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Rydberg-atom formation in strongly correlated ultracold plasmas
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In plasmas at very low temperatures, the formation of neutral atoms is dominated by collisional three-body
recombination, owing to the strong ∼T −9/2 scaling of the corresponding recombination rate with the electron
temperature T . While this law is well established at high temperatures, the unphysical divergence as T → 0
clearly suggests a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics
Monte Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results
reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations
with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence problem as
the plasma enters the ultracold, strongly coupled domain.
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I. INTRODUCTION

Since the first creation of ultracold plasmas (UCPs) via
photoionization of laser-cooled atoms [1] or cold molecules
[2], these systems have proved to provide a well-suited
platform for studying a range of plasma physics phenomena,
such as collective waves [3–9], plasma expansion into vacuum
[10–17], plasma instabilities [18,19] and recombination of
neutral atoms [20–24]. Besides opening up a new parameter
regime [25–27] as well as promising applications for nan-
otechnology [28–31], UCPs offer a rare opportunity to study
strongly correlated plasmas [32–35] in the laboratory.

The degree of correlations is characterized by the Coulomb
coupling parameter � = e2

a kBT
, where e is the electron charge,

kB is the Boltzmann constant, and a = ( 4
3πρ)−

1
3 is the

Wigner-Seitz radius for a plasma of density ρ. When the
average potential energy ∼e2/a of the charges exceeds their
thermal energy ∼kBT , i.e., when � > 1, the plasma is termed
strongly coupled. Strong coupling phenomena studied in
UCPs include disorder-induced heating [36–41] accompanied
by kinetic energy oscillations [42–44] as well as liquidlike
[45] and crystalline [46–48] behavior of the ionic plasma
component. In experiments [25–27] UCPs typically are created
at densities of ρ ≈ 108–1010 cm−3, and with initial kinetic
energies corresponding to ion temperatures of Ti ≈ 1–103 μK
and electron temperatures of T ≈ 1–1000 K. The role of
quantum effects in a plasma can be characterized by the
Brueckner parameter rs = ( 4

3πρ)−1/3 e2m

h̄2 (m is the particle
mass) [32], which becomes important as rs � 1. Despite
their ultralow temperatures, the very small density implies
that rs > 5 × 104, such that currently realized UCPs behave
entirely classically.

However, in contrast to dense strongly coupled plasmas,
UCPs have a rather short life time on the order of several
102 μs. The dominant decay mechanism is collisional recom-
bination leading to the formation of highly excited neutral
Rydberg atoms. The corresponding rate constant ν ∼ T −9/2

[49] has a strong dependence on the electron temperature T

and can, hence, assume large values in UCPs. In the underlying
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three-body recombination (TBR) process two electrons collide
in the vicinity of an ion to form a weakly bound Rydberg atom,
where the remaining electron carries away the corresponding
excess energy. Subsequent collisions of the formed Rydberg
atom with free electrons can further deexcite the atom, and
the released binding energy leads to an increase of the free-
electron temperature T in the course of the plasma evolution
[11,12,14,21,50].

The strong temperature dependence of the recombination
rate can be readily established from simple scaling arguments.
The collision frequency of an electron with average velocity
v̄ ∼ √

T is given by νc = v̄b2ρe, where ρe is the electron
density and b ∼ T −1 is the characteristic distance of closest
approach. Since the probability of finding another electron
within a distance b of the colliding pair is b3ρe, one obtains
a TBR rate of ν ∼ νc b3ρe ∼ ρ2

e T
− 9

2 . In their seminal paper
[49] Mansbach and Keck presented a detailed study of
TBR in ideal plasmas. Performing classical trajectory Monte
Carlo (CTMC) simulations of isolated three-body collisions
and using rate equations, they confirmed the T − 9

2 scaling
of the recombination rate and calculated the corresponding
proportionality constant. Subsequent studies based on CTMC
calculations or rate equations [23,51–53] have since confirmed
the strong temperature dependence, which was found to be
in good agreement with experiments in hot and cold (T >

10 000 K) plasmas [51,52,54] as well as with measurements
on UCPs with moderate coupling strength (� � 0.2) [22,23].

On the other hand, the strong temperature dependence of the
TBR rate ultimately suggests unphysically fast recombination
in the ultracold regime. It was one of the major motivations of
early UCP experiments [1,20] to shed light on this apparent
divergence problem of the recombination rate. The conflicting
time scales and the role of particle correlations become
particularly evident by transforming to dimensionless units,
employing the electronic plasma frequency ωp =

√
4πe2ρe/m

such that

ν ∼ ρ2
e T −9/2 ∼ ωp �9/2. (1)

Consequently, for � � 1 the recombination rate ν would
become comparable to or larger than the plasma frequency ωp,
whose inverse determines the typical time scale of electronic
motion in the plasma. The unphysical crossover of time
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scales at � � 1 indicates a breakdown of the conventional
recombination theory in terms of three-body collisions and
suggests a modification of the recombination rate in the
strongly coupled regime.

