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Positronium formation for positron scattering from hydrogen: Maximum positions and scaling law
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Ground- and excited-state positronium (Ps) formation from the hydrogen atom by positron impact at low
and intermediate energies have been studied within the framework of two-center two-channel eikonal final
state-continuum initial distorted wave model. A general method for obtaining Ps formation into arbitrary final
states has been derived. The present results of Ps (1s), Ps (n = 2), and total Ps formation cross sections agree
very well with previous close-coupling calculations and experimental measurements. The maximum positions of
Ps(n) formation cross sections are found to be in good agreement with the prediction of wave vector matching
model introduced by Charlton [J. Phys. B 39, 4575 (2006)]. We also present a scaling law for Ps (n) formation
cross sections that is valid for all n in the entire energy range.
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I. INTRODUCTION

Positronium (Ps) formation is one of the most important
quantal rearrangement collisions that can occur in nature
and it has attracted much attention in both theoretical and
experimental studies over the past two decades [1,2]. For
the simplest case of positron-hydrogen collision, the ex-
perimental measurement of Ps formation cross section is
now amenable and reliable results have been obtained [3,4].
On the theoretical side, the Ps formation process has been
widely investigated by several perturbation methods, such
as the first- and second-order Born (FBA and SBA) [5,6],
first and second distorted-wave approximations (DWA and
SDWA) [7,8], polarized-orbital distorted-wave approximation
(PODWA) [9,10], and the continuum distorted-wave (CDW)
[11-14] methods. The more elaborate close-coupling (CC)
methods have also been successfully applied to investigate
the Ps formation process in positron-hydrogen collision.
These calculations include the CC (9,9) and CC (30,3)
models of Kernoghan et al. [15], CC (28,3) of Mitroy [16],
hyperspherical coupled-channel (HSCC) of Igarashi et al. [17],
time-dependent coupled-channel (TDCC) of Yamanaka et al.
[18], convergent close-coupling (CCC) of Kadyrov et al. [19],
and coupled-channel optical (CCO) method of Cheng and
Zhou [20]. Some other state-of-the-art methods [21–24] have
also been applied to this process and satisfied results are
obtained.

By comparing these theoretical calculations and the exper-
imental observations, good agreement has been achieved for
the ground and total Ps formation cross sections. However, dif-
ferent situations arise for excited-state Ps formations. A large
discrepancy exists among calculations performed by different
methods in the case of Ps (n = 2) formation. Moreover, few
calculations have been performed for higher excited-state Ps
formations. Recently, Ghoshal et al. [25] have successfully
applied the DWA method to study the transition of arbitrary
hydrogen s state to arbitrary Ps s state. A general formalism
to obtain Ps formation cross sections for all reactions has been
derived in the intermediate and high energy range. However,
it is known that the DWA theory is not very accurate at low

energies and further investigations are still required to shed
light on this area.

As a typical example of asymmetric charge transfer pro-
cesses, the Ps formation at which it is most likely to occur
is a long-term research subject [26]. The recent study of
Charlton [27] based upon wave vector matching model has
shown that “for positron collisions with a wide variety of
targets, cross sections for positronium formation are largest
when the projectile kinetic energy is in the vicinity of twice
the relevant threshold energy.” In the case of hydrogen
atom, the Ps (1s) formation peak located at 13–14 eV
has already been predicted by various theoretical work and
identified by experiments. Therefore, it is very interesting
to investigate whether the excited Ps formations follow such
criterion.

