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Isotope shifts and relativistic shifts of Cr II for the study of α variation in quasar absorption spectra
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We use the combination of configuration interaction and the many-body perturbation theory method
(CI + MBPT) to perform ab initio calculations of the low-energy spectra of Cr II with high accuracy. It is found
that second-order MBPT diagrams should be included in a consistent and complete way for the MBPT to improve
the accuracy of calculations in this five-valence-electron system. This contrasts with previous ions with fewer
valence electrons, where it was found that single-valence-electron diagrams dominate the corrections. Isotope
shifts and relativistic shifts (q values) are calculated for use in astronomical determination of the fine-structure
constant in quasar absorption spectra.
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I. INTRODUCTION

Quasar absorption systems provide a unique probe of
the value of fundamental constants throughout much of the
visible universe. The many-multiplet (MM) method enables
the most complete analysis of optical spectra in the search for
space-time variation of the fine-structure constant, α = e2/h̄c

[1,2]. It makes use of all transitions seen in all ions in a given
quasar absorption system to gain statistical significance and
control systematics. Early results using spectra taken from the
Keck telescope suggested that α may have been smaller in
the past [3–5]; however, when combined with new systems
observed with the Very Large Telescope (VLT) the data are
more consistent with a spatial variation in the fine-structure
constant [6]. The gradient in values of α reconciles all existing
measurements of α variation [7]. In particular, the early Keck
results that indicated a constant offset or “monopole” model
are entirely consistent with the spatial gradient “dipole” model
since Keck mainly sees in the Northern Hemisphere (the
α-dipole axis is oriented ∼30◦ from the equatorial axis). In
contrast the VLT data are taken mainly in the southern sky.

A spatial variation of α would manifest itself in a variety
of terrestrial [8] and astrophysical [9] systems, which could
be used to confirm the dipole. It is also possible to devise
complementary tests using subsets of the quasar absorption
system data, which may involve different systematics. One
such test, currently underway, is a variant of the many-
multiplet method that only uses transitions in Cr II and Zn II

[10]. The transitions have opposite α sensitivities, and so a
comparison of them is very sensitive to α variation: Zn II

transitions are s-p, and hence their frequency increases if
α increases, while the Cr II transitions are d-p, so their
frequency decreases with increasing values of α. Furthermore
the transitions are very close in energy. This means that only
a small part of the optical spectrum is analyzed, resulting in
different (perhaps smaller) systematics. Of particular concern
are “intraorder shifts”: velocity shifts of unknown origin within
each echelle order in the spectrograph [11,12]. This systematic
may differently affect measurements of α variation when only
Cr II and Zn II lines are utilized, compared to studies where a
larger number and wider variety of transitions are used.

One problem with using Cr II and Zn II transitions
exclusively is that they are weak. Of course, this is the reason
why they do not play a major role in the full MM analysis

despite being included whenever available. However, there
exist certain quasar absorption systems in which Zn II lines are
particularly strong [13], and from these “metal strong” systems
can be drawn a relatively large sample with which to perform
the Cr II–Zn II analysis.

One potential systematic that has plagued all MM analyses
is isotope abundance [14–16]. Isotopic structure cannot be
resolved in the absorption spectra, so generally terrestrial
isotopic abundances are assumed for the absorber. Any
deviation from terrestrial abundances would shift the centroid
of the line profile, and this might mimic a change in α.
Even quantifying the systematic can be difficult because the
isotopic structures themselves are unknown for many of the
UV transitions used in the MM analysis. The systematic is
lessened in the context of a dipole result, since the isotope
abundances would need to vary according to direction in
the sky, which in itself would violate cosmological isotropy.
Nevertheless, in order to quantify possible systematics the
isotope structure should be known for all transitions used in
the analysis, hence the considerable efforts by many groups to
calculate and measure them (see, e.g., [17–21]).

In this paper we calculate the isotope shifts and relativistic
shifts of the Cr II transitions seen in quasar absorption spectra.
The corresponding parameters for Zn II have been calculated
previously [15,22]. Our final results are presented in Tables V
and VI.

