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Introducing electron capture into the unitary-convolution-approximation energy-loss
theory at low velocities
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Recent developments in the theoretical treatment of electronic energy losses of bare and screened ions in gases
are presented. Specifically, the unitary-convolution-approximation (UCA) stopping-power model has proven its
strengths for the determination of nonequilibrium effects for light as well as heavy projectiles at intermediate to
high projectile velocities. The focus of this contribution will be on the UCA and its extension to specific projectile
energies far below 100 keV/u, by considering electron-capture contributions at charge-equilibrium conditions.
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I. INTRODUCTION

Theoretical investigations of the energy losses of charged
particles interacting with gases and solids started about a
century ago. These early investigations on the interaction
of fast light ions with matter mainly focused on ionization
processes. In the remaining part of this paper, we will use
the term “fast projectiles” to indicate projectile speeds beyond
the orbital velocities of most weakly bound electrons (say,
Ep/Mp � 1 MeV/u), a case where many electron shells
contribute to the ion energy loss. With “slow projectiles” we
mean that the projectile interacts nearly exclusively with only
the valence or conduction band, at incident velocities clearly
below the corresponding Fermi velocity (say, Ep/Mp �
20 keV/u). In this work, we try to consider all important
electronic energy-loss processes [1].

Figure 1 shows that ionization is in fact the main energy-
loss component at high projectile speeds vp. We may see
that even at high energies, excitation processes may not be
neglected, if an accurate energy-loss description is envisaged.
At low speeds, all reaction processes can be important, and
specifically target and projectile excitation may constitute a
strong or even the main energy-loss component. Ionization is
often of minor importance for slow atomic or ionic projectiles,
but may dominate for antiprotons or negative muons [2].

Electron capture is indicated in Fig. 1 by a shaded area
bordered by two curves that are separate by orders of
magnitude at low speeds. The transfer of target electrons
to the bound projectile state (electron capture) leads to a
so-called capture-and-loss cycle, where the captured electron
is lost by the projectile in a subsequent collision, involving
a projectile energy loss as well. The influence of electron
capture depends strongly on the projectile charge state and,
specifically at low velocities, on matching conditions for
the electronic energy levels of the target and the projectile
(resonant or nonresonant electron capture) [3]. The electron-
capture cross section is exactly zero for antiprotons (because
of the negative projectile charge), it is small for asymmetrical
systems such as protons on helium (due to nonresonant capture
processes), but resonant electron capture (specifically for
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homonuclear systems such as H++H) involves enormous total
cross sections. The resulting strong variation of the stopping
power due to electron transfer (electron capture) dependent
on the collision system is probably the reason for conflicting
statements on the importance of capture. Uncertainties of the
(extended) Firsov model might be one of the reasons why
some models suggest that the influence of electron capture at
low velocities is enormous [4], while Sigmund [5] and others
estimate that charge exchange yields only a minor contribution.

This paper is focused on recent developments of the unitary
convolution approximation (UCA) and on partial ion energy-
loss cross sections for specific projectile charge states and
energy-transfer processes, extending the range of validity to
much lower projectile energies. We present theoretical CASP

energy-loss results in comparison to experimental data. We
will show that electron-capture processes may not be neglected
for gas targets, neither for light nor for heavy target systems.

Most current energy-loss models are based on the impact-
parameter method [6]. This method describes the nuclear mo-
tion using classical trajectories (often straight-line trajectories)
and it is highly accurate for most electronic processes above
a few keV. It is noted that all energy-loss models known to
us are based on the independent-electron picture, if localized
electron states are considered (with the exception of Ref. [7]).
The only current energy-loss theory that involves no further
approximations is the atomic-orbital coupled-channel (AOCC)
theory. Note that we have applied this coupled-channel method
successfully for the computation of energy losses, mainly for
collisions of light ions with few-electron targets, in order to
limit the computing time to reasonable values [8–11]. In this
work, we have computed AOCC results as a benchmark for our
more approximate UCA model, to be discussed further below.

There are various other approximate solutions [2,12,13]
of the energy-loss problem for bound target states at low
velocities or for valence-band electrons [14]. Other methods
cover somewhat larger energy ranges [15]. A simplified
electron-gas model by Arista and Lifschitz, based on a
generalization of the Friedel sum rule [16], has been extended
from low to intermediate velocities and to heavier ions as well
[17]. Purely classical descriptions of energy losses [18,19] may
be used specifically for heavy ions, but this involves a variety of
uncertainties: at high projectile speeds the dipole terms are sup-
pressed, and at low speeds, quantum mechanical tunneling and
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FIG. 1. Typical behavior of basic single-electron processes as a
function of the reduced projectile velocity vp/vo for a fixed projectile
charge state (vo is the mean orbital velocity of a certain specific
state). The energy dependences of stopping cross sections related to
excitation, ionization, and electron capture are shown schematically
in the plot. The corresponding stopping cross sections have been
extracted from experimental and theoretical cross sections and mean
energy transfers for H and He targets (from Ref. [3]).

quasimolecular orbital effects and details of the electron scat-
tering are of course also missing in pure classical treatments.