In this paper, we employ the eikonal final state-continuum
initial distorted wave (EFS-CDW) model to calculate arbitrary
excited-state Ps formation from the ground state of hydrogen
by positron impact. The continuum distorted wave method
was originally proposed by Cheshire [28] to deal with ion-
atom charge exchange collision. With continuous development
by theorists in the past years, the two-center CDW models
have been successfully applied to light projectile collisions
[29–32]. The pioneering work on the Ps formation process by
positron impact on hydrogen atom using the two-center two-
channel distorted-wave EFS-CDW approximation has been
performed by Macri et al. [13,14]. It has been shown that the
perturbative EFS-CDW model can be successfully extended
to the low-energy range. In this work, we go a step further
and develop a full EFS-CDW model to calculate the arbitrary
excited-state Ps formation by positron impact on hydrogen
atom. By summing the Ps (nlm) formation cross sections with
quantum numbers l,m and then n, we have obtained the Ps (n)
and total Ps formation cross sections and compared them with
other theoretical calculations and experimental measurements.
Finally, we pay extreme attention to the maximum position and
the scaling law for Ps (n) formation cross sections. A general
trend for the scaling factor is given to ensure the validity of
the scaling law in the entire energy range investigated.
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II. THEORY

A. General EFS-CDW formalism

In the distorted-wave formalism, the prior form of the
exact transition matrix (T matrix) element is given by the
two-potential formula of Gell-Mann and Goldberger [33]:

Tf i = 〈�(−)
f |Wi |χ (+)

i 〉 + 〈�f |V †
f − Wi |χ (+)

i 〉. (1)

Here �
(−)
f is the exact scattering wave function developed

from the final asymptotic state satisfying exact ingoing-
wave (−) boundary conditions, χ

(+)
i is a distorted wave

developed from the initial asymptotic state satisfying exact
outgoing-wave (+) boundary conditions but is otherwise
arbitrary (Wi is the corresponding perturbation). �f is the
unperturbed final state and Vf is the final-state channel
interaction.

In the EFS-CDW model, the initial and final states are given
by

χ
(+)CDW
i = �B

i (RP ,rT )F (+)(aP , − μvi ,rP )

×F (+)(ai,vi ,R)μ−iaP , (2)

�
(−)EFS
f = �B

f (RT ,rP )E(−)(aT ,vf ,rT )E(−)(af ,vf ,R). (3)

The paris of Jacobi coordinates (rT ,RP ), (rP ,RT ), and (R,r) are
used to describe the three-particle system (see, for example,
Ref. [13]). vi,f are the incoming positron and outgoing Ps
velocities and �B

i,f are the asymptotic initial and final states.
F (+) and E(−) are the continuum distorted and eikonal phase
factors, which represent the distortion effects of the Coulomb
potentials in the entry and exit channels, respectively. aP,i

and aT,f are the corresponding Sommerfeld factors. Here we
should note that the factor μ−iaP (with μ = 1/2, the reduced
mass of positron to electron) is needed so that the initial-state
wave function asymptotically goes over to the unperturbed
initial state [34].

The perturbation Wi is the difference between the exact
initial-state interaction between all three particles and the
approximate scattering potential used to calculate χCDW

i :

Wiχ
CDW
i

=
(

1

MP

∇rP
· ∇R − 1

MT

∇rT
· ∇R − 1

m
∇rT

· ∇rP

)
χCDW

i ,

(4)

where MP , m, and MT are the positron, electron, and target
nucleus mass, respectively. The channel interaction for final
state �B

f is

Vf = 1/R − 1/rT . (5)

Following the computational method introduced by Macri
et al. [13], we use a Fourier transformation for the electron
to positron coordinate rP and then integrating the coordinates
rT and R separately. Finally, the six-dimensional numerical
quadrature can be reduced to three-dimensional ones. The final

form of the T matrix elements are written as follows:

T EFS−CDW
f i = T EFS−CDW

1 + T EFS−CDW
2 , (6)

T EFS−CDW
1 =

∫
dQ

(2π )3/2
{G̃(Q) · [ JT P (Q)IT (Q)

−JT (Q)IT P (Q)] − F̃ (Q)

MT

[JT P (Q) · JT (Q)]},
(7)

T EFS−CDW
2 =

∫
dQ

(2π )3/2
{F̃ (Q)[NT P (Q)MT (Q) − NT (Q)

×MT P (Q)]} − T EFS−CDW
1

∣∣∣∣
(aT =af =0)

, (8)

where the Fourier transformations are

G̃(Q) =
∫

drP

(2π )3/2
e(iQ·rP )φ∗

f (rP )∇rP
F (+)(aP , − μvi ,rP ),

(9)