II. METHOD

The ab initio configuration interaction and many-body
perturbation theory (CI + MBPT) method [23] is described
in full elsewhere [24]. Details of relevance for our Cr II

calculation are presented below.

A. Energy calculation

Any perturbative theory works best when the perturbations
are as small as possible. In Cr II the d-wave electrons play
an important role in shaping the atomic core, and so they
should be included in the initial approximation. As in previous
works, our single-particle wave functions are calculated using
Dirac-Fock (relativistic Hartree-Fock). We explore two Dirac-
Fock configurations: V N , which includes a half-filled 3d5

subshell, and V N−1, which includes 3d4. In both cases we
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simply scale the potential due to the filled 3d subshell by
the number of electrons to provide a “configuration-averaged”
initial wave function. The choice of starting approximation is
essential to obtaining a good final spectrum for Cr II but also
leads to potentially large subtraction diagrams in many-body
perturbation theory, as will be demonstrated.

Once we have a Dirac-Fock potential for the core, we
diagonalize the Dirac-Fock Hamiltonian over a set of 40 B

splines [25] spanning 40 atomic units to obtain a large set
of valence and virtual orbitals from which we select those
with the lowest eigenvalues. A set of configurations of valence
electrons |I 〉 are generated, from which eigenfunctions of
the complete Coulomb-potential Hamiltonian are calculated.
We find that almost complete convergence of the CI calculation
can be obtained using the basis 20 spdf : that is, we use s-wave
states labeled 1–20, p-wave states labeled 2–20, etc. (For the
lowest eigenvalue states the label is just the principal quantum
number.) With five valence electrons it is not possible to
include all configurations, and we must select those that con-
tribute most to the wave function. We include all configurations
that can be formed by one-particle excitations from the leading
configurations 3d5, 3d44s, and 3d44p as well as two-particle
excitations from these same configurations up to the 6sp9d6f
orbitals. The effects of higher orbitals and three-particle
excitations were found to be small and were not included.

Having achieved high saturation of the CI calculation,
core-valence effects are included using second-order MBPT
by modifying matrix elements of the Hamiltonian:

HIJ → HIJ +
∑
M

〈I |H |M〉〈M|H |J 〉
E − EM

, (1)

where the states |M〉 include all Slater determinants that have
core excitations. The MBPT sum may be further separated
into one-, two-, and three-valence-electron parts, denoted
�(1), �(2), and �(3) in Refs. [24,26]. Goldstone diagrams
and analytical expressions for these are presented in [24].
The states |M〉 include excitations from all core states into
virtual states up to 30spdfg. The effects on the energy
calculation of including �(1), �(2), and �(3) sequentially are
shown in Tables I and II (for the V N−1 and V N starting
approximations, respectively). The experimental energies that
we use for comparison are taken from the NIST database [27]
(see also [28]). More recently, absolute frequencies were
remeasured with very high accuracy for the lines seen in quasar
absorption spectra specifically for the purpose of studying α

variation [29]; however, such accuracy is unnecessary for the
purpose of comparison with theory.

B. Isotope shift and relativistic shift

Isotope shifts in atomic transition frequencies come from
two sources: the finite size of the nucleus (field shift) and
the recoil of the nucleus (mass shift). This mass shift is
usually divided into the normal mass shift (NMS), which is
easily calculated from the transition frequency, and the specific
mass shift (SMS). The mass shift is more important for light
elements, while for heavy elements the field shift dominates.
In the case of Cr II, the field shift is small; this paper is
concerned with the mass-shift contribution, which is more
difficult to calculate. The difference in the transition frequency

TABLE I. Energy spectrum of Cr II with orbitals calculated in
the V N−1 approximation relative to the experimentally determined
ground state, 3d5 6S5/2. Successive additions of �(1), �(2), and �(3)

are shown. (Energies are in cm−1.)

