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Lithium electric dipole polarizability
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The electric dipole polarizability of the lithium atom in the ground state is calculated including relativistic and
quantum electrodynamics corrections. The obtained result αE = 164.0740(5) a.u. is in good agreement with the
less accurate experimental value of 164.19(1.08) a.u. The small uncertainty of about 3 parts per 106 comes from
the approximate treatment of quantum electrodynamics corrections. Our theoretical result can be considered as
a benchmark for more general atomic structure methods and may serve as a reference value for the relative
measurement of polarizabilities of the other alkali-metal atoms.
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I. INTRODUCTION

The electric dipole polarizability αE characterizes the
response of the system to the homogeneous external electric
field. It is related to various physical phenomena such as
van der Waals interactions in ultracold collisions [1–3], Bose-
Einstein condensation [4–7], binding positrons to atoms [8],
and atomic energy shifts from the ambient blackbody radiation
field in atomic clocks [9,10].

Polarizabilities for alkali-metal atoms can be determined
experimentally with interferometric methods [11–15]. Recent
advances in cooling techniques have allowed one to obtain
the polarizability for the cesium ground state with 0.14%
uncertainty [16]. However, such accuracy is not accessible
at present for other alkali-metal systems. In contrast, the
polarizability ratio for two different atoms can in some cases be
measured more accurately than for a single atom [14,17,18].
This allows an improvement in determining polarizabilities
from the ratio and the reference value. An appropriate candi-
date is the cesium atom [16]. However, the ratio measurement
cannot be performed precisely with lighter atomic systems as
yet. Another possibility is the accurate theoretical prediction
for one of the light alkali-metal atoms, which can be set as
the reference system. The most promising are calculations for
the lithium atom, which can be done very accurately within
nonrelativistic quantum electrodynamics (NRQED).

Nonrelativistic quantum electrodynamics is based on
expansion of quantum electrodynamics in powers of the
fine-structure constant α. All the effects in NRQED expansion
are expressed in terms of mean values with the wave function.
Numerical solution of the Schrödinger equation can be
obtained accurately for low-lying states of three-electron atom
with explicitly correlated Hylleraas functions [19–22]. At the
leading (nonrelativistic) order, the ground-state polarizability
of the lithium atom has already been calculated with high
numerical precision to be α0 = 164.112(1) [23]. The result
α0 = 164.1117 of comparable accuracy has also been obtained
with explicitly correlated Gaussian (ECG) functions [24].
Calculations beyond the leading order have never been per-
formed so far, probably due to high complexity. For relativistic

corrections only estimations exist, which lead to the total result
αE = 164.11(3) [25]. Other treatments based on the relativistic
coupled-cluster method [26] and on the relativistic many-body
perturbation theory [27] do not include electron correlations
accurately enough to compete with methods, which are based
on the NRQED approach and explicitly correlated functions.

In this paper we provide the following benchmark for
α0 = 164.112 459(3) and also the reference value including
the relativistic correction and the estimation of the leading
QED effects αE = 164.0740(5). The calculations are similar
to those performed previously for the ground state of the
helium atom [28], though significant modifications have to
be introduced for the more complex system, such as the
lithium atom. In order to improve the numerical precision
of the relativistic corrections, we have derived a regularized
representation for operators of the Breit-Pauli Hamiltonian
in higher orders of perturbation theory. The accuracy of our
result is limited only by the approximate treatment of the Bethe
logarithm term [28], which has been verified in helium [29] to
be well within the 10% uncertainty assumed here. The higher-
order O(α6) QED corrections can safely be neglected. Apart
from the leading QED corrections, we include also the leading
finite nuclear mass corrections. As a result, our theoretical
value for αE is two orders of magnitude more accurate than
the best previous value in Ref. [25] and we recommend it as a
reference for relative measurement of static polarizabilities.

All quantities given in this work are reported in atomic
units.

II. THEORY

The nonrelativistic Hamiltonian for the lithium atom with
an infinitely heavy nucleus and in the presence of an external
electric field E is given by

H =
∑

a

p2
a

2
−

∑
a

Z

ra

+
∑
a>b

1

rab

−
∑

a

E i r i
a, (1)

where the summation convention is used for Cartesian coordi-
nates. With this Hamiltonian, the nonrelativistic electric dipole
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polarizability α0 can be evaluated in second-order perturbation
theory according to the formula

α0 = −2

3

∑
a,b

〈φ0|ri
a

1

E0 − H0
ri
b|φ0〉, (2)

where φ0 and E0 are the ground-state wave function and
nonrelativistic energy, respectively, and H0 represents the
Hamiltonian in Eq. (1) without the external field. The static
polarizability beyond the nonrelativistic approximation can be
obtained by modifying H0 by δH , which includes corrections
due to the finite mass of the nucleus, relativity, and QED,

δH = λHMP + α2Hrel + α3HQED, (3)

where λ = −μ/M is the ratio of the reduced electron mass
to the nucleus mass and the subscript MP denotes the mass
polarization correction. Using δH one finds a perturbative
formula for the electric dipole polarizability

αE = α0 + δαE, (4)

where

−3

2
δαE =

∑
a,b

[
2〈φ0|δH 1

(E0 − H0)′ r
i
a

1

E0 − H0
ri
b|φ0〉

+ 〈φ0|ri
a

1

E0 − H0
(δH − 〈δH 〉) 1

E0 − H0
ri
b|φ0〉

]
.