This fundamental problem has been addressed theoretically
in a number of previous articles [53,55–63]. In [55–59] strong
coupling in a dense plasma, where quantum effects become
important, was considered and an enhancement of the recom-
bination rate coefficient (and ionization rate coefficient) due
to correlation-induced continuum lowering was found. On the
other hand, studies of recombination in classical plasmas based
on analytical estimates or numerical calculations [60,61,63,64]
found a suppression of recombination in the moderately
to strongly coupled regime, but the proposed modifications
of the recombination rate yield different and contradictory
results for the temperature scaling, such that the question of
Rydberg-atom formation in correlated plasmas still remains
an unsettled issue.

In this article, we investigate the classical recombination
of a single ion immersed in a strongly coupled electron
plasma without employing any additional approximation. Our
calculations are based on Monte Carlo (MC) sampling of
classical molecular dynamics (MD) simulations that provide a
natural extension of previous three-body CTMC calculations
[23,49] to account for strong electron-electron correlations and
many-body interactions. Our results quantitatively reproduce
the known behavior of the recombination rate [23] for
� � 1 and are consistent with the results of Kuzmin and
O’Neil [65] for the particular value of � = 0.6 studied in
that work. We further discuss simulations of two-component
plasmas for various initial configurations and temperatures,
which demonstrate strong disorder-induced electron heating
to � ∼ 0.5. This conclusively excludes the possibility of a
metastable plasma state with orders-of-magnitude suppression
of recombination as suggested in [63,64]. Nevertheless, strong
coupling effects on the recombination rate are found to have
observable consequences during the short-time evolution of
UCPs.

The article is organized as follows. Details of the plasma
model as well as the numerical approach are given in Sec. II,
where we also review the rate equation description of TBR
based on CTMC collision rates. In Sec. III we discuss the
obtained behavior of the bottleneck binding energy as a
function of �, allowing us to calculate the recombination
rate, presented in Sec. IV. Finally, Sec. V provides simulation
results for two-component neutral plasmas and a discussion
of competing heating effects and their consequences for the
recombination dynamics.

II. NUMERICAL APPROACHES

To study Rydberg-atom formation at a constant temperature
and to isolate the recombination from other collision processes
(see Sec. V) we first consider the recombination dynamics
of a single ion placed inside an electronic one-component
plasma (OCP), consisting of N electrons and a homogeneous
neutralizing positively charged background. While this model
can only provide a simplified description of a neutral two-
component system (see Sec. V) it resembles the situation of
antihydrogen production experiments carried out at CERN

[66–68]. Here highly excited antihydrogen Rydberg atoms
are formed via successive transits of antiprotons through an
ultracold positron plasma. In these experiments atoms are
formed predominantly via collisional recombination, which
is, however, considerably modified by the presence of applied
strong magnetic fields, as has been extensively studied via
CTMC calculations [69–74].

Our simulations proceed in three steps. First, we equilibrate
the electron OCP to a predefined temperature �−1. Subse-
quently, we place a neutral atom at the center of the cubic
simulation box, consisting of an ion and an electron at the
origin with the electron having an excess kinetic energy of

3
2�

e2

a
. This procedure ensures that the total potential energy is

not affected by the introduction of the additional ion and at the
same time gives a good description of atomic single-photon
ionization used to produce UCPs [1]. Following the escape
of the “photo-electron” we monitor the evolution of the
surrounding plasma electrons.

A. Molecular dynamics simulation

The computationally most demanding part of the simulation
is the evaluation of the mutual interactions between the N

plasma electrons. Due to the O(N2) of the corresponding
numerical effort and the necessity to implement periodic
boundary conditions (PBC), a straightforward force calcula-
tion would be prohibitively demanding in view of the accuracy
and ensemble size required for the present study.

Both of these problems can be efficiently resolved by
the fast multipole method (FMM) [75] which permits force
calculations for large particle numbers with a complexity of
O(N ). The FMM algorithm divides the simulation volume into
a hierarchy of cubic subcells, and determines multipole expan-
sions for the charge distribution in each cell. The interaction
of a certain particle with the particles in a distant cell can then
be calculated much more efficiently and with a controllable
error. Moreover, the FMM provides a natural implementation
of PBC, as the periodic images of the simulation box can
be treated as an upper extension of the hierarchy of cubic
subcells [76]. The particular implementation of the FMM used
in this work is described in [77,78]. As discussed below, our
algorithm also requires us to calculate interactions among a
small subgroup of particles. In this case, we perform a direct
force summation and implement PBC via the standard Ewald
summation [79,80].