Some years ago, a very promising simplified model with
its foundation at intermediate energies was proposed [20]
as an extension of Bohr’s classical stopping theory. This
“binary theory” of electronic stopping has been extended and
its use is suggested by the authors for extremely low up to
relativistic speeds, excluding only the lightest projectile-target
systems [5,21]. The target-electron binding is incorporated
in the binary theory by a mapping to a projectile screening
function that delivers the required suppression of low en-
ergy transfers (defined in the Bohr regime of stopping). In
addition, this screening function also accounts for static and
dynamic projectile screening and the target characteristics are
furthermore determined by oscillator strengths. So-called shell
corrections add to the improvement of the target description
(the initial internal electron motion). Relativistic corrections
are incorporated as well. This model accounts for the (mean)
projectile charge and incorporates electron loss and projectile
excitation. The so-called Barkas effect is included by a
binary momentum-transfer treatment that is sensitive only to
the short-range part of the screening function. Our analysis
indicates that long-ranged polarization effects (an important
part of the Barkas effect, e.g., for proton–rare-gas collisions)
are not fully included in the binary theory, similar to the
short-ranged binding effect being missing (and of course other
quasimolecular orbital effects). This suggests that (apart form
possible intrinsic uncertainties) this model might not be very
accurate at low velocities.

At intermediate to high energies, the continuum-distorted-
wave eikonal-initial-state (CDWEIS) model may be applied
for solving the time-dependent Schrödinger equation. CD-
WEIS goes far beyond perturbation theory and thus, the
resulting ionization cross sections and stopping cross sections
are very close to experimental data [22] or to AOCC results.
However, it involves some non-negligible numerical efforts.
The considerably simpler convergent kinetic Lindhard theory

(CKLT) model by Maynard et al. was initially devised for
heavy ions in plasmas and has been extended to neutral target
systems as well [23]. It is also applicable to intermediate and
high energies.

Consideration of the projectile charge fractions, the so-
called charge-state approach [15,24,25], is typical for modern
energy-loss treatments. In principle, it should involve summa-
tion of all energy losses from capture and target ionization
plus excitation for each charge state q with the contribution
due to loss and excitation of projectile electrons, resulting in
the total stopping power, respectively, stopping cross section,
Se, for the collision system in question. Specifically at high
ion velocities, theory often relies on first-order perturbation
theory for excitation and ionization, also named first-order
semiclassical approximation [6,26] in the impact-parameter
picture or equivalently, first Born approximation or Bethe
theory (not to be confused with the simplified Bethe formula,
the asymptotic high-energy solution) [27].

II. THE UCA MODEL AND CASP PROGRAM

The program CASP makes use of the convolution approx-
imation [either the perturbative convolution approximation
(PCA) [28,29] or the more advanced UCA [30,31]]. The
physical inputs of the program [32] are the projectile velocity,
the projectile-screening potential, the target-electron density
distribution (which we have tabulated using results from our
Hartree-Fock-Slater code [33,34]), and the oscillator strengths
for the target electrons. The code is based on an exact matching
of the quantum mechanical mean electronic energy transfers
for the asymptotic regions of very small and very large impact
parameters. The UCA is a model with very general applica-
bility (not restricted to a certain range of impact parameters
or projectile-target combinations). This model has undergone
many test phases and has been continuously improved over the
years. The corresponding CASP computer code (convolution
approximation for swift projectiles) includes many different
modes of operation and may freely be downloaded [32]. The
UCA model includes a simple relativistic correction [35]
(no radiation energy loss and no relativistic density effect)
and thus, it becomes inaccurate only for kinetic energies per
nucleon exceeding several hundred MeV/u.

The code is not restricted to Coulombic point charges
as screening of the projectile charge is fully included [36].
This means that we average energy losses over the projectile
charge-state fraction (including electron-loss processes) or
(for heavy ions) one may simply estimate the energy loss
for the (noninteger) mean charge. Although there is some
knowledge on the charge-state evolution [37], only limited
information (derived from x rays [38] and δ electrons [39])
exists on the excitation state of the projectile ions inside matter.
As even the most advanced current theoretical charge-state
treatments involve a somewhat limited accuracy and limited
parameter ranges (somewhat below ten bound electrons are
feasible nowadays [40]), accurate charge-state fits for ions in
solids and also in gases [41] are still a necessary ingredient
for accurate stopping-power calculations. Further corrections
and ingredients extend the UCA range of validity towards
lower energies and these improvements are mentioned in the
following.
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At intermediate energies, the Barkas (polarization) effect
[42,43] (related to a modification of the target electron density
via long-ranged dipole forces) is important for an accurate
stopping-power prediction. Similar to the binding effect, these
energy-loss contributions are also sign-of-charge dependent
(related to odd powers of the projectile nuclear charge).
At small impact parameters, however, the screening of the
projectile nuclear charge will introduce another mechanism
related to second-order perturbation theory, namely, a short-
ranged Barkas (screening) effect. The screening leads to a
distance-dependent variation of the forces and correspondingly
of the electron trajectory. The net effect is typically a significant
energy-loss enhancement for positive projectile charges. This
latter mechanism is included in the CASP program using an
ansatz similar to the binary model by Sigmund and Schinner
[5].