F̃ (Q) =
∫

drP

(2π )3/2
e(iQ·rP )φ∗

f (rP )F (+)(aP , − μvi ,rP ), (10)

and the remaining vectorial and scalar integrals are

JT P (Q) =
∫

dRe[i(vi−vf +Q)·R−εR]E(−)∗(af ,vf ,R)

×∇RF (+)(ai,vi ,R), (11)

JT (Q) =
∫

drT e[−i(vf +Q)·rT ]E(−)∗(aT ,vf ,rT )∇rT
φi(rT ), (12)

IT P (Q)=
∫

dRe[i(vi−vf +Q)·R−εR]E(−)∗(af ,vf ,R)F (+)(ai,vi ,R),

(13)

IT (Q) =
∫

drT e[−i(vf +Q)·rT ]E(−)∗(aT ,vf ,rT )φi(rT ), (14)

NT P (Q) =
∫

dRe[i(vi−vf +Q)·R−εR] 1

R
F (+)(ai,vi ,R), (15)

NT (Q) =
∫

drT e[−i(vf +Q)·rT ] 1

rT

φi(rT ), (16)

MT P (Q) =
∫

dRe[i(vi−vf +Q)·R−εR]F (+)(ai,vi ,R), (17)

MT (Q) =
∫

drT e[−i(vf +Q)·rT ]φi(rT ). (18)

Here ε is a convergence factor and it takes the limit of 0+ in the
above integrations. Comparing with previous model of Macri
et al. [13], we take into account the full interactions in Eq. (7)
and the higher-order term of Eq. (8) in the present calculations.
The first term of Eq. (8) is just the B-CDW model introduced
by Chen et al. [11] and Bransden et al. [12], which can be
understood from Eq. (1).

B. Ps formation into arbitrary states

To obtain the arbitrary excited-state Ps formation cross
sections, one should calculate the Fourier transformations
Eqs. (9) and (10), which exactly include the final Ps wave
function. For calculating the T matrix elements of Eqs. (7)
and (8) easily, the Z axis is taken along the incident positron
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velocity vi and the outgoing Ps velocity vf is set in the XZ
plane without generalization (see Fig. 1). For Ps formation
in ground state, Eqs. (9) and (10) can be easily evaluated by
using the Nordsieck integrals [35]. However, for Ps (n � 2)
states, the angular part of the Ps wave function makes the
calculation rather complicated due to the quantization axis
of the final Ps state is along the vector vf and the direction
of the momentum Q introduced from the Fourier transfor-
mation is arbitrary. An alternative way to deal with this is
rotating the coordinate system so that, in the final coordinate
system, the quantization axis vf becomes the Z axis. Subse-
quently, the Fourier transformation can be easily calculated in
terms of the bound-free transition form factors.

First, by substituting the detailed continuum distorted wave
factor into Eq. (9) and applying the gradient transformation of
the confluent hypergeometric functions,

r∇r1F1(ia,1,ipr + ip · r) = p∇p1F1(ia,1,ipr + ip · r),

(19)

Eq. (9) takes the form

G̃(Q) = pNβ∇p

∫
drP

(2π )3/2
φ∗

nlm(rP )
e(iQ·rP )

rP

× 1F1(iβ,1,iprP + ip · rP ), (20)

where

Nβ = 	(1 − iβ)eπβ/2, p = μvi , β = −aP . (21)

Second, as shown in Fig. 1, we rotate the coordinate system
about Y axis so that vf becomes the new Z axis. To do this, the
vectors Q and p should be transformed as

QX
′ = F (QX,QZ,θ ), pX

′ = F (pX,pZ,θ ), (22)

QY
′ = QY , pY

′ = pY , (23)

QZ
′ = G (QX,QZ,θ ), pZ

′ = G (pX,pZ,θ ), (24)

where X,Y,Z is the old coordinate system, whereas X
′
,Y

′
,Z

′

refer to the new coordinate system. θ is the angle between
axes Z and Z

′
. In the new coordinate system, Eq. (20) can

FIG. 1. Transformation of the coordinate system about Y axis.
X,Y,Z: old frame; X