To initiate the photo-electron at the central ion position we
remove the singularity of the attractive electron-ion potential
according to

Vion(r) =
⎧⎨
⎩

− e2

r
r > rc,

− 3 e2

2 rc

(
1 − r2

3r2
c

)
r � rc.

(2)

where the soft-core radius rc = 10−2a was chosen sufficiently
small as to have no influence on the simulation results, as has
been checked by varying the value of rc.

Consequently, the magnitude of the electron-ion force
is limited by F ei

max = e2/r2
c . Typically, F ei

max will be much
larger than the characteristic force between the electrons
F ee ∼ �−2, which induces two vastly disparate time scales
of the electron motion: Far from the central ion, electrons
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FIG. 1. (Color online) Two-dimensional projection of the center
of the simulation cell with central ion (black dot) and the regions
of different time steps. All electrons within the sphere r < R0 (red
dots) are propagated with the same reduced time step �tn which is
determined by the smallest electron-ion separation rmin, according to
Rn < rmin < Rn−1 (this example: �tn = �t5). Electrons with r > R0

(blue dots) are propagated with the global time step �t0.

move comparatively slowly on a time scale ∼ω−1
p , while close

to the ion, scattered and bound electrons undergo much faster
dynamics. An efficient symplectic propagation of the electrons
that exploits different system time scales can be realized by
the so-called reversible reference system propagator algorithm
(r-RESPA) [81,82]. In the present case, the principal idea is
to evaluate the dynamics of distant electrons (blue dots in
Fig. 1) with a fixed, coarse-grained time step, while the electron
motion in the immediate ion vicinity is resolved with a smaller,
dynamically adapted time step. This guarantees an accurate
description of the recombination process while maintaining
computational costs at a minimum.

Usually the r-RESPA split is based either on forces or on
particles [82]. The two time scales discussed above call for
a force-based r-RESPA split by separating terms involving
electron-ion interactions from terms which involve electron-
electron interactions. However, as the condition F ei

max � F ee

holds only for those few electrons which are close to the
ion, it is more efficient to additionally split the Hamiltonian
based on particles, by separating terms involving electrons
with positions ri < R0 = a from terms involving more distant
electrons with ri > R0, i = 1, . . . ,N . The total Hamiltonian
H, describing the dynamics of the N electrons with position
ri and momentum pi is thus split according to

H = Kf + Ks + V f + V s + EBG , (3)

where

Kf =
N∑
i=0

ri<R0

p2
i

2 m
, V f =

N∑
j>i

ri ,rj <R0

e2

|ri − rj | +
N∑
i=0

ri<R0

Vion(ri)

denote the kinetic energy and interactions of particles in the
region of fast dynamics (r < R0). Likewise, the remaining
energies in the region of slow dynamics (r > R0) are given by

Ks =
N∑
i=0

ri>R0

p2
i

2 m
,

V s =
N∑

j>i

e2

|ri − rj | +
∑
L �=0

N∑
i,j

e2

|ri − rj + L|

+
∑

L

N∑
i=0

Vion(|ri + L|) − V f , (4)

and EBG is the particle-background interaction energy. The
sum

∑
L runs over all possible lattice vectors in the periodic

lattice of image simulation boxes. Because of TBR collisions,
which will take place in the region of fast dynamics, the
electron-electron interaction among electrons in this region
can become comparable to the ion-electron interaction and
has thus been included in V f .

The majority of electrons participate in the slow dynamics
and are propagated with a fixed global time step �t0.
The corresponding electron-electron forces including image
charges are calculated within the FMM, while the electron-ion
interaction is obtained by direct force summation combined
with the Ewald summation to implement the PBC. Note that
the forces arising from the image charges change only slowly
and, hence, can be entirely accounted for in the slow dynamics
[cf. Eq. (4)].

Each electron within the critical distance R0 = a partici-
pates in the fast dynamics. For appropriate time-step adaption
we divide this spherical region into concentric shells of radii
Rn = 2−n/2R0, n = 1,2, . . . (see Fig. 1). Once the smallest
electron-ion distance falls below Rn the time step for all
electrons within R0 is decreased to �tn+1 = 2−(n+1)�t0 (see
Fig. 1). For the electron propagation in the region of fast
dynamics with the small time step �tn the interaction V f is
calculated via direct force summation and the Ewald potential
[79,80,83–85]. To avoid periodic changes of the time step �tn,
the time step is only decreased as long as there are electrons
in the region r < R0. Only when an electron leaves the region
of fast dynamics is its propagation switched back to the global
time step �t0 (see Fig. 2). We set �t0 = 10−3 ω−1

p , ensuring
accurate propagation for both free and bound electrons. In fact,
we achieve a very small maximum relative energy error in all
simulations below 0.01%. We find that such a high accuracy
is needed in order to obtain reliable converged results for the
recombination rate.