The PCA model is not an exact solution of first-order
perturbation theory, mainly because it is based on a peaking
approximation that erases any influence of momentum-space
components. Thus, a corresponding correction, the so-called
shell correction, has to be applied. In general, shell corrections
account for intrinsic uncertainties in the description of the
initial target states and usually also for deficiencies of the
treatment of the electron dynamics. Such a highly accurate
shell correction (shell-effect renormalization [44]) has been
applied by scaling the PCA dynamics to exact first-order Born
cross-section results for a hydrogenlike target model. In an
intermediate step, we make use of the kinetic theory [45] or the
binary model by Sigmund and Schinner [5] for consideration
of the detailed Fourier-space distribution (computed from our
numerical target wave functions) [44].

Another aspect that is improved in the current UCA
version is the kinematical treatment of electron-loss processes
at intermediate energies. Of course, projectile excitation is
converted directly into a projectile energy loss. However,
electron-loss processes (projectile ionization) at high-energy
transfers involve only a minor interaction of the outgoing

electron with the projectile core. For these cases, the projectile
energy loss is strongly suppressed. We use the derivation [46]
of Sigmund and Glazov for the kinematic suppression together
with high precision AOCC computations, in order to derive the
first accurate projectile energy-loss results of this type [44].

III. SLOWING DOWN DUE TO ELECTRON
CAPTURE PROCESSES

As we have shown recently [44], there is another impor-
tant energy-loss contribution in addition to excitation and
ionization of target or projectile electrons, namely, electron
capture (transfer of bound target electrons to the moving
projectile-ion system). In that work, we have estimated the
electron-capture contributions from experimental electron-
capture cross sections. In the following, however, we will
invoke purely theoretical estimates for the electron-capture
contribution in the case of equilibrium stopping cross sections
related to equilibrium projectile charge distributions. The
electron-capture contribution S

cap
e to the electronic stopping

cross section is

Scap
e =

Zp∑
q=1

f (q)σ cap(q)�E0(q), (1)

where q is the projectile charge state,f (q)is the equilibrium
charge-state distribution (obtained from fits [41]), �Ecap(q)
is the mean energy transfer corresponding to an average
over individual capture events for an initial charge state q,
andσ cap(q)is the total electron-capture cross section involving
all target shells at a fixed projectile charge. The energy
transfer is estimated from the first (static) target ionization
potentialItar;1, the binding energy of the lowest unoccupied
projectile state, which is equal to the first (static) ionization
potentialIproj;1(q − 1)of the projectile after the capture process,
and the projectile velocity vp(all quantities are expressed in
atomic units (a.u.), with e = me = h̄ = 1):

�Ecap(q) =
{

v2
p/2 + [1 − 0.5Iproj;1(q − 1)/Itar;1] min(2Itar;1,v

2
p/2), for Iproj;1(q − 1) > Itar;1

v2
p/2 + Itar;1 − Iproj;1(q − 1) + min (2Iproj;1(q − 1),v2

p/2)/4, for Iproj;1(q − 1) � Itar;1
. (2)

�Ecap[see further below for a detailed discussion of Eq. (2)]
is written as a sum of (1) the translational energy loss�E

cap
trans =

v2
p/2 [the first term of both lines in Eq. (2)] and (2) an estimated

mean dynamic excitation energy �E
cap
exc [given by the last

terms of both lines in Eq. (2)], which is the difference of
mean electron-binding energies before and after the capture
event.

Figure 2 is used to outline typical transitions in electron-
capture events from the valence band to bound states of
the moving projectile, corresponding to the mean dynamic
excitation energy. Here we distinguish four cases (low and
high projectile velocity as well as low and high projectile
binding energy) as discussed in the following. It is emphasized
that the acceleration of the active electron during the transfer

from the target to the projectile system of reference (the
translational energy-loss termv2

p/2) is not accounted for in
any of the Figs. 2(a)–2(d). We make use of knowledge on
electron capture in fast ion-atom collisions as described by
the boundary-corrected first-order Born theory [47], by the
equivalent true first-order Born approximation [48] theory or
the eikonal theory [49], where capture is distributed nearly
equally over excited projectile states up to the continuum limit
(partial waves of s type are favored). For slow projectiles the
resonant energetic channel is strongly favored and high angular
momentum states of the projectile are involved, as described,
e.g., by the classical over-the-barrier model [50,51].

