avoid the collapsing of the Pm(ρ,z,t) wave functions
into the Li(1s2) core. Figure 1 shows the present Li(1s22p)
cross sections as a function of collision energy together with
the results obtained from the previous α = 0.74 calculation, a
recent large-scale atomic orbitals close-coupling calculation
based on a B-spline basis-set expansion method [11] and
crossed-beams experiments [3–5]. Although the present results
are larger compared to the α = 0.74 calculation, both TDCC
calculations are in reasonable agreement with the experimental
data and atomic-orbital close-coupling (AOCC) calculations,
The common feature of Li(1s22p) excitation cross sections as
a function of energy is also reproduced by the theories.

We illustrate the impact-parameter-weighted Li(1s22p)
excitation probability at collision energies of 3, 5, and 15 keV
for two different values of α in Fig. 2. The probabilities
calculated with α = 0.25 are consistently larger compared
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FIG. 3. (Color online) Proton-impact excitation cross sections for
Li(1s23s), Li(1s23p), and Li(1s23d) as a function of collision energy.
Black circles with solid line show present TDCC (α = 0.74) and red
triangles with solid line show present TDCC (α = 0.25).

with the α = 0.74 values for all energies shown. Although their
magnitudes are different, the probability distributions display
a complementary trend. By examining the 
E2s-2p energy gap
given in Table I, the disagreement in probability magnitude,
and hence the cross sections, may be attributed to the difference
in the 
E2s-2p energy found between the two calculations. The
reason one sees a higher transition-probability yield is because
the 
E2s-2p energy gap found for the α = 0.25 calculation is
indeed 42% smaller than the one with α = 0.74. It is important
to note that the α value is adjusted so that the Li atomic orbital
energies agree as closely as possible with the experimental
binding energies recommended by NIST.

Figure 3 displays the excitation cross sections for the less
dominant Li(1s22s) → Li(1s23s), Li(1s23p), and Li(1s23d)
transitions as a function of collision energy for the two α

values. Only the Li(1s23s) configuration shows agreement
between the two calculations. When comparing the LTDSE
data (e.g., see Table III in Ref. [9]) with these values for
proton-impact energies of 5, 10, and 15 keV, the LTDSE results
turn out to be only qualitatively comparable to the TDCC
calculations. This, as will be argued next, may be attributed
to the inadequacy of the box size used in the earlier LTDSE
calculations. As far as we know, there are no experimental
data to compare with for the present Li(1s23l) excitation cross
sections.
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C. On convergence of the cross sections

We now discuss the convergence of our cross sections with
respect to different box sizes and to the number of rotational
functions. It is important to note that we restrict the following
presentations to the calculations for the choice of α = 0.74,
since extensive calculations were performed using this value
in order to check against the earlier LTDSE method [9] in
the first place. Besides, except for the cross-section magnitude,
the conclusions drawn from the convergence study of the
cross section with respect to different box sizes, the number
of coupled rotational channels, the propagation time, would
not be any different from the calculations performed with the
choice of α = 0.25.

We present excitation probabilities for the 1s22p and 1s23l

configurations as functions of impact parameter in Fig. 4 at the
two incident energies of 5 and 15 keV. Calculations were car-
ried out for three different box sizes: TDCC-A, TDCC-B, and
TDCC-C with (ρ: 0 → +48, z: −60 → +60), (ρ: 0 → +40
and z: −43 → +43) and (ρ: 0 → +32 and z: −32 → +32),
respectively. First, notice that the resulting probabilities from
both the TDCC-A and TDCC-B calculations are practically
identical, indicating that the cross sections presented have
converged with respect to the largest box. Second, in contrast
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FIG. 4. (Color online) Impact-parameter-weighted excitation
probabilities for Li(1s22p), Li(1s23s), Li(1s23p), and Li(1s23d)
transitions as a function of impact parameter b. Black solid line
shows TDCC-A, red dashed line shows TDCC-B, and blue dotted
line shows TDCC-C.

to a hydrogen target, note that a larger impact parameter is
required in order for some transition probabilities to achieve
satisfactory convergence. Third, it is found that the general
shape of the excitation probability changes dramatically from
one collision energy to another. For example, comparing the
first frame of Figs. 4(a) and 4(b), the Li(1s22p) excitation
probability at E = 5 keV displays one small peak at the
impact parameter b = 4 a.u. and a larger peak at b = 10 a.u.
However, moving to higher collision energy (E = 15 keV),
the transition probability not only becomes larger but we now
also observe only one almost symmetrical peak centered at
the impact parameter b = 8 a.u. Also note that the major peak
tends to shift to a smaller impact parameter as the incident
energy is increased. Fourth, we observe that the probability
distributions also vary greatly from one transition to the other
for both energies.