Formally, our propagator for the fast electrons can be
written as

Sf (�tn) = UV f

(
�tn

2

)
UKf (�tn)UV f

(
�tn

2

)
, (5)

where we have used the notation employing prop-
agators UA(t) = et DA of differential operators DA =
{q,A}. Here, {. . .} denotes the Poisson bracket, q =
(r1,r2, . . . ,rN; p1,p2, . . . ,pN), and A stands for any of the
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FIG. 2. (Color online) Schematics of the time step adaption as
described in the text.

energy terms of the system Hamiltonian (3). The total system
propagator is then given by

S(�t0) = UV s

(
�t0

2

)
UKs (�t0) [Sf (�tn)]2n

UV s

(
�t0

2

)
.

(6)

Besides the numerical challenges, a proper analysis of the
MD data and in particular the identification and character-
ization of the formed classical bound states poses additional
difficulties. The most straightforward way would be to monitor
the electrons total energy Ei , i.e., the sum of the ith electron’s
kinetic energy and potential energy due to the ion, the
remaining N − 1 electrons, their periodic images and the
positive homogeneous background, and declare an electron
bound when Ei < 0. While this criterion makes sense for
isolated atoms, in the present case many-body interactions
and possibly strong electron-electron correlations lead to a
lowered and fluctuating ionization threshold [86]. In fact,
already for moderate coupling strength one finds that Ei < 0
for several electrons. Those electrons can be considered as
weakly localized in slowly fluctuating potential wells formed
by the correlated charges [87], but they are not bound by the
ionic potential. Hence, once an electron becomes bound to the
ion, its energy should drop significantly below the energies of
free electrons. Therefore, we use the lowest electron energy
Emin(t) = min

i∈N
[Ei(t)] as an initial criterion to select a possibly

bound electron, whose index is denoted by jmin(t).
A typical example of such an minimal energy trajectory

Emin(t) is shown in Fig. 3(a). As can be seen, Emin stays
negative most of the time, and therefore provides only a nec-
essary but not sufficient criterion for bound state assignment.
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FIG. 3. (Color online) (a) Typical time evolution of the minimum
electron energy Emin. Black parts correspond to unbound electrons,
red (light grey) parts to bound electrons that are subsequently ionized,
blue (dark grey) parts to bound electrons that reach Esink without
ionization for φc = 4π . (b) Corresponding energy densities ρion

(solid) and ρrec (dashed) of the example trajectory (lines) and as
obtained from the ensemble average (shaded).

To detect stable electron-ion orbits we adopt the procedure
proposed in [88] and integrate the rotation angle φ of the
jmin-th electron around the ion. If jmin changes its value,
e.g., due to an exchange collision, integration starts again at
zero. If the maximum rotation angle φmax(jmin) of the jmin-th
electron exceeds a critical angle φc the electron is considered
to be bound. The binding energy Eb(t) of a Rydberg atom
corresponds to the parts in Emin(t) where jmin(t) fulfills this
angular criterion:

Eb(t) =
{

0 φmax(jmin(t)) < φc,

Emin(t) φmax(jmin(t)) � φc,
(7)

i.e., Eb(t) = 0 in the absence of a bound state, as marked by
the black segments in Fig. 3(a). The influence of the precise
value of φc on the extracted recombination dynamics will be
discussed below.

Following the initial capture, subsequent electron-atom
collisions slightly (de)excite the formed atom, lead to reion-
ization or occasionally drive the atom to significantly deeper
binding energies. Such close collisions typically cause electron
exchange [69] and are marked by sharp peaks in Eb(t) [see
Fig. 3(a)].

The simulation is stopped as soon as Eb(t) reaches a certain
energy sink Esink. The energy sink was set to Esink/(e2/a) =
−20 for � � 1 and to Esink/(e2/a) = −50 for � < 1 to ensure
that the probability for a reionization vanishes well before the
energy sink is reached (see Fig. 4) and therefore does not affect
the final results for the determined recombination dynamics.

Physical quantities are extracted from averages over an
ensemble of ∼103 simulation runs per parameter set, produced
in a Monte Carlo sampling over the initial positions and
velocities of the electrons.

B. Rate equations

To make direct comparison to previous CTMC calculations,
we also solved the corresponding rate equations for the recom-
bination scenario discussed above. Here one calculates the
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FIG. 4. (Color online) Ionization probability Pion(Eb) for differ-
ent �. Symbols correspond to MD data with φc = 4 π . The lines
show the ideal plasma prediction obtained by Eq. (16). The crossing
with Pion = 1

2 (dashed line) determines the location of the kinetic
bottleneck Ebn.

evolution of level population densities ρn of the recombining
atom [51,62,89,90] according to

dρn

dt
= ρe(t)

∑
n′ �=n

[ρn′(t) R(n′,n) − ρn(t)R(n,n′)]

+ ρe(t)3Rrec(n) − ρe(t) ρn(t)Rion(n), (8a)
dρe

dt
= ρe(t)