This means for a slow projectile with a high ionization
potential [see Fig. 2(a)] that capture will occur via resonant
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(a)

(b)

(c)

(d)

FIG. 2. (Color online) Bound-state energetics for electron capture
from the valence-band states for different relative speeds and binding
energies in the target and projectile systems. (a) and (c) refer to low
projectile speeds vp and (b) and (d) refer to high speeds. (a) and (b)
refer to low target binding energies (compared to the projectile) and
(c) and (d) refer to high target binding energies.

or near-resonant channels, corresponding to �E
cap
exc = 0. In

contrast, at high projectile speeds we assume a constant
differential cross section dσ cap/dE in the spectrum of
bound projectile states (upper colored areas in Figs. 2(b) and
2(d), at the projectile), leading to a mean projectile binding
energy of Iproj;1(q − 1)/2 as indicated in Figs. 2(b) and 2(d).
For both cases, we have �E

cap
exc = Itar;1 − 0.5Iproj;1(q − 1).

For low speeds and small projectile-ionization potentials (in
comparison to the target), resonant capture is impossible and
we assume that capture leads exclusively to ground-state
population with �E

cap
exc = Itar;1 − Iproj;1(q − 1) [see Fig. 2(c)].

The above four cases (dependent on speed and ionization
potential) are the asymptotic results of Eq. (2), where the
Figs. 2(a) and 2(b) correspond to the upper condition of Eq. (2)
and Figs. 2(c) and 2(d) correspond to the lower formula in
Eq. (2). For consideration of the velocity dependence, we have
used simple switching functions dependent on v2

p/2. These
switching functions are expected to lead to uncertainties of up
to about 10% at finite speeds (as long as target inner shells do
not contribute).

As a next step, we make use of the classical rate equations
[37] that determine the projectile charge-state distribution.
We may consider charge-state equilibrium [related to the
steady-state conditionsf (q,t) = constfor all values of q] and
neglect multielectron processes (n-electron capture or loss).
Neglecting excitations (in a first step) and summing now over

all charge states above a certain fixed value of q, we find for
all such values of q (with 0 <= q < Z),

f (q)σ loss(q) = f (q + 1)σ cap(q + 1), (3)

as follows directly from probability conservation within the
charge-state range. At this point, a short discussion about the
effect of solid/gas differences for Eq. (3) might be appropriate.
Of course, the fits to experimental charge-state distributions
[41] depend on the state of the target system. The target
atomic density governs the mean free path between subsequent
collisions and charge equilibration depends on the ratio of
the collision frequency and the photon decay rates (if we
neglect Auger transitions). In the case of low speeds or low
target densities (gas targets), excited projectile states decay
before the next collision process takes place. Thus, bound-state
excitation of projectile electrons plays no role and σ cap(q)
accounts for capture into all projectile shells (total capture
cross section). On the contrary, at high collision frequencies,
there is a fraction of populated excited states accumulated from
previous collisions due to projectile-bound-state excitation and
capture into excited states. These facts have an influence on the
distribution of electronic projectile states (increased number of
excitations) and on the charge-state fractionsf (q), governed by
the increased effective electron-loss cross sections (the capture
cross sections remain nearly unaffected). Without the (minor)
influence from Auger transitions, however, Eq. (3) still remains
valid (when the loss cross section accounts for the actual state
distribution). Now, reindexing Eq. (1) and inserting Eq. (3)
into the resulting sum yields

Scap
e (q) =

Zp−1∑
q=0

f (q + 1)σ cap(q + 1)�Ecap(q + 1)

=
Zp−1∑
q=0

∑
state

f (q)σ loss
state(q)�Ecap(q + 1) (4)

Now one might estimate the electron-loss cross section
σ loss(q) (for all deeply bound projectile shells, but without
projectile excitations) from the corresponding gross electronic
stopping cross sectionSe,proj(q)related to projectile excitation
and ionization (in the projectile system) for each charge state q

and for each populated bound state i. This relation is extracted
from a fit to the theoretical scaled cross-section ratio

Rloss
i (q) = Iproj;i(q)σ loss

i (q)/Se,proj;i(q) (5)

as shown in Fig. 3. The quantities σ loss
i (q) and also Se,proj;i(q)

that determine the ratio in Fig. 3 are obtained from highly
accurate numerical benchmark calculations using colossal
basis sets (700–1000 projectile-centered states) in AOCC
calculations [8–11]. These time consuming calculations (nu-
merical solutions of the Schrödinger equation for independent
electrons) have been performed for four different collision
systems, i.e., for (static) neutral H and He targets interacting
with individual H 1s, He 1s, and C 2s electrons of neutral
H, He, and C projectiles. The resulting precision correction
factors (numerical uncertainties are expected to be about
2%) are given as a function of a reduced energy Ered,
computed from the projectile velocity, from the binding
energyIproj(q), and the mean of the kinetic electron energy

052703-4



INTRODUCING ELECTRON CAPTURE INTO THE . . . PHYSICAL REVIEW A 84, 052703 (2011)

FIG. 3. (Color online) Scaled cross-section ratio for projectile
energy losses as discussed in the text (evaluated for neutral H and He
target potentials interacting with H 1s, He 1s, and C 2s electrons of
neutral H, He, and C projectiles).