We have also carried out additional calculations and
confirmed that the Li(1s22p) and Li(1s23l) excitation cross
sections are insensitive (i.e., differ by an average of less than
3%) whether seven channels (with m = 0, 1, −1, 2, −2, 3,−3)
or nine channels (with m = 0, 1, −1, 2, −2, 3, −3, 4, −4)
are used in Eq. (3), and whether the number multipoles are
increased from λmax = 4 to λmax = 5 in Eq. (5). This degree
of sensitivity is expected and consistent with the earlier p + H
collision calculations [17].

Next, we examine the convergence of the transition proba-
bilities with respect to propagation time. Figures 5(a) and 5(b)
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FIG. 5. (Color online) Transition probability for Li(1s22p) and
Li(1s23l) as a function of propagation time. Black solid line shows
2p, red dashed line shows 3s, green dash-dotted line shows 3p, and
blue dash-double-dotted line shows 3d .
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display the Li(1s22p) and Li(1s23l) excitation probabilities
as a function of propagation time for E = 3 keV with b =
10 a.u. and E = 15 keV with b = 8 a.u., respectively. As
this figure illustrates, the n = 3 manifolds converge relatively
fast compared to the case of Li(1s22p) and a longer time
propagation is indeed necessary for Li(1s22p) to achieve
satisfactory convergence, especially for the low collision
energies. Note that b = 8 and 10 a.u. are chosen for these
two energies because the transition probabilities happened to
be the largest at these two values.

IV. SUMMARY

A time-dependent close-coupling method, formulated
within the framework of a rotational function expansion in
two-dimensional cylindrical coordinates, has been extended
and used to investigate the excitation processes in proton
collisions with atomic lithium. A Hartree-Slater local ex-
change potential was employed to represent the quasi-one-
electron lithium atoms. To first check the present calculation,
a comparison was made with the previous Cartesian LTDSE
calculations. It is found that the present TDCC-calculated
Li(1s22p) cross sections are in reasonable agreement with
the LTDSE results for collision energies of 5, 10, and
15 keV. As a result, further and larger calculations were
carried out to determine the Li(1s22s) → Li(1s22p) as well
as Li(1s23l) excitation cross sections for proton incident
energies ranging between 2 and 50 keV. When comparing
the two TDCC calculations, it is found that the choice of
α = 0.25 gave better lithium binding energies and yielded
Li(1s22p) cross sections notably higher than the choice
of α = 0.74. We attribute the difference between the two
TDCC calculations to the difference in the 
E2s-2p energy

gap between the two calculations. Further comparisons are
made and showed that the TDCC-calculated Li(1s22p) cross
sections as a function of collision energy are generally in
suitable agreement with the experimental data as well as
atomic-orbital close-coupling calculations. In the case of
the n = 3 manifold transitions, we also found a somewhat
similar behavior. In view of the demonstrated notable effect
of the local exchange α parameter on the excitation cross
sections, we shall consider in a future study a parameter-free
optimized-potential method [21] to better represent a quasi-
one-electron atom, which might give more accurate inelastic
cross sections.

Results from several sets of lattice calculations based on
different box sizes, the number of rotational channels, the
propagation time, and the variations of the local exchange
potential parameter α are examined and shown to support
the convergence and degree of accuracy of the state-selective
excitation cross sections presented, especially for the weaker
Li(1s23l) transitions.

In the future, we plan to apply the TDCC method to further
investigate the heavy-particle excitation of atoms needed for
diagnostics of controlled fusion plasmas. In addition, we will
further develop the method to study proton-impact charge
transfer with atoms.
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