Level J CI +�(1) +�(2) +�(3) Expt. [27]

3d44s 6D 5/2 8505 −7294 6888 9491 12148
7/2 8682 −7128 7095 9699 12304

3d44p 6F o 1/2 41720 27542 40933 44533 46823
3/2 41805 27635 41028 44638 46905
5/2 41945 27788 41184 44798 47040
7/2 42140 28000 41401 45036 47227
9/2 42387 28271 41676 45320 47465

11/2 42687 28600 42008 45668 47752

3d44p 6P o 3/2 43214 29890 42534 46074 48399
5/2 43333 29982 42686 46216 48491
7/2 43515 30132 42915 46420 48632

3d44p 4P o 1/2 43793 30108 42725 46584 48749
3/2 44057 30328 43038 46907 49006
5/2 44787 30674 43880 47717 49706

3d44p 6Do 1/2 44594 29189 43659 47460 49493
3/2 44664 29323 43741 47552 49565
5/2 44451 29510 43492 47330 49352
7/2 44840 29721 43959 47727 49646
9/2 45054 29940 44209 47994 49838

ω between an isotope with mass number A′ and an isotope A,
δωA′,A = ωA′ − ωA, can be expressed as [15]

δωA′,A = (kNMS + kSMS)

(
1

A′ − 1

A

)
+ Fδ〈r2〉A′,A , (2)

TABLE II. Energy spectrum of Cr II with orbitals calculated in the
V N approximation relative to the experimentally determined ground
state, 3d5 6S5/2. Successive additions of �(1), �(2), and �(3) are shown.
(Energies are in cm−1.)

Level J CI +�(1) +�(2) +�(3) Expt. [27]

3d44s 6D 5/2 6688 −8662 3953 6415 12148
7/2 6862 −8515 4157 6617 12304

3d44p 6F o 1/2 41540 26023 38794 41627 46823
3/2 41626 26110 38888 41726 46905
5/2 41768 26257 39044 41887 47040
7/2 41966 26461 39260 42114 47227
9/2 42217 26724 39534 42399 47465

11/2 42521 27047 39865 42747 47752

3d44p 6P o 3/2 43124 27918 40888 43534 48399
5/2 43242 27987 41041 43674 48491
7/2 43421 28113 41265 43885 48632

3d44p 4P o 1/2 43816 28030 41092 43995 48749
3/2 44033 28307 41320 44246 49006
5/2 44812 29073 42251 45175 49706

3d44p 6Do 1/2 44432 28788 41749 44708 49493
3/2 44552 28878 41915 44861 49565
5/2 44303 28603 41591 44537 49352
7/2 44543 28849 41851 44815 49646
9/2 44766 29041 42108 45078 49838
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where δ〈r2〉 is the change in mean-square nuclear charge radius.
The normal-mass-shift constant can be expressed (in atomic
units h̄ = e = me = 1) as

kNMS = 1

2mu

∑
i

p2
i = − ω

mu

,

where mu = 1823 is the ratio of the atomic mass unit to the
electron mass and the sum is over all electron momenta pi .
The specific-mass-shift constant

kSMS = 1

mu

∑
i<j

pi · pj

and field-shift constant F are more difficult to calculate. We use
the nonrelativistic form of the mass-shift operator; relativistic
corrections for optical transitions in light atoms are on the
order of a few percent and can be neglected [18].

To calculate kSMS we use the all-order finite-field scaling
method. Here a rescaled two-body SMS operator is added to
the Coulomb potential everywhere that it appears in an energy
calculation:

Q̃ = 1

|r1 − r2| + λp1 · p2 . (3)

We recover the specific-mass-shift constant as

kSMS = dω

dλ

∣∣∣∣
λ=0

. (4)

The operator Q̃ has the same symmetry and structure as the
Coulomb operator (see Appendix A of Ref. [24]). We have
previously shown that good agreement with the experimental
isotope shift can be obtained in many-valence-electron atoms
and ions by using this finite field in a CI + MBPT energy
calculation [24,26,30,31].