Ee
kin(q)of the projectile shell under consideration. This choice

of a reduced energy accounts for electronic screening effects
and maximizes the overlap between computed curves for
different initial bound states. Note that these data are directly
related to the so-called W value [52–54] of ionizing events (the
average energy to produce an ion pair in a gas of low atomic
density).

The four computed AOCC ratios show a comparable
behavior, namely, a rising curve at low velocities that reaches
a maximum ratio of about 0.5 at a reduced energy between
1 and 3. At larger velocities all curves are falling again.
Considering that the projectile-related stopping cross section
Se,proj(q) may be expressed as a product of mean excitation
energy 〈�Eproj(q)〉 and an effective cross section σ effective

proj (q),
this tendency is easily explained. At low velocities projectile
inelastic processes are dominated by excitation. Thus, we

have 〈�Eproj(q)〉 ≈ Iproj;1(q) for low velocities (excitation
energies are close to the first ionization potential) and
the effective inelastic projectile cross section is roughly
σ effective

proj (q) = 2σ loss(q), when the maximum electronic energy
transfer is equal to the projectile binding energy (Ered =
1 in Fig. 3). At this velocity, projectile excitation is about
equal to projectile ionization. A modified linear dependence,
with the above cross-section condition and a restriction to
unity, is shown by the short-dashed curve in Fig. 3. At high
velocities, the energy losses are dominated by ionization,
corresponding to σ effective

proj (q) ≈ σ loss(q). In this energy regime,
however, the mean excitation energy for inelastic processes
may be approximated by a restricted geometrical average
between binding energy and maximum electronic energy
transfer, resulting in 〈�Eproj(q)〉 ≈

√
(2v2

p + Iproj;1)Iproj;1 ≈
Iproj;1

√
(Ered + 1). The curve based on this estimate is simply

y = (Ered + 1)−0.5 and it is shown as a long-dashed curve
in Fig. 3. The product of both dashed curves (accounting
for variations of the mean energy transfer as well as of the
effective cross section) is not far from our numerical results,
indicating that we understand the functional dependence at
least qualitatively.

The gray solid curve in Fig. 3 is a fit to the numerical
AOCC results for Rloss

i (q) and it is used below to obtain
a reasonable estimate for the projectile-ionization (pure
electron-loss) cross section. The uncertainty of this fit curve
is assumed to exceed 15% (probably due to quasimolecular
orbital effects, which are specific for each collision system),
especially at low velocities. From Eqs. (4) and (5), we derive

Scap
e =

Zp−1∑
q=0

∑
i

f (q)�Ecap(q + 1)Rloss
i (q)

× Se,proj;i(q)/Iproj;i(q), (6)

together with Eq. (2). The above treatment reminds one of
Sigmund’s ICRU contribution [5], where the computation of
an equilibrium energy loss due to capture is sketched in four

FIG. 4. (Color online) Projectile-energy dependence of the electronic energy loss of charge-equilibrated hydrogen beams in different
heavy rare gases (Ne, Ar, and Kr). Experimental values (red diamonds) are taken from the data collection of Paul [55]. Dashed, dotted, and
dashed-dotted curves are charge-weighted partial energy-loss cross sections. The solid black curve denoted � corresponds to the sum of these
partial contributions. The open arrows and shell indicators (L1,M1,N1,M45) are explained in the text.
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FIG. 5. (Color online) Ab initio electronic energy loss of charge-
equilibrated sulfur ions in Ar, similar as in Fig. 4. Experimental values
are taken from the data collection of Paul [55]. The dash-dot-dot curve
corresponds to the TRIM2000 stopping-power fit [56].

sentences. However, the current more involved treatment
regarding cross sections and energy transfers is expected to de-
viate significantly from such previous estimates. In the follow-
ing, we apply Eqs. (2) and (6), together with CASP calculations
for the target and projectile excitation/ionization processes.
The summed stopping cross section is compared with experi-
mental data obtained from the data collection of Paul [55].

IV. RESULTS AND DISCUSSION

Figure 4 displays UCA results for the partial energy-loss
cross sections related to excitation plus ionization of bound
projectile electrons (purple dotted curve denoted by “loss”),
excitation plus ionization of bound target electrons (blue
dashed curve denoted by “target”), and electron transfer from
bound target to bound projectile states (these charge-exchange
processes are denoted by “capture” and are displayed as
an olive-colored dashed-dotted curve). The partial stopping
cross-section curves show typical tendencies. At low velocities
Se is dominated by projectile electron-loss and projectile
excitation processes. At somewhat higher velocities the stop-
ping contribution by electron capture maximizes and involves
significant variations of the functional shapes. The arrows and
shell indicators (L1,M1,N1,M45) show upper estimates for the

influence of deeper bound target states on the energy transfer
in capture events [not accounted for in Eq. (2)]. The target
contribution always involves the highest partial energy-loss
cross section and determines the asymptotic high-energy
behavior almost completely.