(5)

Components of δH are defined as (see, e.g., Ref. [30])

HMP = −
∑
a<b

pi
ap

i
b, (6)

Hrel =
∑

a

[
−p4

a

8
+ πZ

2
δ3(ra)

]

+
∑
a<b

[
πδ3(rab) − 1

2
pi

a

(
δij

rab

+ ri
abr

j

ab

r3
ab

)
p

j

b

]
. (7)

The QED correction is given by

HQED = 4Z

3

[
19

30
+ ln(α−2) − ln k0

] ∑
a

δ3(ra)

+
[

164

15
+ 14

3
ln α

] ∑
a<b

δ3(rab) − 7

6π

∑
a<b

P

(
1

r3
ab

)
,

(8)

where the Bethe logarithm ln k0 has the form

ln k0 ≡
〈 ∑

a pi
a(H0 − E0) ln[2(H0 − E0)]

∑
b pi

b

〉
2πZ

∑
c〈δ3(rc)〉 (9)

and P (1/r3
ab) is defined by

〈φ|P
(

1

r3

)
|ψ〉 = lim

a→0

∫
d3r φ∗(r)

[
1

r3
�(r − a)

+ 4πδ3(r)(γ + ln a)

]
ψ(r). (10)

The corresponding terms in Eq. (5) can be systematically
ordered as

δαE = λA(0,1) + α2A(2,0) + α3A(3,0) + · · · , (11)

where A(m,n) are the expansion coefficients of αm λn.

III. DETAILS OF CALCULATIONS

The spatial part of the nonrelativistic ground-state wave
function of lithium φ0 is built as a linear combination of S-type
Hylleraas functions

φ = e−w1r1−w2r2−w3r3r
n1
23r

n2
31r

n3
12r

n4
1 r

n5
2 r

n6
3 , (12)

with non-negative integers ni satisfying the condition

6∑
i=1

ni � 
 (13)

for a maximum shell 
 in the range from 7 up to 10. The
whole basis set is divided into five sectors, each one with its
own set of variational parameters wi [20]. To avoid numerical
instabilities, within each sector we drop the terms with n4 > n5

(or n4 < n5) and for n4 = n5 drop terms with n1 > n2 (or
n1 < n2). For each 
, the nonrelativistic energy was optimized
with respect to the free parameters wi . Details of the variational
method with the Hylleraas basis can be found in our previous
paper on the lithium ground state [21] and more accurate
results are in Ref. [31]. Recently, Wang et al. published a work
on large-scale Hylleraas calculations with modified sector
decomposition with 26 520 basis elements generated with

 = 15 [32]. Their result confirms the Hylleraas method as
outstanding in applications for low-lying states of lithium atom
with an uncertainty as small as 5 × 10−15.

The first- and second-order perturbation correction to the
wave function present in the formulas in Eqs. (2) and (5) can
be denoted as

∣∣φi
1

〉 =
∑

a

1

E0 − H0
ri
a|φ0〉, (14)

∣∣φ2
〉 =

∑
a

1

(E0 − H0)′ r
i
a

∣∣φi
1

〉
. (15)

TABLE I. Nonrelativistic energies and electric dipole polarizabil-
ities. Hyll. denotes the Hylleraas basis and ECG denotes explicitly
correlated Gaussian calculations.


 E0 α0

7 −7.478 060 311 577 67 164.112 426 9
8 −7.478 060 322 075 18 164.112 443 0
9 −7.478 060 323 864 52 164.112 458 3
10 −7.478 060 323 902 25 164.112 458 8
∞ 164.112 459(3)
ECGa −7.478 060 323 81
Hyll.b −7.478 060 323 910 2(2)
Hyll.c −7.478 060 323 910 143 7(45)
ECGd 164.111 7
Hyll.e 164.112(1)

aReference [33].
bReference [31].
cReference [32].
dReference [24].
eReference [23].
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TABLE II. Mean values 〈φ0|A|φ2〉. An asterisk denotes results for the Dirac δ function obtained with a plain evaluation.