′
,Y

′
,Z

′
: new frame. vi and vf are the incom-

ing positron and outgoing Ps velocities, respectively. Details are
described in the text.

be readily calculated by employing the bound-free transition
form factors of Belkic [36]:

G̃′(Q
′
,p

′
) = (−1)mp

′

(2π )3/2
∇p′ A(vf )

αβ (0,0,Q
′ + p

′
; nl-m,p

′
), (25)

where the factor A(vf )
αβ is given by Eq. (21) in Ref. [36] with

α the usual exponential parameter associated with the orbital
〈r|nl-m〉. Zα = 1/2 is used to ensure the hydrogenic wave
functions for Ps atom.

At last, before substituting Eq. (25) into the T matrix
element Eq. (7), we should rotate the coordinate system back,
which can be achieved by making an inverse transformation
from G̃′(Q

′
,p

′
) to G̃(Q,p). The Fourier transformation F̃ (Q,p)

is analogous to G̃(Q,p) without the gradient operator.
The differential and integral Ps (nlm) formation cross

sections are given by

dσPs(nlm)

d

= 1

2π2

vf

μvi

|Tf i(nlm)|2, (26)

σPs(nlm) = 2π

∫ π

0

dσPs(nlm)

d

sin θdθ. (27)

The partial Ps (n) and total Ps formation cross sections are

σPs(n) =
n−1∑
l=0

l∑
m=−l

σP s(nlm), (28)

σPs =
∑

n

σPs(n). (29)

III. RESULTS AND DISCUSSION

A. Ps(1s) formation and the convergence of calculations

In the present calculations, the integrals of Eqs. (11)–
(18) are all calculated in the analytical form and the final
three-dimensional integration about Q in Eqs. (7) and (8) are
evaluated numerically by the globally adaptive algorithm of
Cuhre [37]. Cross check with several Monte-Carlo methods
[37] has also been done to make sure the integration is
accurate with error less than 1%. Another aspect that affects
the integration accuracy is the convergence factor ε. We have
calculated the Ps (1s) formation cross section at 14 eV impact
energy and 0◦ emission angle with various ε and the results are
shown in Fig. 2. Although the calculations are time-consuming
with very small ε, good convergence can be achieved if
more than 5 × 106 points are used in the three-dimensional
quadratures. As we can see from Fig. 2, the results linearly
approach to the limit where ε = 0+ and the convergence factor
ε should be at least less than 0.001 to make sure the calculation
uncertainty is less than 1%. In the following calculations,
ε = 0.0005 is used for all integrations.

In Fig. 3, we display the Ps (1s) formation cross sections
below 100 eV. The present results are in excellent agreement
with the CC (28,3) of Mitroy [16], CC (30,3) of Kernoghan
et al. [15], HSCC of Igarashi et al. [17](not shown here
for clarity), and CCO method of Cheng et al. [20]. The
CCC results of Kadyrov et al. [19] and CC (9,9) results
are slightly higher than present calculations. By omitting the
higher-order terms, reducing the interaction potential of Eq. (4)
and employing ε = 0.005, we reproduce previous EFS-CDW
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FIG. 2. Convergence of present calculations about the Ps (1s)
formation cross sections at 14 eV impact energy and 0 degree
emission angle. The open circle represents the presumable result
at the limit ε = 0+.

calculations of Macri et al. [13]. It can be seen that their
results are smaller than the present as well as these CC results,
especially at the maximum position. Several other perturbation
methods are also included in this figure. The DWA [7] model
overestimates the Ps formation significantly at low energies,
while the PODWA [9] underestimates it. The distorted-wave
calculations are expected to be more reliable at relatively high
energies. The peak position of the Ps (1s) formation cross
sections can be clearly seen from this figure. The present
EFS-CDW and the CC models all predict the maximum nearly
at 13.8 eV, which is almost twice the relevant threshold energy
of 6.8 eV.