The relativistic shift of a transition may be calculated in a
similar fashion. We simply recalculate the transition energies
ω from the very beginning using different values of α from
the laboratory value α0. The sensitivity to variation of the
fine-structure constant is then extracted using

q = dω

dα2

∣∣∣∣
α=α0

. (5)

III. RESULTS AND DISCUSSION

Cr II has five valence electrons, and these have a significant
impact on the form of the basis orbitals. For the CI + MBPT
method to work well it is important to have good initial orbitals,
and so our Dirac-Fock and subsequent B-spline codes include
the 3d4 or 3d5 configuration in the core, as described in
Sec. II A. (Our calculations show that saturation of the CI can
be met satisfactorily in both V N−1 and V N approximations.)
In the CI + MBPT code, the 3d orbitals are then stripped from
the core and become valence orbitals for the purposes of both
the CI and MBPT components of the calculation. In this way
excitations from the 3d shell are treated nonperturbatively.

To calculate the MBPT diagrams one must include the
change in effective core potential, V N−5 − V N or V N−5 −
V N−1 depending on the initial approximation. MBPT diagrams
that include this interaction are known as subtraction diagrams,

3d

3d

3d3d 3d

3d

3d

n

3 (a)

n

2 (a)

FIG. 1. Two large diagrams that affect the ground-state 3d5

multiplet that partially cancel. The labels refer to their designation
in [15].

and in our calculation they are huge. There are three subtraction
diagrams in �(1) and two in �(2) (these are shown in Figs. 2
and 4 of [24], respectively). When the subtraction diagrams in
�(1) are included, they significantly and adversely affect the
energies obtained, as can be seen in the CI + �(1) columns
(labeled “ + �(1)”) of Tables I and II. However, it turns out
that these adverse effects are nearly completely compensated
when �(2) and �(3) are also included. When all second-order
diagrams are included consistently, the energies and wave
functions are improved by the addition.

One might consider what happens if the subtraction
diagrams are simply neglected from the calculation. Indeed the
CI + �(1) energies are improved. However, when �(2) is added
(either with or without the two-valence-electron subtraction
diagrams), the energy levels obtained are again in very poor
agreement with experiment. Thus it is not only inconsistent
to leave out the subtraction diagrams, but it gives very poor
results when all other second-order MBPT terms are included.

The behavior can be explained by examining the form of the
�(1) and �(2) diagrams. For example, consider Figs. 2(a) and
3(a) from [24] with all external lines representing 3d electrons
(see Fig. 1). The subtraction diagram 2(a) has opposite sign
to the zero multipole (k = 0) part of 3(a). This kind of
cancellation is what finally suppresses the large subtraction
diagrams and is the reason why all second-order � diagrams
must be included consistently.

The energies obtained are slightly better in the V N−1

calculation. However, consider our calculations of the isotope-
shift constant kSMS, presented in Table III: we find that the
pure CI calculations give different results in the V N and V N−1

approximations, yet when the core-valence interactions are
included self-consistently, the agreement is much improved.
The disagreement is reduced from ∼13% to less than 4%, and
in the 3d44p 6P o transitions of astrophysical interest, it is more
like ∼1%.

The calculation of q values follows the same trend (Ta-
ble IV). In this case the results are far less sensitive to details
of the wave function: instead, the relativistic effects are deter-
mined by the form of the wave functions near the nucleus. We
see very strong agreement between our V N and V N−1 results,
especially after all � diagrams are included consistently. In
the transitions of astrophysical interest, the different starting
approximations lead to disagreements of the order ∼25% in
the pure CI case but ∼5% when MBPT is included.

Despite the consistency with respect to starting approxi-
mation, our transition energies still differ from experiment.
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TABLE III. Isotope shift constants kNMS and kSMS for transitions
to the ground state 3d5 6S5/2 (GHz amu).

kSMS (CI) kSMS (CI + �)

Level J kNMS V N V N−1 V N V N−1

3d44s 6D 5/2 −200 4520 4326 4944 5062
7/2 −202 4532 4337 4950 5069

3d44p 6F o 1/2 −770 3964 3398 4303 4127
3/2 −771 3970 3403 4314 4140
5/2 −774 3980 3412 4330 4161
7/2 −777 3992 3423 4346 4178
9/2 −781 4009 3438 4359 4191
11/2 −785 4028 3456 4362 4188

3d44p 6P o 3/2 −796 4072 3555 4189 4161
5/2 −797 4080 3563 4143 4090
7/2 −800 4093 3575 4203 4180

