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We present an investigation of the Lamb shift (2P1/2-2S1/2) in the muonic deuterium (μD) atom using the three-
dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear-structure, and
recoil effects are calculated with the account of contributions of orders α3, α4, α5, and α6. The results are compared
with earlier performed calculations. The obtained numerical value of the Lamb shift at 202.4139 meV can be
considered a reliable estimate for comparison with forthcoming experimental data.
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I. INTRODUCTION

The muonic deuterium (μD) is the bound state of a negative
muon and deuteron. The lifetime of this simple atom is
determined by the muon decay in time τμ = 2.19703(4) ×
10−6 s. When passing from electronic hydrogen to muonic
hydrogen we observe the variation of the relative value of
the nuclear-structure and polarizability effects, the electron
vacuum polarization corrections, and recoil contributions to
the fine and hyperfine structure of the energy spectrum
[1–6]. Muonic atoms represent a unique laboratory for the
determination of the nuclear properties. The experimental
investigation of the (2P -2S) Lamb shift in light muonic
atoms (muonic hydrogen, muonic deuterium, and muonic
helium ions) can give more precise values of the nuclear
charge radii [7–11]. Since the early 1970s, measurement of
the muonic hydrogen Lamb shift has been considered one of
the fundamental experiments in atomic spectroscopy. Recent
progress in muon beams and laser technology has made such
an experiment feasible. The first successful measurement
of the (μp) Lamb shift transition energy (2P F=2

3/2 -2SF=1
1/2 ) at

Paul Scherrer Institute (PSI) produced the result 49881.88
(76) GHz [206.2949 (32) meV] [12]. It leads to a new
value of the proton charge radius, rp = 0.84184(36)(56) fm,
where the first and second uncertainties originate, respectively,
from the experimental uncertainty of 0.76 GHz and the
uncertainty 0.0049 meV in the Lamb shift value which is
dominated by the proton polarizability term. The new value
of proton radius rp improves the CODATA value [13] by an
order of magnitude. Another important project which exists
now at PSI in the charge radius experiment with muonic
atoms (CREMA) collaboration proposes to measure several
transition frequencies between the 2S and 2P states in muonic
helium ions (μ4

2He)+ and (μ3
2He)+ with 50-ppm precision. As

a result, new values of the charge radii of a helion and an α

particle with the accuracy of 0.0005 fm will be determined.
The program of the investigation of the energy levels in light
muonic atoms suggests that the theoretical calculations of the
fine and hyperfine structures of states with n = 1,2 will be
performed with high accuracy. Note that the discrepancy in
the new proton charge radius and CODATA values induced

both a reanalysis of the earlier-obtained contributions to the
observed transition frequency and a study of the hypothetical
muon-proton interaction [14–17].

Theoretical investigations of the Lamb shift (2P -2S), the
fine and hyperfine structures of light muonic atoms, was
performed many years ago in Refs. [1,18–23] on the basis of
the Dirac equation and the nonrelativistic three-dimensional
method (see other references in review articles [1,6]). Their
calculation took into account different QED corrections with
the accuracy of 0.01 meV. Recently,Ref. [1] extended the
case of muonic deuterium in Refs. [2,3] where the fine
and hyperfine structures were analyzed with high accuracy.
Different corrections to the fine and hyperfine structures
of muonic hydrogen are calculated on the basis of the
three-dimensional method in quantum electrodynamics in
Refs. [4,24–28]. The vacuum polarization effects of order α5

were considered in Refs. [29–31]. In this work we aim to
present an independent calculation of the Lamb shift (2P -2S)
in muonic deuterium (μD) with the account of contributions
of orders α3, α4, α5, and α6 on the basis of the quasipotential
method in quantum electrodynamics [26–28,32]. We consider
the effects of the electron vacuum polarization, recoil, and
nuclear-structure corrections which are crucial to attain high
accuracy. With the exception of the nuclear-structure and
polarizability contribution, we calculate all corrections in the
intervals (2P1/2-2S1/2) and (2P3/2-2P1/2) with precision of
0.0001 and 0.00001 meV, respectively. We recalculate and
improve the earlier obtained results [1,2] and derive a reliable
independent estimate for the (2P1/2-2S1/2) Lamb shift and
(2P3/2-2S1/2) Lamb shift, which can be used for comparison
with forthcoming experimental data. Modern numerical values
of fundamental physical constants are taken from Ref. [13]
as follows: the electron mass me = 0.510998910(13) ×
10−3 GeV, the muon mass mμ = 0.1056583668(38) GeV, the
fine-structure constant α−1 = 137.035999084(51) [33], and
the deuteron mass md = 1.875612793(47) GeV. Numerical
values of the proton-structure corrections are obtained with
the 2010 CODATA value for the deuteron charge radius
rd = 2.1424(21) fm and rd = 2.130 ± 0.003 ± 0.009 fm from
Ref. [34].
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II. EFFECTS OF VACUUM POLARIZATION IN THE
ONE-PHOTON INTERACTION

Our approach to the investigation of the Lamb shift (2P -2S)
in muonic deuterium is based on the use of the quasipotential
method in quantum electrodynamics [27,28,35], where the
two-particle bound state is described by the Schrödinger
equation. In perturbation theory the basic contribution to the
muon-deuteron interaction operator is determined by the Breit
Hamiltonian [5,36] as follows:

HB = p2

2μ
− Zα

r
− p4

8m3
1

− p4

8m3
2

+ πZα

2

(
1

m2
1

+ δI

m2
2

)
δ(r)

− Zα

2m1m2r

[
p2 + r(rp)p

r2

]

+ Zα

r3

(
1

4m2
1

+ 1

2m1m2

)
(Lσ 1) = H0 + �V B, (1)

where H0 = p2/2μ − Zα/r , m1 and m2 are the muon and
deuteron masses, and μ = m1m2/(m1 + m2). The deuteron
factor δI = 0 because we used the common definition of the
deuteron charge radius r2

d = −6 dFC

dQ2 |Q2=0 [37,38].
The wave functions of the 2S and 2P states are equal to

ψ200(r) = W 3/2

2
√

2π
e− Wr

2

(
1 − Wr

2

)
,

(2)

ψ21m(r) = W 3/2

2
√

6
e− Wr

2 WrY1m(θ,φ),W = μZα.

The ratio of the Bohr radius of muonic deuterium to the
Compton wavelength of the electron is me/W = 0.7, so the
basic contribution of the electron vacuum polarization (VP) to
the Lamb shift is of order α(Zα)2 [see Fig. 1(a)]. Accounting
for the modification of the Coulomb potential due to the
vacuum polarization in the coordinate representation