∑
n′

[ρn′(t)Rion(n′) − ρe(t)2Rrec(n′)]. (8b)

We use the transition rates recently determined in [23] by
CTMC calculations. The rate for excitation from the atomic
level n to level n′ > n is given by

R(n,n′) = k0 ε
3/2
n′ eεn′ −εn

[
22

(εn + 0.9)7/3
+ 9/2

ε
5/2
n �ε4/3

]
, (9)

the rate for deexcitation from n to n′ < n is given by

R(n,n′) = k0
ε

5/2
n

εn′

[
22

(εn′ + 0.9)7/3
+ 9/2

ε
5/2
n′ �ε4/3

]
, (10)

the rate for recombination into an atomic level n is given by

Rrec(n) = 11
√
R/kBT k0 n2 
3

ε
7/3
n + 4.38 ε1.72

n + 1.32εn

, (11)

and the rate for ionization of atoms in level n is

Rion(n) = 11
√
R/kBT k0 e−εn

ε
7/3
n + 4.38 ε1.72

n + 1.32εn

, (12)

where k0 = e4/(kBT
√

mR), εn = R/(n2 kBT ), �ε = |εn −
εn′ |, 
 =

√
h2/(2π m kBT ) is the thermal de Broglie wave-

length, R is the Rydberg constant, and h is Planck’s constant.

III. KINETIC BOTTLENECK

Generally, the recombination rate ν is defined as the rate
at which ground-state atoms are populated in the plasma
[51,53,62,89]. While such deeply bound states defy a classical
description, it was shown in [49] that this rate can also be
determined from the downward energy flux through a kinetic

bottleneck energy that divides weakly bound from stable
atomic states. As the bottleneck typically lies in the classical
region of binding energies this process can be described
classically.

The concept of the kinetic bottleneck is readily understood
from the following simple arguments. Depending on its
binding energy Eb, a bound electron has a certain probability
Pion(Eb) for collisional reionization and a probability to
be successively driven to deeper binding energies until it
eventually reaches the ground state without being reionized
on its way. In our simulations the latter equals the probability
Psink(Eb) = 1 − Pion(Eb) for reaching the energy sink at Esink,
since Pion(Esink) ≈ 0. The reionization probability decreases
with deeper binding and ultimately falls below the recombina-
tion probability, such that the atomic states become more and
more stable against ionizing electron-atom collisions. Hence,
the kinetic bottleneck is defined as the energy Ebn at which
recombination starts to dominate, i.e., the energy at which

Pion(Eb = Ebn) = Psink(Eb = Ebn) = 1
2 . (13)

Three-body CTMC calculations predict a simple linear scaling
of the bottleneck [49]

Ebn ≈ −3.83 �−1 e2

a
. (14)

As the bottleneck energy is crucial for determining the
recombination rate, we first need to check the validity of
this simple law in the strong coupling regime. In the MD
simulations, Ebn can also be determined from Eq. (13), where
Pion(Eb) is calculated from the corresponding bound-state
energy densities obtained from the above-described energy
trajectories (see Fig. 3) according to

�tot(ε) =
〈 ∫ τ

0
δ(Eb(t) − ε) dt

〉
, (15)

where τ is the simulation time of a single simulation run and
〈. . .〉 denotes the average over the statistical ensemble. This
total energy density can be split into two parts, �tot(Eb) =
�ion(Eb) + �rec(Eb). �ion(Eb) contains only bound states that
are subsequently ionized, while �rec(Eb) counts only energies
of bound states that reach the energy sink without intermediate
reionization [red and blue, respectively, in Fig. 3(b)]. The
ionization probability Pion(Eb) is then obtained from the ratio
Pion(Eb) = �ion(Eb)

�tot(Eb) , and shown in Fig. 4 for several values of
the Coulomb coupling parameter �.

For ideal plasmas (� → 0) and within the adiabatic treat-
ment of Bates, Kingston, and McWhirter [89], the ionization
probability Pion(Eb = −R/n2) can be directly obtained from
the collision rate equations (9)–(12) [53,90]

Pion(Eb) = Rion(n)

A(n)
+

∑
n′ �=1,n

R(n,n′) Rion(n′)
A(n) A(n′)

+ · · · , (16)

by summing over the probabilities of all possible pathways
in energy space that connect an atomic level of bind-
ing energy Eb = −R/n2 to the continuum, where A(n) =∑

n′ �=n R(n,n′) + Rion(n) is the total rate for leaving level n.
The first term in Eq. (16) represents the probability that the
bound electron will be ionized directly from level n. The
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FIG. 5. (Color online) (a) Fraction f <
e of free electrons with

energy E < −4 �−1 e2

a
. (b) Bottleneck energy Ebn as a function

of � for two different critical angles φc compared to the standard
−3.85 �−1 e2

a
scaling (black line).

second term accounts for an intermediate step via a level n′
from which subsequent ionization occurs, and so on.