pi
ar

−1
ab (δij


 p4
a δ(ra) δ(rab) +ri

abr
j

abr
−2
ab )pj

b pi
ap

i
b r−3

ab

8 −8246.207 −153.250 37 −11.590 551 5 −19.945 53 −19.579 376 −82.534
9 −8246.438 −153.251 61 −11.590 426 8 −19.947 81 −19.579 378 −82.485
10 −8246.375 −153.249 66 −11.590 430 4 −19.948 13 −19.579 404 −82.445
11 −8246.278 −153.247 61 −11.590 444 9 −19.948 37 −19.579 346 −82.600
11 −153.241 24∗ −11.587 700 3∗

The function in Eq. (14) is represented in terms of P -type
Hylleraas basis functions as

φi
a = ri

ae
−w1r1−w2r2−w3r3r

n1
23r

n2
31r

n3
12r

n4
1 r

n5
2 r

n6
3 . (16)

The first-order correction φi
1 is represented in two blocks of

functions, which are relevant to core and external electrons,
respectively. Each block contains functions up to the shell

 + 1 and is divided into two sectors. Then the parameters
wi are optimized to achieve the best upper-bound value of
α0. For second-order correction φ2 we use S-type functions
limited by the (
 + 1) shell, which are divided into five sectors
with the same prescription as in the construction of the wave
function φ0.

Numerical results are presented in Table I. Our value for
α0 is almost three orders of magnitude more accurate than
previously published in Ref. [23]. A possible explanation
for such an improvement is the careful optimization of the
nonlinear parameters wi . With accurate result for α0 and the
first-order correction to the wave function φi

1 we are able to
include small effects, thus refining theoretical predictions of
αE . The objective of the calculations are finite-mass, leading
relativistic, and QED corrections to δαE using Eq. (5), which
can be rewritten in the form

− 3
2δαE = 2〈φ0|δH |φ2〉 + 〈

φi
1

∣∣(δH − 〈δH 〉)∣∣φi
1

〉
. (17)

It involves the evaluation of different mean values. We
presented details of the first-order calculations 〈φ0|δH |φ0〉 ≡
〈δH 〉 in Ref. [22] and the most accurate results have been
published in Ref. [34]. The only exception is the value of the
Bethe logarithm defined in Eq. (9), which was published by
Yan et al. [35].

Direct use of Eqs. (8) and (9) leads to a slow numerical
convergence. This is observed for operators sensitive to short-
distance inaccuracies of the wave function such as p4

a and the
Dirac δ function. The solution is to regularize matrix elements

of these operators, following Drachman’s recipes [36], in the
higher-order perturbation formulas. In the paper we provide
the set of formulas for the leading relativistic correction to α0.
The following operators have been used in the regularization
of the Breit-Pauli Hamiltonian [22]:

∑
a

[
p4

a

]
r
= 4(E0 − V )2 −

∑
a 	=b

p2
ap

2
b, (18)

4π
∑

a

[δ(ra)]r = 4
∑

a

(E0 − V )r−1
a − 2

∑
a,b

pi
br

−1
a pi

b,

(19)

4π
∑
a<b

[δ(rab)]r = 2
∑
a<b

(E0 − V )r−1
ab −

∑
a<b,c

pi
cr

−1
ab pi

c.

(20)

We present formulas for the components of δαE in Eq. (5),

∑
a

〈φ0|p4
a|φ2〉 =

∑
a

〈φ0|
[
p4

a

]
r
|φ2〉

− 4
∑

b

〈φ0|(2E0 − V )ri
b

∣∣φi
1

〉
, (21)

∑
a

〈
φi

1

∣∣p4
a

∣∣δφi
1

〉 =
∑

a

〈
φi

1

∣∣[p4
a

]
r

∣∣φi
1

〉

− 8
∑

b

〈φ0|(E0 − V )ri
b

∣∣φi
1

〉

+ 12
∑

a

〈
r2
a

〉 − 4
∑
a<b

〈
r2
ab

〉
, (22)

∑
a

〈φ0|4πδ(ra)|φ2〉 =
∑

a

〈φ0|4π [δ(ra)]r |φ2〉

− 2
∑
a,b

〈φ0|
(
r−1
a − 〈

r−1
a

〉)
ri
b

∣∣φi
1

〉
,

(23)

TABLE III. Mean values 〈φi
1|A − 〈A〉|φi

1〉. An asterisk denotes results for the Dirac δ function obtained with a plain evaluation.

pi
ar

−1
ab (δij


 p4
a δ(ra) δ(rab) +ri

abr
j

abr
−2
ab )pj

b pi
ap

i
b r−3

ab

8 −28 732.39 −561.641 21 −41.097 594 −224.650 40 −152.105 776 9 −19.63
9 −28 732.70 −561.635 21 −41.097 513 −224.659 71 −152.105 735 8 −18.30
10 −28 733.04 −561.634 93 −41.097 454 −224.662 60 −152.105 738 3 −17.60
11 −28 733.21 −561.635 57 −41.097 423 −224.663 45 −152.105 725 8 −17.34
11 −561.643 85* −41.090 327∗
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TABLE IV. Final value, numerical coefficients, and contribu-
tions related to the fine-structure constant α expansion of the
electric dipole polarizability αE for 7Li. The mass of the nucleus
M(7Li) = 7.016 003 425 6(45) [37]. A comparison to theoretical and
experimental data is presented. Except for the α3 coefficient A(3,0),
other uncertainties are of numerical origin.