V C
VP(r) = α

3π

∫ ∞

1
dξρ(ξ )

(
− Zα

r
e−2meξr

)
,

(3)

ρ(ξ ) =
√

ξ 2 − 1(2ξ 2 + 1)

ξ 4
,

we present equations for the one-loop VP contributions to
shifts of the 2S and 2P states and the Lamb shift (2P -2S) as

FIG. 1. Effects of one-loop and two-loop vacuum polarization in
the one-photon interaction.

follows:

�EVP(2S) = −μ(Zα)2α

6π

∫ ∞

1
ρ(ξ )dξ

×
∫ ∞

0
xdx

(
1 − x

2

)2

e
−x

(
1+ 2meξ

W

)

= −245.3194 meV, (4)

�EVP(2P ) = −μ(Zα)2α

72π

∫ ∞

1
ρ(ξ )dξ

∫ ∞

0
x3dxe

−x

(
1+ 2meξ

W

)

= −17.6847 meV, (5)

�EVP(2P -2S) = 227.6347 meV, (6)

where we round the number to four decimal digits for preci-
sion. The subscript VP designates the contribution of electron
vacuum polarization. Experimental error in a determination
of the particle masses and fine-structure constant does not
influence on the digits given in Eq. (6). The muon one-loop
vacuum polarization correction of order α(Zα)4 is known
in analytical form [6]. We included the corresponding value
�EMVP(2P -2S) = α5μ3/30πm2

1 = 0.01968 meV to the total
shift in Sec. V [Eqs. (71) and (72)]. This result agrees with
that in Ref. [2]. Two-loop vacuum polarization effects in the
one-photon interaction are shown in Figs. 1(b)–1(d). To obtain
a contribution of the amplitude in Fig. 1(b) to the interaction
operator, it is necessary to use the following replacement in
the photon propagator:

1

k2
→ α

3π

∫ ∞

1
ρ(ξ )dξ

1

k2 + 4m2
eξ

2
. (7)

In the coordinate representation a diagram with two sequential
loops gives the following particle interaction operator:

V C
VP−VP(r) = α2

9π2

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

(
− Zα

r

)

× 1

(ξ 2 − η2)
(ξ 2e−2meξr − η2e−2meηr ), (8)

where the subscript (VP-VP) corresponds to two sequential
loops in the Feynman amplitude [Fig. 1(b)]. Averaging Eq. (8)
over the Coulomb wave functions (2), we find the following
contribution to the Lamb shift of order α2(Zα)2:

�EVP−VP(2P -2S) = −μα2(Zα)2

18π2

∫ ∞

1
dξ

∫ ∞

1
dη

ρ(ξ )ρ(η)

(ξ + η)

× {
4m2

eW
3[4meξη + W (ξ + η)]

× [
8m2

eξ
2η2 + 4meWξη(ξ + η) + W 2(ξ 2 + η2)

]}
= 0.2956 meV. (9)

A higher-order α2(Zα)4 correction is determined by an
amplitude with two sequential electron (VP) and muon (MVP)
loops. The corresponding potential is given by

�VVP−MVP(r)

= −4(Zα)α2

45π2m2
1

∫ ∞

1
ρ(ξ )dξ

[
πδ(r) − m2

eξ
2

r
e−2meξr

]
. (10)
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Its contribution to the shift (2P -2S) is equal to

�EVP−MVP(2P -2S) = 0.0001 meV. (11)

The two-loop vacuum polarization graphs [Figs. 1(b)–1(d)]
were first calculated in Refs. [39,40]. The particle interaction
potential, corresponding to two-loop amplitudes in Figs. 1(c)
and 1(d) with the second-order polarization operator, takes the

following form [39]:

�V C
two−loopVP = −2

3

Zα

r

(
α

π

)2 ∫ 1

0

f (v)dv

(1 − v2)
e
− 2mer√

1−v2 , (12)

where the subscript (two-loop VP) corresponds only to two-
loop Feynman amplitudes shown in Figs. 1(c) and 1(d), and
the spectral function is

f (v) = v

{
(3 − v2)(1 + v2)

[
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)
+ 2Li2
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)
+ 3

2
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1 + v

1 − v
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1 + v

2
− ln

1 + v

1 − v
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]

+
[

11

16
(3 − v2)(1 + v2) + v4

4

]
ln

1 + v

1 − v
+

[
3

2
v(3 − v2) ln

1 − v2

4
− 2v(3 − v2) ln v

]
+ 3

8
v(5 − 3v2)

}
, (13)

where Li2(z) is the Euler dilogarithm. The potential �V C
two−loopVP(r) gives a larger contribution, as compared with Eq. (8), to

both the hyperfine structure and the Lamb shift (2P -2S). In the case of the Lamb shift we find the following contribution:

�Etwo−loopVP(2P -2S) = 1.3704 meV. (14)

In Eq. (12), by changing the electron mass to the muon mass one can obtain the two-loop muon vacuum polarization correction.
It is known in analytical form from the Ref. [41] (we present their result with five decimal digits) as follows:

�Etwo−loopMVP(2P -2S) = 41

324

α2(Zα)4μ3

π2m2
1

= 0.00017 meV. (15)

The total two-loop electron vacuum polarization contribution given in Table I is the sum of Eqs. (9) and (14). The correction
(15) is included further in Eq. (72). The numerical values of corrections (9) and (14) and the desired accuracy of the calculation
show that it is important to consider three-loop contributions of the electron vacuum polarization (see Fig. 2). One part of the
correction to the potential from the diagrams of the three-loop vacuum polarization in the one-photon interaction can be derived
by means of Eqs. (8)–(12) [sequential loops in Figs. 2(a) and 2(b)] [28]. The corresponding contributions to the potential and the
splitting (2P -2S) are given by

V C
VP−VP−VP(r) = −Zα

r

α3

(3π )3

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(ηdη

∫ ∞

1
ρ(ζ )dζ

×
[
e−2meζr ζ 4

(ξ 2 − ζ 2)(η2 − ζ 2)
+ e−2meξr ξ 4

(ζ 2 − ξ 2)(η2 − ξ 2)
+ e−2meηr η4

(ξ 2 − η2)(ζ 2 − η2)

]
, (16)

V C
VP−two−loopVP = −4μα3(Zα)

9π3

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1

f (η)dη

η

1

r(η2 − ξ 2)
(η2e−2meηr − ξ 2e−2meξr ), (17)

�EVP−VP−VP(2P -2S) = 0.0005 meV, (18)

�EVP−two−loopVP(2P -2S) = 0.0034 meV, (19)

where the subscripts (VP-VP-VP) and (VP-two-loop VP)
designate only the Feynman amplitudes shown in Figs. 2(a)
and 2(b), respectively. Sixth-order vacuum polarization contri-
butions, including Eqs. (18) and (19), were obtained in Ref. [2].
The contribution of other diagrams corresponding to the three-
loop contribution in the 1γ approximation were calculated
in Refs. [29,30] for muonic hydrogen. We estimated their
contribution for the Lamb shift in μD from the results given in
Eqs. (18) and (23) of Ref. [29]; the result is 0.0021 meV.
This gives a total three-loop contribution of 0.0060 meV
in the one-photon interaction, which is included in Table I.
The two-loop and three-loop vacuum polarization corrections
appearing in second-order perturbation theory are calculated in
the next sections. Our sum of all three-loop VP contributions,

0.0086 meV, is very close to the total three-loop contribution,
0.00842 meV, given in Table I of Ref. [31], with rounding.