The good agreement between our MD results and Eq. (16)
in the regime of small to moderate �, shown in Fig. 4,
attests to the accuracy of both approaches. In this regime
the bottleneck energy can be straightforwardly determined
according to Eq. (13) and corresponds to the intersections
of Pion and the horizontal dashed line at 0.5 in Fig. 4. At larger
� values, however, the ionization probability is suppressed to
Pion(Eb) < 0.5 over the entire range of binding energies, such
that the bottleneck energy vanishes.

The resulting temperature dependence of the bottleneck
energy is shown in Fig. 5(b). For small coupling parameters the
MD simulations predict a linear scaling, Ebn = −3.85 �−1 e2

a
,

in quantitative agreement with the three-body CTMC result,
Eq. (14). However, for � � 2, the bottleneck drops to zero. In
contrast to the ideal plasma case, where electrons still have to
overcome the kinetic bottleneck barrier before recombination,
stable atoms are formed directly in the strongly coupled
regime. The disappearance of the kinetic bottleneck can be
traced back to correlation-induced continuum lowering, which
around � ≈ 2 leads to a merging of the ionization threshold
and the bottleneck energy. To demonstrate this point, Fig. 5(a)
shows the fraction f <

e of free plasma electrons with a total
energy of Ei < −4 �−1 e2

a
. The simulation results yield a steep

increase of f <
e around � ≈ 2, at which the bottleneck, thus,

has to disappear, in agreement with Fig. 5(b). Consequently,
the critical angle φc has almost no effect on the critical � at
which the bottleneck energy drops to zero and can only slightly
affect the value of Ebn for smaller � [see Fig. 5(b)].

IV. RECOMBINATION RATE

Having determined the location of the bottleneck we can
now proceed to extract the recombination rate ν from our
MD simulations. This is done in a straightforward manner
by calculating the time-dependent recombination probability
Prec(t), defined as the probability to observe a bound electron
with binding energy Eb(t) < Ebn at a time t . Figure 6
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FIG. 6. (Color online) Recombination probability Prec(t) as a
function of time for different coupling strengths � and φc = 4π .
The lines represent fits of Eq. (17) to the MD simulation result.

shows examples of the obtained Prec(t) for different coupling
strengths and a critical angle φc = 4π . The numerical data are
well fitted by an exponential bound-state relaxation law of the
form

Prec(t) = 1 − e−νt , (17)

which permits us to extract the recombination rate ν.
Figure 7(b) shows the rate ν as a function of the inverse

critical angle φc. One finds a linear dependence on 1/φc, whose
slope tends to increase with increasing coupling strength. The
fact that in the considered range of φc all simulation results
perfectly lie on a line allows us to extrapolate to 1/φc → 0,
corresponding to stable atomic states.

For comparison with the weak coupling CTMC results, we
also calculate the recombination rate [53]

ν =
∑

n

[1 − Pion(−R/n2)] Rrec(n) , (18)

as obtained from Eqs. (11) and (16). Figure 7(a) shows the
extrapolated many-body MD (circles) and three-body CMTC
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FIG. 7. (Color online) (a) Recombination rate ν as a function
of inverse coupling strength �−1 calculated with MD simulations
(circles) compared to the �9/2 scaling obtained by Eq. (18) (squares).
The dashed red line corresponds to Eq. (19), the solid blue line serves
as guide to the eye. (b) Dependence of ν on inverse critical angle 1/φc

with fitted extrapolation (lines).
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(squares) results for the recombination rate as a function of
�−1. In the weak coupling regime we find good quantitative
agreement with the T −9/2 scaling [23]

ν ≈ 0.019 ωp �9/2 . (19)

Notably, the MD results demonstrate the high accuracy
of the rate equation description even for moderate coupling
strength � � 0.3, corresponding to typical parameters in
the long-time evolution of UCPs [11,50]. In the regime of
strong Coulomb coupling, however, one finds a significant
suppression of the recombination rate. Our result approaches
a constant value of ν ≈ 0.03 ωp with increasing �, thereby
resolving the apparent time-scale paradox described in Sec.
I. At intermediate � values, our results are consistent with
previous MD simulations of two-component plasmas [65].
These two-component simulations also predict a suppression
by a factor of ∼2 for the particular value of � = 0.6 studied
in [65], suggesting that the present OCP model should provide
a good description of recombination in neutral plasmas. In this
case, however, additional disorder-induced electron heating
[37,38] limits the range of realizable Coulomb coupling
parameters, as will be briefly discussed below.