The thick solid curve (marked with “�”) is the total
electronic slowing-down cross section Se, i.e., the sum of
the above three partial stopping cross sections averaged over
the projectile charge states. These black curves may directly
be compared with the available experimental data (shown in
the figure by red diamond symbols) from the web pages by
Paul [55]. The comparison shows good agreement between
UCA and experimental data at intermediate to high energies.
At low kinetic energies (below 20 keV) the maximum deviation
between experiment and UCA reaches 20% for the Ne and
Kr targets. For the Ar target, however, we find good overall
agreement between experiment and ab initio theory.

Figure 5 displays results and data similar to Fig. 4, but
obtained for heavy ions, namely, for S on Ar. It is noted that the
capture and loss fractions are relatively small in this heavy-ion
case. These fractions reach 5–10 % for S + Ar, in comparison
to 30–35 % for the proton results in Fig. 4. The charge-state
fractions in Figs. 4 and 5 have been taken directly from the
CASP program. Consideration of the Ar-M1 shell for the initial-
state energy in capture events leads only to a minor increase
of the results in Fig. 5. It is seen, however, that there is good
agreement between experimental and theoretical energy-loss
cross sections. Typical deviations are below ∼10%, pointing
to accurate nonlinear corrections. Note that the accuracy of our
ab initio results is comparable to the electronic energy-loss fit
incorporated in the TRIM2000 code [56].

V. CONCLUSIONS

In conclusion, in this paper we have successfully included
the electron-capture contribution into the CASP energy-loss
code. Good agreement with experimental data has been
achieved for high to intermediate energies. At energies below
∼20 keV, however, we find significant deviations between
experiment and theory in some cases. Theoretical uncertainties
are always expected in this energy regime, due to quasimolec-
ular orbital effects that may influence low-energy charge-state
fractions and electron-capture cross sections. Furthermore,
derivations of this type (see also Ref. [5]) are sensitive to
multielectron transitions [in Eq. (3)] and to the assumed
relation between the energy-loss cross section and the total
ionization cross section in Eq. (6). The present results also
indicate that electron capture is very important for light ions
at intermediate speeds and less important for heavy ions.

[1] P. L. Grande and G. Schiwietz, in Advances in Quantum
Chemistry, edited by J. Sabin (Elsevier, New York, 2004),
Vol. 45, pp. 7–46.

[2] G. Schiwietz et al., J. Phys. B 29, 307 (1996).
[3] G. Schiwietz et al., Nucl. Instrum. Methods Phys. Res. B 226,

683 (2004).

[4] S. A. Cruz, C. Vargas-Aburto, D. K. Brice, E. V. Alonso, and
D. G. Armour, Phys. Rev. A 27, 2403 (1983).

[5] P. Sigmund and A. Schinner, Nucl. Instrum. Methods Phys.
Res. B 195, 64 (2002); corresponding treatment of electron
capture is sketched in ICRU Report 73, J. ICRU 5, 118
(2005).

052703-6

http://dx.doi.org/10.1088/0953-4075/29/2/018
http://dx.doi.org/10.1016/S0168-583X(04)01023-7
http://dx.doi.org/10.1016/S0168-583X(04)01023-7
http://dx.doi.org/10.1103/PhysRevA.27.2403
http://dx.doi.org/10.1016/S0168-583X(01)01162-4
http://dx.doi.org/10.1016/S0168-583X(01)01162-4


INTRODUCING ELECTRON CAPTURE INTO THE . . . PHYSICAL REVIEW A 84, 052703 (2011)

[6] J. Bang and J. M. Hansteen, K. Dan. Vidensk. Selsk. Mat. Fys.
Medd. 31, 13 (1959).

[7] C. C. Montanari, J. E. Miraglia, and N. R. Arista, Phys. Rev. A
66, 042902 (2002).

[8] G. Schiwietz, Phys. Rev. A 42, 296 (1990).
[9] P. L. Grande and G. Schiwietz, Phys. Rev. A 44, 2984 (1991).

[10] G. Schiwietz and P. L. Grande, Nucl. Instrum. Methods Phys.
Res. B 69, 10 (1992).

[11] P. L. Grande and G. Schiwietz, Phys. Rev. A 47, 1119 (1993).
[12] I. Wojciechowski and B. J. Garrison, Surf. Sci. 527, 209 (2003).
[13] A. Duvenbeck, B. Weidtmann, O. Weingart, and A. Wucher,

Phys. Rev. B 77, 245444 (2008).
[14] J. J. Dorado and F. Flores, Phys. Rev. A 47, 3062 (1993).
[15] A. Arnau, M. Penalba, P. M. Echenique, F. Flores, and R. H.

Ritchie, Phys. Rev. Lett. 65, 1024 (1990).
[16] A. F. Lifschitz and N. R. Arista, Phys. Rev. A 57, 200 (1998).
[17] A. F. Lifschitz and N. R. Arista, Phys. Rev. A 69, 012902 (2004).
[18] P. L. Grande and G. Schiwietz, J. Phys. B 28, 425 (1995).
[19] C. O. Reinhold and J. Burgdörfer, J. Phys. B 26, 3101 (1993).
[20] P. Sigmund and A. Schinner, Eur. Phys. J. D 12, 425 (2000).
[21] P. Sigmund and A. Schinner, Nucl. Instrum. Methods Phys. Res.