An additional one-loop vacuum polarization diagram is
presented in Fig. 3. In the energy spectrum this diagram
gives the correction of fifth order in α (the Wichmann-Kroll
correction) [42,43]. The particle interaction potential can be
written in this case in the integral form as follows:

�V WK(r)= α(Zα)3

πr

∫ ∞

0

dζ

ζ 4
e−2meζr

[
− π2

12

√
ζ 2 − 1θ (ζ − 1)

+
∫ ζ

0
dx

√
ζ 2 − x2f WK(x)

]
. (20)
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TABLE I. Lamb shift (2P1/2-2S1/2) in muonic deuterium atom.

Contribution to the splitting �E(2P -2S) (meV) Equation, reference

1 2 3
VP contribution of order α(Zα)2 in one-photon interaction 227.6347 (6), [2]
Two-loop VP contribution of order α2(Zα)2 in one-photon interaction 1.6660 (9), (14), [2]
VP and MVP contribution in one-photon interaction 0.0001 (11), [2]
Three-loop VP contribution in one-photon interaction 0.0060 (17), (18), [29,31]
The Wichmann-Kroll correction −0.0011 (21), [2,31]
Light-by-light contribution 0.0001 [31]
Relativistic and VP corrections of order α(Zα)4 in first-order PT −0.0353 (27)–(30), [5]
Relativistic and two-loop VP corrections of order α2(Zα)4 in first-order PT −0.0002 (32)
Two-loop VP contribution of order α2(Zα)2 in second-order PT 0.1720 (39)–(41), [31]
Relativistic and one-loop VP corrections of order α(Zα)4 in second-order PT 0.0530 (43), [5]
Relativistic and two-loop VP corrections of order α2(Zα)4 in second-order PT 0.0004 (44) and (45)
Three-loop VP contribution in second-order PT of order α3(Zα)2 0.0025 (46)–(47), [31]
Three-loop VP contribution in third-order PT of order α3(Zα)2 0.0001 (48), [29,31],
Nuclear-structure contribution of order (Zα)4 −27.8749 (49), [2,6]
Nuclear-structure and polarizability contribution of order (Zα)5 1.6800 [51]
Nuclear-structure and VP contribution in 1γ interaction of order α(Zα)4 −0.0620 (51)
Nuclear-structure and VP contribution in second-order PT of order α(Zα)4 −0.0940 (52)
Nuclear-structure and two-loop VP contribution in 1γ interaction of order α2(Zα)4 −0.0005 (56)
Nuclear-structure and two-loop VP contribution in second-order PT of order α2(Zα)4 −0.0004 (57)
Nuclear-structure and polarizability contribution of order α(Zα)5 with VP correction −0.0001 (60)
Nuclear-structure contribution of order α(Zα)5 with muon-line radiative correction 0.0044 (62), [61]
Nuclear-structure contribution of order (Zα)6 −0.0069 (63), [22,54]
Recoil correction of order (Zα)4 0.0672 (64), [5]
Recoil correction of order (Zα)5 −0.0266 (69), [2,6,55]
Recoil correction of order (Zα)6 0.0001 (70), [6]
Recoil correction to VP of order α(Zα)5 (seagull term) 0.0002 [5]
Radiative-recoil corrections of orders α(Zα)5, (Z2α)(Zα)4 −0.0026 (71), Table 9 [6]
Muon self-energy and MVP contribution −0.7747 (72) and (73), [2,6]
VP contribution to muon form factors F ′

1(0), F2(0) of order α2(Zα)4 −0.0018 (78), [4,6,63]
VP correction to muon self-energy −0.0047 (80), [4,6]
HVP contribution 0.0129 [64,65]

Total contribution 202.4139 ± 0.0573 [rd = 2.1424(21) fm]
202.7375 ± 0.2352 [rd = 2.130(9) fm]

The exact form of the spectral function f WK is presented in
Refs. [6,42,43]. Numerical integration in Eq. (20) with the
wave functions (2) gives the following contribution to the
Lamb shift as follows:

�EWK(2P -2S) = −0.0011 meV. (21)

FIG. 2. Effects of three-loop vacuum polarization in the one-
photon interaction [(a) and (b)] and in third order perturbation theory
(c). G̃ is the reduced Coulomb Green’s function (33).

This agrees well with other calculations [2,31]. The detailed
calculation of all three light-by-light graphs is presented in
Ref. [44]. We included their estimation using Eq. (21) and the
results from Ref. [44] in Table I.

FIG. 3. The Wichmann-Kroll correction. The wave line shows
the Coulomb photon.

052514-4



LAMB SHIFT IN THE MUONIC DEUTERIUM ATOM PHYSICAL REVIEW A 84, 052514 (2011)

III. RELATIVISTIC CORRECTIONS WITH THE VACUUM
POLARIZATION EFFECTS

The electron vacuum polarization effects lead not only
to corrections in the Coulomb potential (3) but also to the
modification of other terms of the Breit Hamiltonian (1).
The one-loop vacuum polarization corrections in the Breit
interaction were obtained in Refs. [4,5,25]:

�V B
VP(r) = α

3π

∫ ∞

1
ρ(ξ )dξ

4∑
i=1

�V B
i,VP(r), (22)

�V B
1,VP = Zα

8

(
1

m2
1

+ δI

m2
2

)[
4πδ(r) − 4m2

eξ
2

r
e−2meξr

]
,

(23)

�V B
2,VP = −Zαm2

eξ
2

m1m2r
e−2meξr (1 − meξr), (24)

�V B
3,VP = − Zα

2m1m2
pi

e−2meξr

r

[
δij + rirj

r2
(1 + 2meξr)

]
pj ,

(25)