V. TWO-COMPONENT PLASMA SIMULATIONS

The OCP calculations discussed above made it possible to
initialize equilibrium plasmas with arbitrarily large values of
�. Such calculations, however, do not account for electron
heating due to the electron-ion interaction, which generally
limits the electron coupling strength in UCP experiments. To
study this effect as well as additional continuum lowering
due to direct ion-ion interactions we also performed MD
simulations of a two-component plasma (TCP) with N ions
and N electrons in a cubic simulation cell with PBC. For
these simulations, all interactions and the corresponding PBC
are calculated within the FMM. We use a very small global
time step �t = 10−5 ω−1

p , ensuring an accurate treatment of
even the lowest bound states observed in the simulations. In
analogy to the previously described simulation scheme, the full
plasma simulations start with N randomly distributed atoms
which are photoionized at t = 0 as detailed in Sec. II A. The
initial kinetic excess energy E = 3

2�0

e2

a
determines the initial

effective coupling strength �0, i.e., the scaled kinetic energy
�−1

0 .
However, since this procedure creates a highly nonequilib-

rium plasma, it takes a finite time to establish a well-defined
electron temperature. To characterize the corresponding initial
relaxation we monitor the evolution of two different coupling
parameters, defined through ith order momenta 〈vi〉 of the
free-electron velocity distribution

�1 = 3/〈v2〉, (20a)

�2 =
√

6/(〈v4〉 − 〈v2〉2). (20b)

In local equilibrium, i.e., once the electrons have established
a Maxwellian velocity distribution, �1 = �2. Indeed the
simulation results in Figs. 8 and 9 show that both definitions
of � approach each other on a timescale ω−1

p , such that one
can speak of an electron temperature for t > ω−1

p .
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FIG. 8. (Color online) Evolution of the normalized free electron
density fe (a) and electronic coupling parameter � (b,c) calculated
with MD simulations for φc = 4 π and rate equation (RE) for an initial
excess energy corresponding to the coupling strength of �0 = 50.

On the same time scale, the electrons heat up due to
disorder-induced heating [37,38]. As shown in Figs. 8 and
9, for both very large (�0 = 50, Fig. 8) and moderate (�0 =
1, Fig. 9) initial effective coupling strengths, the Coulomb
coupling parameter relaxes to a value of � ≈ 0.5 during the
initial relaxation stage, which is a factor of ∼2 smaller than
found in [38] but agrees with the findings of more recent MD
simulations [91].

We have investigated the amount of initial heating for a
range of initial conditions, including highly preordered states,
where ions and electrons have been placed on regular lattice
structures. In contrast to the ionic plasma component, where
such a preordering leads to significant suppression of the
heating due to the repulsive ion-ion interactions [92,93], the
attractive electron-ion interaction is found to cause electron
heating to � � 0.5 irrespective of the initial state. This clearly
excludes the existence of metastable, very strongly coupled
two-component plasma states, in which recombination is
suppressed by orders of magnitude, as has been suggested
recently [63,64] on the basis of numerical simulations.

Nevertheless, the results of the previous sections have
shown that the recombination dynamics differs significantly
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FIG. 9. (Color online) Same as Fig. 8, but for �0 = 1.
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FIG. 10. (Color online) Recombination rate of Fig. 7 (circles) as
a function of � for intermediate coupling strength. In this range of
the coupling parameter the rate scales as �3 (line).

already for � ≈ 0.5, yielding a suppression of ν by a factor
of 2. Indeed, we observe significant deviations in the time
evolution of the free-electron number [see Figs. 8(a) and 9(a)]
obtained from the TCP simulations and the rate equations (see
Sec. II B). However, in contrast to the OCP results, which
solely depend on the actual equilibrium electronic coupling
strength �, we find an additional dependence of the TCP
results on initial electronic excess energy �0: despite the fact
that � has relaxed to ∼0.5 after ∼50 ω−1

p for both �0 = 1
and �0 = 50, the number of weakly bound Rydberg atoms
differs by about a factor of ∼2, which we attribute to the
longer relaxation time of the bound states. We anticipate that
these effects and deviations from the traditional treatment of
recombination may be observable via short-time probing of
UCP dynamics.

Indeed, recent measurements of recombination fluores-
cence on a submicrosecond time scale suggest such deviations
[24]. In these experiments, the time-dependent fluorescence
from low-lying transitions of recombined atoms has been mea-
sured with a time resolution <100 ns. At high temperatures,
i.e., in the weakly coupled regime, the initial signal S(t) was
found to rise proportionally to ρ3

e , consistent with the picture
of isolated three-body collisions, for which S(t) ∼ ρeνt ∝
ρeωp�

9/2t ∝ ρ3
e t . For lower temperatures, detailed simulations

based on three-body CTMC rates predict a density scaling
∼ρ1.8

e , while the experiment shows a scaling ∼ρ2.2
e . Here it is

interesting to note that the recombination rate around � ≈ 1
already shows a different scaling ν ∼ ωp�

3 (see Fig. 10),
giving ρeνt ∝ ρ2.5

e . As described in [24], the fluorescence
signal is, however, determined also by the initial disorder-
induced heating as well as heating due to the formation of
Rydberg atoms themselves, such that this simple comparison
should be regarded as qualitative only. Nevertheless, MD

simulations, as described in this work, combined with a
detailed treatment of the radiative cascade of deeply bound
states to compare with such measurements may elucidate the
role of correlation effects in recombination dynamics of UCPs.