B 243, 457 (2006).
[22] P. D. Fainstein, G. H. Olivera, and R. D. Rivarola, Nucl. Instrum.

Methods Phys. Res. B 107, 19 (1996).
[23] G. Maynard, G. Zwicknagel, C. Deutsch, and K. Katsonic, Phys.

Rev. A 63, 052903 (2001).
[24] A. Dalgarno and G. W. Griffing, Proc. R. Soc. London, Ser. A

232, 423 (1955); D. R. Bates and G. Griffing, Proc. Phys. Soc.,
London, Sect. A 66, 961 (1953).

[25] T. Kaneko, Phys. Rev. A 33, 1602 (1986).
[26] N. M. Kabachnik, V. N. Kondratev, and O. V. Chumanova, Phys.

Status Solidi B 145, 103 (1988).
[27] M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).
[28] P. L. Grande and G. Schiwietz, Nucl. Instrum. Methods Phys.

Res. B 267, 859 (2009).
[29] P. L. Grande and G. Schiwietz, Phys. Rev. A 58, 3796 (1998).
[30] P. L. Grande and G. Schiwietz, Nucl. Instrum. Methods Phys.

Res. B 195, 55 (2002).
[31] G. Schiwietz and P. L. Grande, Nucl. Instrum. Methods Phys.

Res. B 153, 1 (1999).
[32] The most recent casp program version (currently version 5.0)

may be downloaded from [http://www.casp-program.org/]. Note
that it does not contain the electron-capture estimate discussed
in this work.

[33] P. L. Grande and G. Schiwietz, Nucl. Instrum. Methods Phys.
Res. B 136–138, 125 (1998).

[34] F. Herman and S. Skillmann, Atomic Structure Calculations
(Prentice-Hall, Englewood Cliffs, NJ, 1963).

[35] J. D. Jackson, Classical Electrodynamics (Walter de Gruyter,
Berlin, 1981).

[36] G. M. de Azevedo, P. L. Grande, and G. Schiwietz, Nucl.
Instrum. Methods Phys. Res. B 164, 203 (2000)

[37] H.-D. Betz, Rev. Mod. Phys. 44, 465 (1972).
[38] J. P. Rozet, A. Chetioui, P. Bouisset, D. Vernhet, K. Wohrer,

A. Touati, C. Stephan, and J. P. Grandin, Phys. Rev. Lett. 58,
337 (1987).

[39] G. Schiwietz, Radiat. Eff. Defects Solids 112, 195 (1990).
[40] J. P. Rozet et al., Phys. Lett. A 274, 37 (2000).
[41] G. Schiwietz and P. L. Grande, Nucl. Instrum. Methods

Phys. Res. B 175–177, 125 (2001); G. Schiwietz, M. Roth,
K. Czerski, F. Staufenbiel, and P. L. Grande, ibid. 226, 683
(2004).

[42] W. H. Barkas, N. J. Dyer, and H. H. Heckmann, Phys. Rev. Lett.
11, 26 (1963).

[43] G. de M. Azevedo, P. L. Grande, M. Behar, J. F. Dias, and
G. Schiwietz, Phys. Rev. Lett. 86, 1482 (2001); L. L. Araujo,
P. L. Grande, M. Behar, J. F. Dias, A. F. Lifschitz, N. R. Arista,
and G. Schiwietz, Phys. Rev. A 70, 032903 (2004).

[44] G. Schiwietz and P. L. Grande, Nucl. Instrum. Methods Phys.
Res. B (in press), doi: 10.1016/j.nimb.2011.07.023.

[45] P. Sigmund, Phys. Rev. A 26, 2497 (1982).
[46] P. Sigmund and L. G. Glazov, Eur. Phys. J. D 23, 211 (2003).
[47] D. P. Dewangan and J. Eichler, J. Phys. B 19, 2939 (1986).
[48] D. Belkic, R. Gayet, J. Hanssen, and A. Salin, J. Phys. B 19,

2945 (1986).
[49] J. Eichler, Phys. Rev. A 32, 112 (1985).
[50] H. Ryufuku, K. Sasaki, and T. Watanabe, Phys. Rev. A 21, 745

(1980).
[51] A. Niehaus, J. Phys. B 19, 2925 (1986).
[52] J. A. Phipps, J. W. Boring, and R. A. Lowry, Phys. Rev. 135,

A36 (1964).
[53] F. P. Santos, T. H. V. T. Dias, P. J. B. M. Rachinhas, C. A. N.

Conde, and A. D. Stauffer, J. Appl. Phys. 89, 8202 (2001).
[54] M. Inokuti and E. Eggarter, J. Chem. Phys. 86, 3870 (1987).
[55] Extensive experimental energy-loss tabulations are maintained

by H. Paul at [http://www.exphys.jku.at/stopping/].
[56] Current versions of the code by F. Ziegler, and J. P. Biersack

may be obtained from http://www.SRIM.org.