�V B
4,VP = Zα

r3

(
1

4m2
1

+ 1

2m1m2

)
e−2meξr (1 + 2meξr)(Lσ 1),

(26)

where the superscript B designates the Breit interaction. In
first-order perturbation theory (PT) the potentials �V B

i,VP(r)
give necessary contributions of order α(Zα)4 to the shift
(2P -2S):

�EB
1,VP(2P -2S) = −0.0353 meV, (27)

�EB
2,VP(2P -2S) = 0.0011 meV, (28)

�EB
3,VP(2P -2S) = 0.0012 meV, (29)

�EB
4,VP(2P -2S) = −0.0023 meV. (30)

The potentials �V B
2,VP, �V B

3,VP, �V B
4,VP take into account

the recoil effects over the ratio m1/m2. In Table I we have
included the summary correction of order α(Zα)4, which
is determined by Eqs. (27)–(30). The next-to-leading-order
correction of order α2(Zα)4 appears in the energy spec-
trum from the two-loop modification of the Breit Hamil-
tonian. We consider in the potential the term of the lead-
ing order in m1/m2 [the function f (v) is determined by
Eq. (13)]:

�V B
two−loopVP(r)

= α2(Zα)

12π2

(
1

m2
1

+ δI

m2
2

)

×
∫ 1

0

f (v)dv

1 − v2

[
4πδ(r) − 4m2

e

(1 − v2)r
e
− 2mer√

1−v2

]
. (31)

The corresponding (2P -2S) shift is the following:

�EB
two−loopVP(2P -2S) = −0.0002 meV. (32)

Other two-loop contributions to the Breit potential are omitted
because they give energy corrections with an accuracy thatlies
outside the calculation in this work.

FIG. 4. Effects of one-loop and two-loop vacuum polarization in
second-order perturbation theory (SOPT). The dashed line shows the
Coulomb photon. G̃ is the reduced Coulomb Green’s function (34).
The potentials �V B , �V C

VP, and �V B
VP are determined, respectively,

by Eqs. (1), (3), and (22).

In second-order perturbation theory (SOPT) we have a
number of electron vacuum polarization contributions in
orders α2(Zα)2 and α(Zα)4, shown in Figs. 4(b) and 4(c):

�EVP
SOPT = 〈ψ |�V C

VPG̃�V C
VP|ψ〉 + 2〈ψ |�V BG̃�V C

VP|ψ〉.
(33)

The abbreviation SOPT is used in Tables I and II for the
contributions obtained in second-order PT. The second-order
perturbation theory corrections in the energy spectrum of the
hydrogen-like system are determined by use of the reduced
Coulomb Green’s function G̃ (RCGF). It has a partial-wave
expansion [45] as follows:

G̃n(r,r′) =
∑
l,m

g̃nl(r,r
′)Ylm(n)Y ∗

lm(n′). (34)

The radial function g̃nl(r,r ′) was presented in Ref. [45] in a
form of the Sturm expansion in the Laguerre polynomials. For
a calculation of the Lamb shift (2P -2S) in muonic deuterium it
is convenient to use the compact representation for the RCGF
of 2S and 2P states, which was obtained in Refs. [4,46]:

G̃(2S) = −Zαμ2

4x1x2
e− x1+x2

2
1

4π
g2S(x1,x2), (35)

g2S(x1,x2) = 8x< − 4x2
< + 8x> + 12x<x> − 26x2

<x>

+ 2x3
<x> − 4x2

> − 26x<x2
> + 23x2

<x2
>

− x3
<x2

> + 2x<x3
> − x2

<x3
> + 4ex(1 − x<)

× (x> − 2)x> + 4(x< − 2)x<(x> − 2)x>

×[−2C + Ei(x<) − ln(x<) − ln(x>)], (36)

G̃(2P ) = − Zαμ2

36x2
1x2

2

e− x1+x2
2

3

4π

(x1x2)

x1x2
g2P (x1,x2), (37)

g2P (x1,x2) = 24x3
< + 36x3

<x> + 36x3
<x2

> + 24x3
>

+ 36x<x3
> + 36x2

<x3
> + 49x3

<x3
> − 3x4

<x3
>

− 12ex< (2 + x< + x2
<)x3

> − 3x3
<x4

> + 12x3
<x3

>

× [−2C + Ei(x<) − ln(x<) − ln(x>)], (38)
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TABLE II. Fine structure of the 2P state in the muonic deuterium atom.

Contribution to fine splitting �Efs Numerical value (meV) Equation, reference

Contribution of order (Zα)4 μ3(Zα)4

32m2
1

(
1 + 2m1

m2

)
8.83848 (82), [2,6]

Muon AMM contribution μ3(Zα)4

16m2
1

aμ

(
1 + m1

m2

)
0.01957 (82), [2,6]

Contribution of order (Zα)6 0.00031 (82), [2,6]

Contribution of order (Zα)6m1/m2 −0.00001 (82), [2,6]

Contribution of order α(Zα)4 in first-order PT
〈
�V fs

VP

〉
0.00346 (84)

Contribution of order α(Zα)4 in second-order PT
〈
�V C

VPG̃�V fs
〉

0.00229 (85)

Contribution of order α(Zα)6 α(Zα)6μ3

32πm2
1

[
ln μ(Zα)2

m1
+ 1

5

] −0.00001 (82), [6]

VP Contribution from 1γ interaction of order α2(Zα)4
〈
�V fs

VP−VP

〉
0.000003 (87)

VP Contribution from 1γ interaction of order α2(Zα)4
〈
�V fs

two−loop,VP

〉
0.00002 (89)

VP Contribution in second-order PT of order α2(Zα)4
〈
�V C

VPG̃�V fs
VP

〉
0.000002 Fig. 4(a), �V B → �V fs

VP Contribution in second-order PT of order α2(Zα)4
〈
�V C

VP−VPG̃�V fs
〉 −0.000001 Fig. 4(d), �V B → �V fs

VP Contribution in second-order PT of order α2(Zα)4
〈
�V C

2−loop,VPG̃�V fs
〉

0.000026 (90), Figs. 4(e) and 4(f), �V B → �V fs

Nuclear-structure correction in 1γ interaction −0.00028 (91), [22]

Summary contribution 8.86386

where x< = min(x1,x2), x> = max(x1,x2), and C = 0.57721566 . . . is the Euler constant. As a result, the two-loop vacuum
polarization contribution to the first term of Eq. (33) can be presented originally in the integral form [Fig. 4(c)]. The subsequent
numerical integration gives the following results:

�E
VP,VP
SOPT (2S) = −μα2(Zα)2

72π2

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

∫ ∞

0

(
1 − x

2

)
e
−x

(
1+ 2meξ

W

)
dx

∫ ∞

0

(
1 − x ′

2

)
e
−x ′

(
1+ 2meη

W

)
dx ′g2S(x,x ′)