3d44p 4P o 1/2 −802 3981 3495 4227 4068
3/2 −806 3983 3507 4257 4187
5/2 −817 4071 3493 4271 4188

3d44p 6Do 1/2 −814 4016 3458 4195 4137
3/2 −815 4037 3467 4267 4156
5/2 −812 3982 3511 4278 4183
7/2 −816 3989 3451 4280 4129
9/2 −820 4003 3463 4302 4153

The most likely explanation is that we have not taken full
account of the relaxation of the core 3p6 electrons. These
have a strong effect on the 3d electrons via the exchange
potential, yet relaxation of these orbitals is only taken into
account to second order using perturbation theory. Ideally,

one would include them as valence electrons in the CI
so that their relaxation could be treated nonperturbatively;
however, this is not possible because the CI Hamiltonian size
grows too large. In the V N−1 approximation the 3p6 core
is more tightly bound, lessening the magnitude of relaxation
terms. This likely explains the improved agreement with
experiment.

The 3p electrons also pose a potential problem for the
isotope shift calculation. The scaled SMS operator that
appears in (3) manifests itself in the dipole part (k = 1)
of the multipole expansion of Q̃ [15]. Therefore it may be
particularly affected if the 3p-3d exchange terms are not
adequately described by the method. It is for this reason that
we conservatively use the difference between the CI and the
CI + � calculation as an estimate of the uncertainty in kSMS,
rather than the smaller difference between the V N and V N−1

calculations.
We present our final values of relativistic shifts q for the 6P o

transitions of astronomical interest (that is, those seen in quasar
absorption spectra) in Table V. As explained in Sec. III we
prefer our V N−1 approximation, which gives better agreement
with experimental transition energies; however, the difference
between the V N and V N−1 calculations is similar to the errors
quoted. The uncertainty is estimated as the difference between
our pure CI calculation and the full CI + MBPT calculation
including all � diagrams. Our calculated q values are seen to
be in good agreement with the CI calculations of Ref. [32].
In Table IV we see that the experimental g factors for these
transitions are well reproduced by our calculation. There are
no close levels in this case, so the methods of matching g

factors [32] are not required. The 4P o
5/2 and 6Do

5/2 transitions
are strongly mixed (as can be seen from the g factors, which
are well reproduced by our calculation), so if these transitions

TABLE IV. The g factors and relativistic shifts q (cm−1) for transitions to the ground state 3d5 6S5/2. Experimental g factors are taken from
Ref. [27]; calculated values are for the full CI + � method in the V N−1 approximation.

g q (CI) q (CI + �)

Level J Expt. Calc. V N V N−1 V N V N−1

3d44s 6D 5/2 1.669 1.657 −2483 −2209 −2430 −2351
7/2 1.578 1.587 −2300 −2034 −2223 −2145

3d44p 6F o 1/2 −0.689 −0.665 −2052 −1748 −1979 −1896
3/2 1.124 1.067 −1959 −1661 −1875 −1792
5/2 1.314 1.314 −1807 −1518 −1705 −1624
7/2 1.378 1.397 −1597 −1321 −1473 −1395
9/2 1.416 1.434 −1333 −1073 −1180 −1106

11/2 1.454 −1016 −776 −830 −758

3d44p 6P o 3/2 2.382 2.385 −1607 −1325 −1489 −1421
5/2 1.875 1.880 −1479 −1209 −1340 −1280
7/2 1.710 1.714 −1281 −1024 −1117 −1061

3d44p 4P o 1/2 2.844 2.811 −2146 −1782 −2122 −2003
3/2 1.802 1.786 −1913 −1517 −1847 −1704
5/2 1.624 1.626 −1089 −1036 −916 −946

3d44p 6Do 1/2 3.155 3.186 −1512 −1316 −1390 −1357
3/2 1.824 1.827 −1373 −1227 −1232 −1232
5/2 1.628 1.634 −1651 −1204 −1547 −1396
7/2 1.577 1.585 −1417 −1171 −1281 −1220
9/2 1.570 1.552 −1200 −977 −1036 −990
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TABLE V. Relativistic shifts q for transitions to ground state
3d5 6S5/2.