B. Ps (n � 2) formations and the maximum positions

Due to degeneracy of the states of Ps atom with same
principal quantum number n, we pay particular attention to
the summed Ps (n) formation cross sections to investigate
the relationship between the maximum positions and relevant

FIG. 3. (Color online) Ps (1s) formation cross sections for
positron-hydrogen scattering.

FIG. 4. The same as described in the legend of Fig. 2 but for
Ps (n = 2) formation cross sections at 30 eV impact energy and 0◦

emission angle.

formation thresholds. The convergence of the present calcu-
lations about Ps (n = 2) formation cross sections has been
studied and the results are displayed in Fig. 4. The use of
ε = 0.0005 shows that the uncertainty of our calculations is
less than 0.5%. The present integrated cross sections for the
first excited Ps (n = 2) formation are shown in Fig. 5 along
with other theoretical results for comparison. The present
EFS-CDW model shows a distinct maximum at 23.2 eV, which
is in fairly good accordance with the CCC calculations of
Kadyrov et al. [19], although the present results are higher
than their results in the maximum region. The CC (30,3)
and CC (9,9) models of Kernoghan et al. [15] show a better
agreement with present calculations in magnitude. However,
their calculations have some oscillations at the peak position
and the exact maxima are hard to estimate. It is also very

FIG. 5. (Color online) Ps (n = 2) formation cross sections for
positron-hydrogen scattering. The CC (9,9), CC (30,3), CCC, and
PODWA results are obtained by summing the corresponding Ps(2s)
and Ps(2p) formation cross sections. The DWA results are only
available for Ps (2s) formation. The HSCC results are drawn from
Fig. 7 in Ref. [17].

052711-4



POSITRONIUM FORMATION FOR POSITRON SCATTERING . . . PHYSICAL REVIEW A 84, 052711 (2011)

FIG. 6. (Color online) Ps (n = 1 − 5) formation cross sections
for positron-hydrogen scattering.

interesting to compare these results among CC models. The
CC (30,3) results are slightly larger than the predictions of
CC (9,9) and CCC models due to the exclusion of higher Ps
formation channels that are open in this energy region. The CC
(9,9) model has a significant drop at the maximum, probably
because such coupling scheme is not yet convergent. The two-
center convergent close-coupling approach to the Ps formation
process is carried out by expanding the total scattering wave
function with sufficient number of states centered separately
on the hydrogen atom and Ps [19]. Their results give the most
convergent and stable cross sections compared with other CC
models and achieve the maximum around 24 eV, which is in
reasonably good agreement with present calculations. It is not
surprising that the present calculations give larger results than
the CCC and CC (9,9) models in the proximity of maximum
due to the uncoupling character of the EFS-CDW model. The
agreement of present results with the CCO [20] model is also
very good except that they predict the maximum at relatively
lower energy. The HSCC [17] results for Ps (n = 2) formation
are only available at relatively low energies. As seen from the
figure, the present results accord with their calculations very
well at energies below 23 eV. The results of PODWA [10] and
DWA [7] (only 2s) models are also shown in this figure. As in
the process of Ps(1s) formation, the DWA model overestimates
the cross sections at low-energy range. The PODWA results
increase significantly as the energy decreases and achieve the
maximum close to the Ps (n = 2) formation threshold.

In Fig. 6, we show the cross sections for the lowest
five excited Ps (n) formations. For such highly excited
Ps formations, the states with lower angular and magnetic
quantum numbers, l and m, dominate the cross sections. Thus
we only include the states with l � 2 and |m| � 1 in Eq. (28).
The peak positions of the cross sections for Ps (n = 3 − 5)
formations calculated in the present EFS-CDW model are
24.8, 25.4, and 25.8 eV with the corresponding thresholds at
12.84, 13.17, and 13.33 eV, respectively. It has recently been
clarified by Charlton [27] that the charge exchange reaction
of Ps formation is most likely when the wave vectors of
the incoming positron and the outgoing Ps are matched; i.e.,
the positron and Ps de Broglie wavelengths are equal. This

FIG. 7. (Color online) Total Ps formation cross sections for
positron-hydrogen scattering.

wave vector matching model implies that the Ps formation
cross sections are largest when the projectile energy is in the
vicinity of twice the relevant threshold energy. As displayed
in the embedded figure in Fig. 6, the linearly fitting line
to the peak positions versus the formation thresholds has a
gradient of 1.83, which accords with the wave vector matching
prediction of 2 reasonably well. We predict theoretically that
such criterion is still valid for highly excited Ps formations.