= −0.1750 meV, (39)

�E
VP,VP
SOPT (2P ) = −μα2(Zα)2

7776π2

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

∫ ∞

0
e
−x

(
1+ 2meξ

W

)
dx

∫ ∞

0
e
−x ′

(
1+ 2meη

W

)
dx ′g2P (x,x ′)

= −0.0030 meV, (40)

where the superscript (VP,VP) designates the second-order PT contribution when each of the perturbation potentials contains VP
correction. The results, Eqs. (39) and (40), agree with the calculation in Ref. [31]. Changing the one-electron VP potential by
the muon VP potential, we find that corresponding correction to the Lamb shift is very small:

�E
VP,MVP
SOPT (2P -2S) = 0.0001 meV. (41)

The second term in Eq. (33) has a similar structure [see Fig. 4(b)]. A transformation of different matrix elements in it is carried
out with the use of algebraic relations of the following form:

〈ψ | p4

(2μ)2

′∑
m

|ψm〉〈ψm|
E2 − Em

�V C
VP|ψ〉 = 〈ψ |

(
E2 + Zα

r

)(
Ĥ0 + Zα

r

) ′∑
m

|ψm〉〈ψm|
E2 − Em

�V C
VP|ψ〉

= 〈ψ |
(

E2 + Zα

r

)2

G̃�V C
VP|ψ〉 − 〈ψ |Zα

r
�V C

VP|ψ〉 + 〈ψ |Zα

r
|ψ〉〈ψ |�V C

VP|ψ〉. (42)

Omitting further details of the calculation of numerous matrix
elements in Eq. (42), we present here the summary numerical
contribution from the second term in Eq. (33) to the shift
(2P -2S):

�E
B,VP
SOPT(2P -2S) = 0.0530 meV. (43)

Other contributions of second-order PT [see Figs. 4(d)–
4(f)] have the general structure similar to Eqs. (39) and
(40). They appear after the replacements �V C

VP → �V B and

�V C
VP → �V C

VP,VP in the basic amplitude shown in Fig. 4(c).
The estimate of this contribution of order α2(Zα)4 to the
shift (2P -2S) can be derived if we take into account in the
Breit potential the leading-order term in the ratio m1/m2. Its
numerical value is

�E
VP,VP;�VB

SOPT (2P -2S) = 0.0004 meV. (44)

The two-loop vacuum polarization contribution is determined
also by the amplitude in Fig. 4(a). To obtain its numerical value
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in the energy spectrum we have to use Eqs. (3) and (22). In the
leading order in the ratio m1/m2 we take again the potential
(22), which leads to very small correction of order α2(Zα)4 as
follows:

�E
VP,�V B

VP
SOPT (2P -2S) = −0.00001 meV. (45)

Three-loop vacuum polarization contributions to the energy
spectrum in second-order perturbation theory are presented in
Fig. 5. Respective potentials required for their calculation are
obtained earlier in Eqs. (3), (8), and (12). Considering an
accuracy of the calculation we can restrict our analysis by a
shift of the 2S level, which can be written in the following form:

�E
VP−VP,VP
SOPT (2S) = −μα3(Zα)2

108π3

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

∫ ∞

1
ρ(ζ )dζ

∫ ∞

0
dx

(
1 − x

2

)

×
∫ ∞

0
dx ′

(
1 − x ′

2

)
e−x ′(1+ 2meζ

W
) 1

ξ 2 − η2

[
ξ 2e−x(1+ 2meξ

W
) − η2e−x(1+ 2meη

W
)]g2S(x,x ′) = −0.0007 meV, (46)

�E
2−loopVP,VP
SOPT (2S) = −μα3(Zα)2

18π3

∫ 1

0

f (v)dv

1 − v2

∫ ∞

1
ρ(ξ )dξ

×
∫ ∞

0
dx

(
1 − x

2

)
e
−x(1+ 2me√

1−v2W
)
∫ ∞

0
dx ′

(
1 − x ′

2

)
e−x ′(1+ 2meξ

W
)g2S(x,x ′) = −0.0018 meV. (47)

In third-order perturbation theory (TOPT), the three-loop
VP contribution to the Lamb shift consists of two terms.
One part of it is shown in Fig. 2(c). This contribution can
be calculated by means of Eqs. (3) and (35)–(38) [29,31].
We carry out the coordinate integration analytically and the
integration over three spectral parameters numerically. The
result,

�E
VP,VP,VP
TOPT (2P -2S) = 0.0001 meV, (48)

is in agreement with Refs. [29,31].

IV. NUCLEAR-STRUCTURE AND VACUUM
POLARIZATION EFFECTS

An influence of nuclear structure on the muon motion in
muonic deuterium is determined in the leading order by the
root-mean-square (rms) radius of the deuteron (charge radius).
We present all charge radius corrections at two values of rd :
rd = 2.1424(21) fm (CODATA 2010) and rd = 2.130(9) fm
[34] [Fig. 6(a)]:

�Estr(2P -2S) = −μ3(Zα)4

12
r2
d = −6.07313 × r2

d

= −27.8749(−27.5532) meV, (49)

FIG. 5. The three-loop vacuum polarization corrections in
second-order perturbation theory. G̃ is the reduced Coulomb Green’s
function.

where the subscript “str” designates the structure correction.
The precise value of the deuteron charge radius is needed for
the interpretation of new data on transitions in the muonic
deuterium atom.

There are vacuum polarization corrections connected with
the deuteron structure in first- and second-order perturbation
theory [see diagrams in Figs. 6(b) and 6(c)]. The potential
corresponding to the amplitude in Fig. 6(b) can be written as
follows:

�V VP
str (r) = 2Zα2

9
r2
d

∫ ∞

1
ρ(ξ )dξ

[
δ(r) − m2

eξ
2

πr
e−2meξr

]
.