Order A(m,n) Contribution

1 164.112 459(3) 164.112 46
α2 −995.06(2) −0.052 99
α3 11 700.(1200) 0.004 5(5)
λ −127.509 64(12) 0.009 97
Total 164.074 0(5)

Theor.a 163.74
Theor.b 164.08
Theor.c 164.11(3)
Expt.d 164.0(3.4)
Expt.e 164.19(1.08)

aReferences [26].
bReferences [27].
cReferences [35].
dReferences [12].
eReferences [11,38].

∑
a

〈
φi

1

∣∣4πδ(ra)
∣∣φi

1

〉 =
∑

a

〈
φi

1

∣∣4π [δ(ra)]r
∣∣φi

1

〉

− 4
∑
a,b

〈φ0|r−1
a ri

b

∣∣φi
1

〉
, (24)

∑
a<b

〈φ0|4πδ(rab)|φ2〉 =
∑
a<b

〈φ0|4π [δ(rab)]r |φ2〉

−
∑
a<b,c

〈φ0|
(
r−1
ab − 〈

r−1
ab

〉)
ri
c

∣∣φi
1

〉
,

(25)∑
a<b

〈
φi

1

∣∣4πδ(rab)
∣∣φi

1

〉 =
∑
a<b

〈
φi

1

∣∣4π [δ(rab)]r
∣∣φi

1

〉

− 2
∑
a<b,c

〈φ0|r−1
ab ri

c

∣∣φi
1

〉
, (26)

and numerical results are collected in Tables II and III. For
Dirac-δ operators we also present nonregularized results. The
accuracy of such mean values is at least one order of magnitude
lower than regularized expressions. The enhancement seems
to be even more remarkable for two electron operators.
Although the calculations with regularized forms are much
more complicated, the effort is justified in the case of lithium.
It significantly reduces the uncertainty of the total result
presented in Table IV. This is different in comparison to the
helium atom, where regularized methods are not mandatory

due to much higher numerical precision of the wave function
[28,29].

IV. FINAL RESULTS

The obtained αE improves the accuracy of theoretical
predictions [25] since it takes into account the leading
relativistic and QED effects. It is in accordance with the
result calculated within the relativistic many-body theory [27],
which is less precise due to inexact treatment of electron
correlations. Moreover, it is also in good agreement with
experimental values [11,12,38], although at present they are
much less accurate. The uncertainty of our result comes from
the approximate treatment of the correction related to the
Bethe logarithm. To estimate this effect, we use the value
for a free atom ln k0(2 1S) = 5.178 28(1) [35], thus neglecting
the dependence of the Bethe logarithm on the electric field,
and assume an uncertainty of 10%, which corresponds to
a 5 × 10−4 absolute uncertainty of the final result. The
higher-order QED corrections are at present negligible. The
dominating part, known from the one-loop self-energy in
hydrogenic systems

HHQED = Z2

[
427

96
− 2 ln(2)

] ∑
a

δ3(ra), (27)

gives about a 6.3 × 10−5 correction to the polarizability, which
is much smaller than the uncertainty of the Bethe logarithmic
contribution.

V. CONCLUSION

We have calculated the electric dipole polarizability αE of
the lithium ground state, on the basis of the NRQED approach,
using explicitly correlated Hylleraas functions. Our value, the
most accurate to date, is in agreement with previous ones
and can be considered as a benchmark for the relativistic
coupled-cluster and relativistic many-body perturbation theory
methods. The experimental accuracy is not yet good enough
to verify our theoretical predictions, with one exception. The
relative measurement of polarizabilities between two states
of the same atom, such as for 7Li, αE(2 1S) − αE(2 1P ) =
37.146(17) by Hunter et al. [39], can reach competitive
accuracy. For the comparison with this experimental value,
the polarizability αE of the 2 1P state has to be calculated
including relativistic and QED corrections, and this has not
yet been done.
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[31] M. Puchalski, D. Kȩdziera, and K. Pachucki, Phys. Rev. A 82,

062509 (2010).
[32] L. M. Wang, Z.-C. Yan, H. X. Qiao, and G. W. F. Drake, Phys.

Rev. A 83, 034503 (2011).
[33] M. Stanke, J. Komasa, D. Kȩdziera, S. Bubin, and
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