052703-7

http://dx.doi.org/10.1103/PhysRevA.66.042902
http://dx.doi.org/10.1103/PhysRevA.66.042902
http://dx.doi.org/10.1103/PhysRevA.42.296
http://dx.doi.org/10.1103/PhysRevA.44.2984
http://dx.doi.org/10.1016/0168-583X(92)95731-6
http://dx.doi.org/10.1016/0168-583X(92)95731-6
http://dx.doi.org/10.1103/PhysRevA.47.1119
http://dx.doi.org/10.1016/S0039-6028(03)00053-0
http://dx.doi.org/10.1103/PhysRevB.77.245444
http://dx.doi.org/10.1103/PhysRevA.47.3062
http://dx.doi.org/10.1103/PhysRevLett.65.1024
http://dx.doi.org/10.1103/PhysRevA.57.200
http://dx.doi.org/10.1103/PhysRevA.69.012902
http://dx.doi.org/10.1088/0953-4075/28/3/013
http://dx.doi.org/10.1088/0953-4075/26/18/018
http://dx.doi.org/10.1007/s100530070004
http://dx.doi.org/10.1016/j.nimb.2005.10.031
http://dx.doi.org/10.1016/j.nimb.2005.10.031
http://dx.doi.org/10.1016/0168-583X(95)00810-1
http://dx.doi.org/10.1016/0168-583X(95)00810-1
http://dx.doi.org/10.1103/PhysRevA.63.052903
http://dx.doi.org/10.1103/PhysRevA.63.052903
http://dx.doi.org/10.1098/rspa.1955.0228
http://dx.doi.org/10.1098/rspa.1955.0228
http://dx.doi.org/10.1088/0370-1298/66/11/301
http://dx.doi.org/10.1088/0370-1298/66/11/301
http://dx.doi.org/10.1103/PhysRevA.33.1602
http://dx.doi.org/10.1002/pssb.2221450107
http://dx.doi.org/10.1002/pssb.2221450107
http://dx.doi.org/10.1103/RevModPhys.43.297
http://dx.doi.org/10.1016/j.nimb.2009.02.017
http://dx.doi.org/10.1016/j.nimb.2009.02.017
http://dx.doi.org/10.1103/PhysRevA.58.3796
http://dx.doi.org/10.1016/S0168-583X(01)01164-8
http://dx.doi.org/10.1016/S0168-583X(01)01164-8
http://dx.doi.org/10.1016/S0168-583X(98)00981-1
http://dx.doi.org/10.1016/S0168-583X(98)00981-1
http://www.casp-program.org/
http://dx.doi.org/10.1016/S0168-583X(97)00869-0
http://dx.doi.org/10.1016/S0168-583X(97)00869-0
http://dx.doi.org/10.1016/S0168-583X(99)01074-5
http://dx.doi.org/10.1016/S0168-583X(99)01074-5
http://dx.doi.org/10.1103/RevModPhys.44.465
http://dx.doi.org/10.1103/PhysRevLett.58.337
http://dx.doi.org/10.1103/PhysRevLett.58.337
http://dx.doi.org/10.1080/10420159008213045
http://dx.doi.org/10.1016/S0375-9601(00)00505-3
http://dx.doi.org/10.1016/S0168-583X(00)00583-8
http://dx.doi.org/10.1016/S0168-583X(00)00583-8
http://dx.doi.org/10.1016/S0168-583X(04)01023-7
http://dx.doi.org/10.1016/S0168-583X(04)01023-7
http://dx.doi.org/10.1103/PhysRevLett.11.26
http://dx.doi.org/10.1103/PhysRevLett.11.26
http://dx.doi.org/10.1103/PhysRevLett.86.1482
http://dx.doi.org/10.1103/PhysRevA.70.032903
http://dx.doi.org/10.1016/j.nimb.2011.07.023
http://dx.doi.org/10.1016/j.nimb.2011.07.023
http://dx.doi.org/10.1016/j.nimb.2011.07.023
http://dx.doi.org/10.1103/PhysRevA.26.2497
http://dx.doi.org/10.1140/epjd/e2003-00048-2
http://dx.doi.org/10.1088/0022-3700/19/18/022
http://dx.doi.org/10.1088/0022-3700/19/18/023
http://dx.doi.org/10.1088/0022-3700/19/18/023
http://dx.doi.org/10.1103/PhysRevA.32.112
http://dx.doi.org/10.1103/PhysRevA.21.745
http://dx.doi.org/10.1103/PhysRevA.21.745
http://dx.doi.org/10.1088/0022-3700/19/18/021
http://dx.doi.org/10.1103/PhysRev.135.A36
http://dx.doi.org/10.1103/PhysRev.135.A36
http://dx.doi.org/10.1063/1.1371281
http://dx.doi.org/10.1063/1.451947
http://www.exphys.jku.at/stopping/
http://www.SRIM.org