(50)

Its contribution to the 2P -2S Lamb shift is determined by the
following formula:

�EVP
str (2P -2S)

= −μ3α(Zα)4

36π
r2
d

∫ ∞

1
ρ(ξ )dξ

[
1 − 16m4

eξ
4

(2meξ + W )2

]

= −0.01350r2
d = −0.0620(−0.0612) meV. (51)

FIG. 6. The leading-order nuclear-structure and vacuum polar-
ization corrections. The thick point represents the nuclear vertex
operator.
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The contribution of the same order α(Zα)4 is specified by the amplitude in the second-order perturbation theory in
Fig. 6(c):

�EVP
str,SOPT(2P -2S) = −μ3α(Zα)4

36π
r2
d

∫ ∞

1
ρ(ξ )dξ

−12 + 23b1 − 8b2
1 − 4b3

1 + 4b4
1 + 4b1

(
3 − 4b1 + 2b2

1

)
ln b1

b5
1

= −0.020487r2
d meV = −0.0940(−0.0929) meV, b1 = 1 + 2me

W
ξ. (52)

Factorizing r2
d in Eqs. (49), (51), and (52), we obtain the finite-

size correction in the following form:

�Estr(2P -2S) + �EVP
str (2P -2S) + �EVP

str,SOPT(2P -2S)

= −6.10712r2
d = −28.0309(−27.7074) meV. (53)

The next important correction of order (Zα)5 is described
by one-loop exchange diagrams (Fig. 7). An investigation of
the elastic contribution to the Lamb shift and the deuteron
polarizability contribution was performed in Refs. [22,47–50].
A recent detailed calculation of the nuclear-structure and
polarizability corrections which improves the previous the-
oretical results is presented in Ref. [51]. In Table I we have
included the value of the (2P -2S) shift 1.680(16) meV from
Ref. [51].

Two-loop vacuum polarization corrections with an account
of the nuclear structure are presented in Figs. 8(a)–8(c). The
interaction operators constructed by means of Eq. (7) are
determined by the following integral formulas:

�V VP−VP
str (r)

= 2Zα3

27π2
r2
d

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

×
[
πδ(r) − m2

e

r(ξ 2 − η2)

(
ξ 4e−2meξr − η4e−2meηr

)]
, (54)

�V
two−loopVP

str (r)

= 4Zα3

9π2
r2
d

∫ 1

0

f (v)dv

1 − v2

[
πδ(r) − m2

e

r(1 − v2)
e
− 2mer√

1−v2

]
.

(55)

The sum of corrections from Eqs. (54) and (55) to the Lamb
shift (2P -2S) is equal to

�E
VP,VP
str (2P -2S) = (−10.5 × 10−5)r2

d

= −0.0005(0.0005) meV. (56)

FIG. 7. Nuclear-structure corrections of order (Zα)5. The thick
point is the deuteron vertex operator.

The two-loop vacuum polarization and nuclear-structure
corrections of order α2(Zα)4 in second-order PT shown in
Figs. 9 (a)–9(d) also can be calculated by means of relations
discussed in Sec. III. The summary shift is equal to

�E
VP,VP
str,SOPT(2P -2S) = (−9.5 × 10−5)r2

d

= −0.0004(0.0004) meV. (57)

In addition, there is the nuclear-structure correction of order
α(Zα)5 coming from the two-photon exchange diagrams with
the electron vacuum polarization insertion (see Fig. 10). It can
be calculated as the elastic contribution of order (Zα)5 [50].
However, there is no need to calculate it because in this case
we have the same cancellation between the elastic two-photon
correction and a part of the deuteron excited states correction
as for the contribution of order (Zα)5 [51]. Indeed, using the
notations of Ref. [51], we can present the muon matrix element
PVP for nonrelativistic two-photon exchange with an account
of the vacuum polarization in the following form:

PVP = 2α3

3π
φ2(0)

∫ ∞

1
ρ(ξ )dξ

×
∫

dq
(2π )3

(4π )2

q2
(
q2 + 4m2

eξ
2
) 1

E + q2

2m1

×
[
eiq(R−R′) − 1 + q2

6
(R − R′)2

]
, (58)

where R is the position of the proton with respect to the
nuclear mass center. Integrating (58) over q and expanding the
resulting expression over small parameter

√
2m1E|R − R′|

FIG. 8. Nuclear-structure and two-loop vacuum polarization ef-
fects in one-photon interaction. The thick point is the nuclear vertex
operator.
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we obtain

PVP = 32α3

3
m1φ

2(0)|R − R′|3
∫ ∞

1
ρ(ξ )dξ

[
a3

ξ − 3a2
ξ + 6aξ + 6e−aξ − 6

12a4
ξ

− 2m1E|R − R′|2 a4
ξ − 4a3

ξ + 12a2
ξ − 24aξ − 24e−aξ + 24

48a6
ξ

]
, aξ = 2meξ |R − R′|. (59)

It follows from Eq. (59) that in the leading order in
√

2m1E|R − R′| the elastic correction to atomic energy is canceled by the
deuteron excited states correction (see more detailed discussion in Ref. [51]). An estimation of the second term contribution in
the square brackets of Eq. (59) to the energy spectrum can be derived if we take into account that the integral over ξ is determined
by the region near ξ ≈ 1. Expanding the second term in Eq. (59) at small aξ we obtain (−π/240aξ ). Performing an analytical
integration over ξ and summing over excited deuteron states, we then obtain the contribution to the Lamb shift as follows:

δEVP
pol (2P -2S) = −m2

1α
3φ2(0)

1024me

[
1

3
〈φD|R2HDR2|φD〉 − 4

5
〈φD|RiHDR2Ri |φD〉

+ 2

5
〈φD|

(
RiRj − 1

3
δijR

2

)
HD(RiRj − 1

3
δijR

2)|φD〉
]

= −0.0001 meV, (60)

where φD is the deuteron wave function. We make all
integrations in Eq. (60) analytically using the deuteron wave
function in the zero-range approximation [52]

φD(r) =
√

κ

2π

1

r
e−κr , (61)

where κ = 0.0457 GeV is the inverse deuteron size.
Another term in the Lamb shift of order α(Zα)5 is

determined by a muon-line radiative correction to the nuclear
size effect. It was obtained in Ref. [53] in a suitable form for
a subsequent numerical estimate as follows:

�E
α(Zα)5

str (2P -2S) = 1.985
α(Zα)5μ3

8
r2
d = (9.62 × 10−4)r2

d

= 0.0044(0.0044) meV. (62)

In addition, there is the correction of order α(Zα)5 with a muon
vacuum polarization [see Fig. 10]. Accounting for the result
of its calculation from Ref. [6], the total coefficient in Eq. (62)
should be changed as follows: 1.985 → 1.485. However, we
can consider the muon VP and nuclear-structure amplitudes in
Fig. 10 together with the contribution of the deuteron excited
states. Calculating this summary contribution by means of
equations similar to Eqs. (58)–(60) (see also Ref. [51]), we
observe the cancellation of the elastic correction and excited
states correction.