ω λ q (cm−1)

Level J (cm−1) (Å) This work Ref. [32]

3d44p 6P o 3/2 48399 2066 −1421 (70) −1360 (150)
5/2 48491 2062 −1280 (70) −1280 (150)
7/2 48632 2056 −1061 (70) −1110 (150)

are ever seen in quasar absorption systems, then a more careful
analysis may be required.

In a previous comparison between theory and experiment
in Sr II it was found that the SMS was underestimated by
theory at the ∼30% level [33]. This is a single-valence-electron
ion, and so there is no CI; rather, we added �(1) directly to
our Dirac-Fock calculation. In the case of Sr II the addition
of �(1) did not adequately account for the effect of core
relaxation on the SMS. On the other hand, using the same
method, good agreement has been obtained between theory
and experiment for Zn II [15], which we also treated as a
single-valence-electron ion. Moreover, because the majority
of the isotope shift in Cr II comes from the valence-valence
contributions that are treated to all orders using CI, we have
good reason to believe that our mass shifts have been calculated
with reasonable accuracy.

We have also estimated the size of the field shift in
these transitions using a small CI basis to estimate F and
experimental values of δ〈r2〉 taken from [34]. The field shift is
expected to be small for a light element like Cr II. Furthermore
for the d-p transitions of astrophysical interest the orbitals
do not overlap the nucleus strongly, and so there is additional
suppression. We find the field shift is of the order of ∼0.010 km
s−1 or smaller, which is much smaller than our uncertainty in
kSMS. We neglect it entirely.

In Table VI we present our isotope shift calculations for
astronomically relevant transitions of Cr II using the V N−1

results of Table III in (2). Again, the uncertainty quoted is the
difference between the pure CI and CI + MBPT calculations,
i.e., the entire effect of �. This is very much larger than
the difference between our V N and V N−1 calculations. We
quote the velocity structure in wavelength space relative
to the leading isotope 52Cr. This is the preferred form
for use in astronomy: the velocity shift is δv = (λA,52/λ)c,
where λA,52 = λA − λ52 and c is the speed of light in
km s−1.

TABLE VI. Calculated velocity structure in wavelength space of
transitions to ground state 3d5 6S5/2 in Cr II.

(δλA,52/λ)c (km s−1)

Upper level J λ (Å) A = 50 A = 53 A = 54

3d44p 6P o 3/2 2066 −0.535(96) 0.252(45) 0.495(89)
5/2 2062 −0.522(84) 0.246(39) 0.484(78)
7/2 2056 −0.535(96) 0.252(45) 0.495(89)

IV. CONCLUSION

We have shown that the CI + MBPT method can give
transition energies in good agreement with experiment for low-
lying transitions in Cr II. Although the subtraction diagrams
are very large when the orbitals are calculated in the V N−1 or
V N approximations, when all second-order MBPT diagrams
are taken into account consistently, the calculated energies are
found to improve. This may help to direct future efforts using
the CI + MBPT method in many-valence-electron ions such
as Fe II, which is of importance to studies of α variation in
quasar absorption systems.

The SMS in Cr II is found to dominate the isotope shift. For
the 3d5 6S5/2 → 3d44p 6P o transitions seen in quasar spectra
they are five times the magnitude of the normal mass shift
and of opposite sign. The total mass-shift constant for these
transitions, kNMS + kSMS = 3365 (112) GHz amu (taking the
J = 3/2 upper level), is consistent with an earlier CI estimate
of 1900 (1200) GHz amu [16], although clearly at the limit
of the uncertainty. The Cr II isotope shift is also quite large
in comparison to many of the other isotope shifts used in the
quasar analysis (although many are unknown). The velocity
shift between the even isotopes (∼500 ms) is comparable to the
isotope shifts of the λλ2803 and 2796 lines of Mg II (∼850 ms).
Fortunately, in the case of Cr II there are stable isotopes on
either side of the leading isotope, so one may hope that the
total systematic shift due to variation of isotope abundances is
small.
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