C. Total Ps formation and the scaling law

By summing the Ps (n) formation cross sections with
n � 5, we can approximately obtain the total Ps formation
cross sections. Comparisons with other theoretical calculations
and experimental date are shown in Fig. 7. As seen from the
figure, the EFS-CDW results agree with the experiment very
well. So do the CC, CCC, and CCO calculations. For other
distorted wave methods, the DWA [7] and SBA [6] models
overestimate the experiment significantly at low energies while

FIG. 8. (Color online) Ps (n) formation cross sections ver-
sus principal quantum number n for positron-hydrogen scattering
at 14 eV.
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FIG. 9. (Color online) Scaling factors of the scaling law: σPs(n) ∝
n−s at different impact energies. The solid line is used to guide the
eye.

the most recent SDWA [8] model corresponds to the lower
limit of experiment. The PODWA [10] model underestimates
the experiment at whole energies.

It is generally considered that the n−3 scaling law [38] for Ps
(n) formations is applicable only for highly exited states such
as Rydberg states [18]. However, the most recent calculations
of the classical trajectory Monte-Carlo (CTMC) [39] method
has predicted that at about 100 eV the scaling law is valid for all
principal quantum number n. In the following discussion, we
pay special attention to the scaling law for Ps (n) formations.
As we can see from Fig. 7, the use of the n−3 scaling law for
n � 2 states, i.e.,

σPs = σPs(1s) + σPs(1s)
∞∑

n=2

1

n3
= σPs(1s)1.202, (30)

indicates that such scaling law is not valid at low energies. It
overestimates the total Ps formation especially at the maximum
position. Assuming the n−3 scaling law is valid for n � 3
states, the CC methods use

σPs = σPs(1s) + σPs(n = 2) + σPs(n = 2)8
∞∑

n=3

1

n3
(31)

to estimate the total Ps formation (CCC [19] does not
need). Although these models have good agreement with the

experimental results, it is hard to estimate the validity of the
scaling law due to the relatively small contribution of the
excited Ps states to the total Ps formation process.

In Fig. 8, the lowest six Ps (n) formation results calculated
by the present EFS-CDW model at 14 eV are displayed against
the principal quantum number n. It is surprisingly noted that
these results are good in accordance with the scaling law,

σPs(n) ∝ n−s , (32)

with scaling factor s = 6.1. In Fig. 9 we have shown the
scaling factors corresponding to the impact energies from the
ionization threshold 13.6 eV, where all Ps formation channels
are open, to 30 eV. As one can see, the factors start from
an extrapolative value of infinity at the ionization threshold,
decrease monotonously as the energy increases, and approach
to a limit 3 at nearly 30 eV. Above 30 eV, the n−3 scaling
law is well kept for all Ps (n) formation cross sections as it is
predicted by the CTMC [39] calculations.

IV. CONCLUSION

In conclusion, we have successfully extended the EFS-
CDW model to the Ps formation into arbitrary excited
states. The Ps (n) with n � 5 and total Ps formation cross
sections are calculated and compared with available theoretical
calculations and experimental results. In comparison with
other perturbation-based methods, it appears that the present
EFS-CDW model is more accurate at relatively low energies.
The maximum positions for Ps (n) formations are generally in
accord with the wave vector matching model of Charlton [27].
In the present calculation, it has also been shown that a n−s

scaling law is kept for all n in the entire energy range only
by adjusting the scaling factor s with the impact energy.
At high energies the scaling factor expectedly approaches
to the limit 3. Calculations for other targets appear as
necessary to validate the scaling law. With the development of
advanced experimental technologies, the direct measurement
of excited Ps formation cross sections is now available for
noble gas atoms [40]. We greatly expect such measurement can
presumably be performed on the positron-hydrogen system in
the future.
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