Nuclear-structure corrections of order (Zα)6 can be derived
with the use of relativistic corrections to nonrelativistic wave
functions in matrix element (49) [6,22,54]. We present here
the total contribution to the Lamb shift (2P -2S), includ-

FIG. 9. Nuclear-structure and two-loop vacuum polarization ef-
fects in second-order perturbation theory. The thick point is the
nuclear vertex operator. G̃ is the reduced Coulomb Green’s function.

ing an additional state-independent correction obtained in
Refs. [22,54] as follows:

�E
(Zα)6

str (2P -2S)

= (Zα)6

12
μ3

{
r2
d

[
〈ln μZαr〉 + C − 3

2

]
− 1

2
r2
d

+ 1

3
〈r3〉

〈
1

r

〉
− I rel

2 − I rel
3 − μ2FNR + 1

40
μ2〈r4〉

}

= (−21.28 × 10−4)r2
d + 0.0029

= −0.0069(−0.0068) meV, (63)

where the quantities I rel
2,3 and FNR are written explicitly in

Refs. [22,54]. In the square brackets we have extracted the
frequently used quantity (main term) for an estimation of the
contribution to the (2P -2S) Lamb shift in the hydrogen atom
because other corrections are very small (near 1%) and could
be safely omitted. In the case of muonic deuterium they give
the contribution near 25% of the main term and should be taken
into account. Another separation of the terms corresponding
to the contributions of the 2S and 2P states in the curly brack-
ets is the following: { 3

16 r2
d + 1

40μ2〈r4〉 + r2
d [〈ln μZαr〉 + C −

35
16 ] + 1

3 〈r3〉〈 1
r
〉 − I rel

2 − I rel
3 − μ2FNR}. A numerical estimate

is given on the basis of an exponential parametrization for the
charge distribution from Ref. [22].

FIG. 10. The nuclear-structure and electron vacuum polarization
effects in the two-photon exchange diagrams. The thick point is the
nuclear vertex operator.
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V. RECOIL CORRECTIONS, MUON SELF-ENERGY, AND
VACUUM POLARIZATION EFFECTS

Research of different order corrections to the Lamb shift
(2P -2S) of electronic hydrogen has been performed for many
years. Modern analysis of the advances in the solution of this
problem is presented in several review articles [6,43,55,56].
Most of the results were obtained in analytical form, so
they can be used directly in the muonic deuterium atom. In
this section we analyze different contributions to the energy
spectrum of μD up to sixth order in α and derive their
numerical estimations in the Lamb shift (2P -2S).

There are several recoil corrections of different orders in
α which give important contributions in order to attain the
necessary accuracy of the calculation. The recoil correction
of order (Zα)4μ3/m2

2 to the Lamb shift appears in the matrix
element of the Breit potential with functions (2). It is calculated
for muonic deuterium in Refs. [5,37] as follows:

�Erec(2P -2S) = μ3(Zα)4

12m2
2

= 0.0672 meV. (64)

The recoil correction of fifth order in (Zα) is determined
by use of the following expression [6,55]:

�E(Zα)5

rec = μ3(Zα)5

m1m2πn3

[
2

3
δl0 ln

1

Zα
− 8

3
ln k0(n,l) − 1

9
δl0

− 7

3
an − 2

m2
2 − m2

1

δl0

(
m2

2 ln
m1

μ
− m2

1 ln
m2

μ

)]
,

(65)

where ln k0(n,l) is the Bethe logarithm, which is as follows:

ln k0(2S) = 2.811769893120563, (66)

ln k0(2P ) = −0.030016708630213, (67)

an = −2

[
ln

2

n
+

(
1 + 1

2
+ · · · + 1

n

)
+ 1 − 1

2n

]
δl0

+ (1 − δl0)

l(l + 1)(2l + 1)
. (68)

Equation (65) gives the following numerical correction to the
Lamb shift:

�E(Zα)5

rec (2P -2S) = −0.0266 meV. (69)

The recoil correction of the sixth order in (Zα) was calculated
analytically in Refs. [32,57–60] as follows:

�E(Zα)6

rec (2P -2S) = (Zα)6m2
1

8m2

(
23

6
− 4 ln 2

)
= 0.0001 meV.

(70)

Omitting the explicit form of the radiative-recoil corrections
of orders α(Zα)5 and (Z2α)(Zα)4 from Table 9 in Ref. [6], we
present their numerical value to the Lamb shift (2P -2S) of the
muonic deuterium atom as follows:

�Erad−rec(2P -2S) = −0.0026 meV. (71)

The energy contributions obtained in Refs. [6,61,62] from
radiative corrections to the lepton line, the Dirac and Pauli
form factors and muon vacuum polarization are given by

�EMVP,MSE(2S) = α(Zα)4

8π

μ3

m2
1

{
4

3
ln

m1

μ(Zα)2
− 4

3
ln k0(2S) + 38

45

+ α

π

[
− 9

4
ζ (3) + 3

2
π2 ln 2 − 10

27
π2 − 2179

648

]
+ 4πZα

(
427

384
− ln 2

2

)}
= 0.7647 meV, (72)

�EMVP,MSE(2P ) = α(Zα)4

8π

μ3

m2
1

{
− 4

3
ln k0(2P ) − m1

6μ
− α

3π

m1

μ

[
3

4
ζ (3) − π2

2
ln 2 + π2

12
+ 197

144

]}
= −0.0100 meV. (73)

The diagram in Fig. 11(b) with the electron loop polariza-
tion insertion in the radiative photon gives the contribution to
the energy spectrum, which can be expressed in terms of the
slope of the Dirac form factor F ′

1 and the Pauli form factor
F2 [6] as follows:

�Erad+VP(nS) = μ3

m2
1

(Zα)4

n3

[
4m2

1F
′
1(0)δl0 + F2(0)

Cjl

2l + 1

]
,

(74)

Cjl = δl0 + (1 − δl0)

[
j (j + 1) − l(l + 1) − 3

4

]
l(l + 1)

m1

μ
. (75)

The two-loop contribution to the form factors F ′
1(0) and

F2(0) was calculated in Ref. [63] (see also Refs. [1,6]) as

follows:

m2
1F

′
1(0)

=
(

α

π

)2[1

9
ln2 m1

me

− 29

108
ln

m1

me

+ 1

9
ζ (2) + 395

1296

]
,

(76)

F2(0)

=
(

α

π

)2[1

3
ln

m1

me

− 25

36
+ π2

4

me

m1
− 4

m2
e

m2
1

ln
m1

me

+ 3
m2

e

m2
1

]
.