VI. SUMMARY

We have presented extensive numerical simulations of
Rydberg-atom formation in plasmas that take into account
correlations and many-body interactions between the plasma
electrons. This allows us to stretch the focus of such studies
deep into the strongly coupled regime, beyond the range of
validity of three-body CTMC calculations.

We find quantitative agreement for the recombination
rate with previous rate equation calculations [23] in the
weakly coupled regime, consistent with a recent study [94].
Such simplified treatments are shown to yield an excellent
description, even for Coulomb coupling strengths of up to
� ≈ 0.3, which covers the typical � values obtained in the
long-time dynamics of UCPs [11,50].

However, as the electron plasma becomes strongly coupled
the bottleneck is found to disappear in the lowered contin-
uum due to increasing electron-electron correlations. In this
strongly coupled regime, ν is shown to approach a constant
value well below the plasma frequency ωp, resolving the
temperature-divergence problem of the common three-body
recombination rate, ν ∼ T −9/2, in the ultracold domain.

MD simulations of two component plasmas show that the
achievable coupling strength in neutral plasmas is limited to
� ≈ 0.5, in agreement with recent simulations discussed in
[91] while contradicting the findings of [63,64]. Nevertheless,
a comparison to the MD results for such coupling param-
eters suggests that deviations from common rate equation
descriptions may be observable in the short-time dynamics of
UCPs. We finally note that recent experiments on molecular
ultracold plasmas [2,17], realizing much higher densities than
atomic systems, show strong deviations from the expansion
behavior of atomic systems [10], which, thus far, has been well
described within simple rate equation treatment of Rydberg-
atom formation [11,15,21]. Exploring the origin of these
deviations, however, requires one to account for additional
molecular processes [95], which may also alter the plasma
expansion behavior.
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[87] Z. Donkó, G. J. Kalman, and K. I. Golden, Phys. Rev. Lett. 88,

225001 (2002).

[88] I. Georgescu, U. Saalmann, and J. M. Rost, Phys. Rev. A 76,
043203 (2007).

[89] D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc. R.
Soc. London A 267, 297 (1962).

[90] A. Burgess and H. Summers, Mon. Not. R. Astron. Soc. 174,
345 (1976).

[91] K. Niffenegger, K. A. Gilmore, and F. Robicheaux, J. Phys. B
44, 145701 (2011).

[92] D. Gericke and M. Murillo, Contrib. Plasma Phys. 43, 298
(2003).

[93] T. Pohl, T. Pattard, and J. M. Rost, J. Phys. B 37, L183 (2004).
[94] J. P. Morrison, N. Saquet, and E. R. Grant (to be published in

J. Phys. B).
[95] N. Saquet, J. P. Morrison, M. Schulz-Weiling, H. Sadeghi, J. Yiu,

C. J. Rennick, and E. R. Grant, J. Phys. B 44, 184015 (2011).

052710-10

http://dx.doi.org/10.1016/0010-4655(96)00016-1
http://dx.doi.org/10.1016/0010-4655(96)00016-1
http://dx.doi.org/10.1063/1.463137
http://dx.doi.org/10.1063/1.463137
http://dx.doi.org/10.1063/1.472005
http://dx.doi.org/10.1063/1.472005
http://dx.doi.org/10.1063/1.1727895
http://dx.doi.org/10.1063/1.1727895
http://dx.doi.org/10.1103/PhysRevA.8.3096
http://dx.doi.org/10.1103/PhysRevA.21.2087
http://dx.doi.org/10.1103/PhysRevA.21.2087
http://dx.doi.org/10.1016/S0370-1573(98)00017-9
http://dx.doi.org/10.1016/S0370-1573(98)00017-9
http://dx.doi.org/10.1103/PhysRevLett.88.225001
http://dx.doi.org/10.1103/PhysRevLett.88.225001
http://dx.doi.org/10.1103/PhysRevA.76.043203
http://dx.doi.org/10.1103/PhysRevA.76.043203
http://dx.doi.org/10.1098/rspa.1962.0101
http://dx.doi.org/10.1098/rspa.1962.0101
http://dx.doi.org/10.1088/0953-4075/44/14/145701
http://dx.doi.org/10.1088/0953-4075/44/14/145701
http://dx.doi.org/10.1002/ctpp.200310032
http://dx.doi.org/10.1002/ctpp.200310032
http://dx.doi.org/10.1088/0953-4075/37/9/L01
http://dx.doi.org/10.1088/0953-4075/44/18/184015