(77)

The correction to the Lamb shift then is equal to

�Erad+VP(2P -2S) = −0.0018 meV. (78)
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To estimate the muon self-energy and electron vacuum
polarization contribution in Fig. 11(a), we use the relation
obtained in Ref. [4] as follows:

�EVP
MSE = α

3πm2
1

ln
m1

μ(Zα)2

[
〈ψn|��V C

VP|ψn〉

+ 2〈ψn|�V C
VPG̃�

(
− Zα

r

)
|ψn〉

]
. (79)

The sum of all matrix elements which appear in Eq. (79) leads
to the following shift (2P -2S):

�EVP
MSE(2P -2S) = −0.0047 meV. (80)

The hadron vacuum polarization (HVP) contribution which
can be taken into account on the basis of the numerical result
obtained for muonic hydrogen in Refs. [64,65] is included in

Table I. The error of the measurement of the cross section
σ (e+e− → π+π−) was decreased to a few percentage points.
Therefore, we estimate a corresponding theoretical error for
the HVP correction of 5% (±0.0006 meV).

VI. FINE STRUCTURE OF THE 2P STATE

The leading-order (Zα)4 contribution to the fine structure
is determined by the operator �V fs as follows:

�V fs(r) = Zα

4m2
1r

3

[
1 + 2m1

m2
+ 2aμ

(
1 + m1

m2

)]
(Lσ 1), (81)

where �V fs includes the recoil correction and muon anoma-
lous magnetic moment aμ correction. The fine-structure
interval (2P3/2-2P1/2) for muonic deuterium can be written
in the following form [66–68]:

�Efs = E(2P3/2) − E(2P1/2)

= μ3(Zα)4

32m2
1

[
1 + 2m1

m2
+ 2aμ

(
1 + m1

m2

)]
+ 5m1(Zα)6

256
− m2

1(Zα)6

64m2
+ α(Zα)6μ3

32πm2
1

[
ln

μ(Zα)2

m1
+ 1

5

]

+α(Zα)4AVP + α2(Zα)4BVP + Astr(Zα)6μ2r2
d . (82)

This expression includes the relativistic correction of order (Zα)6, which can be calculated on the basis of the Dirac equation,
relativistic recoil effects of order m1(Zα)6/m2, a correction of order α(Zα)6 enhanced by the factor ln(Zα) [6], and a number
of terms of fifth and sixth order in α which are determined by effects of the vacuum polarization and nuclear structure. The
recoil correction (−m3

1(Zα)4/32m2
2) (the Barker-Glover correction [69]) is also taken into account in Eq. (82). This is evident

from the expansion of first term in Eq. (82) over the mass ratio m1/m2 up to second-order terms: m1(Zα)4(1 − m1/m2)/32.
The contributions to the coefficients AVP and BVP arise in the first and second orders of perturbation theory. Numerical values
of terms in Eq. (82), which are presented in analytical form, are quoted in Table II for an accuracy of 0.00001 meV. The fine
structure interval (82) in the energy spectrum of electronic hydrogen has been considered for a long time a basic test of quantum
electrodynamics.

The fine-structure potential with the leading-order vacuum polarization and its contribution to the coefficient AVP are given
by [4]:

�V fs
VP(r) = α(Zα)

12πm2
1r

3

∫ ∞

1
ρ(s)ds

[
1 + 2m1

m2
+ 2aμ

(
1 + m1

m2

)]
e−2mesr (1 + 2mesr)(Lσ 1), (83)

�Efs
1 = μ3α(Zα)4

96πm2
1

[
1 + 2m1

m2
+ 2aμ

(
1 + m1

m2

)] ∫ ∞

1
ρ(ξ )dξ

1 + 6me

W
ξ(

1 + 2me

W
ξ
)3 = 0.00346 meV. (84)

Higher-order corrections α2(Zα)4 contributing to aμ, as well as recoil effects, are taken into account in this expression. The
same order O(α(Zα)4) contribution can be obtained in second-order perturbation theory in the following form:

�Efs
VP,SOPT = α(Zα)4μ3

1728πm2
1

[
1 + 2aμ + (1 + aμ)

2m1

m2

] ∫ ∞

1

ρ(ξ )dξ(
1 + 2me

W
ξ
)5

×
[

18
2meξ

W

(
8meξ

W
+ 11

)
+ 4

(
1 + 2meξ

W

)
ln

(
1 + 2meξ

W

)
+ 3

]
= 0.00229 meV. (85)

Let us consider two-loop vacuum polarization contributions in the one-photon interaction shown in Fig. 1. They give corrections
to fine-structure splitting of the P -wave levels of order α2(Zα)4. In the coordinate representation, the interaction operator has
the form [28,35]:

�V fs
VP−VP(r) = Zα

r3

[
1 + 2aμ

4m2
1

+ 1 + aμ

2m1m2

]
(Lσ 1)

(
α

3π

)2 ∫ ∞

1
ρ(ξ )dξ

∫ ∞

1

ρ(η)dη

(ξ 2 − η2)

× [ξ 2(1 + 2meξr)e−2meξr − η2(1 + 2meηr)e−2meηr ]. (86)
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Averaging Eq. (86) over the wave functions in Eq. (2), we obtain the following correction to the interval (82):

�Efs
VP−VP = μ3α2(Zα)4

288π2m2
1

[
1 + 2aμ + 2m1

m2
(1 + aμ)

] ∫ ∞

1
ρ(ξ )dξ

×
∫ ∞

1
ρ(η)dη

1

(ξ 2 − η2)

[
ξ 2 6meξ

W
+ 1( 2meξ

W
+ 1

)3 − η2 6meη

W
+ 1( 2meη

W
+ 1

)3

]
= 0.000003 meV. (87)

The two-loop vacuum polarization potential and the correction to the fine structure (2P3/2 − 2P1/2) are given by

�V fs
two−loopVP(r) = 2Zα3

3π2r3

[
1 + 2aμ

4m2
1

+ 1 + aμ

2m1m2

] ∫ 1

0

f (v)dv

1 − v2
e
− 2mer√

1−v2

(
1 + 2mer√

1 − v2

)
(Lσ 1), (88)

�Efs
two−loopVP = μ3α2(Zα)4

48π2m2
1

[
1 + 2aμ + 2m1

m2
(1 + aμ)

] ∫ 1

0

f (v)dv

1 − v2

(
6 me

W
√

1−v2 + 1
)

(
1 + 2me

W
√

1−v2

)3 = 0.00002 meV. (89)

The two-loop vacuum polarization contributions in second-order perturbation theory, shown in Figs. 4(a) and 4(d)–4(f)
(�V B → �V fs), have the same order α2(Zα)4. For their calculation it is necessary to employ the Coulomb potential modified
by two-loop vacuum polarization effects [27,28]. The amplitude in Figs. 4(e) and 4(f) gives the following correction of order
α2(Zα)4 to fine-structure splitting:

�Efs
two−loopVP,SOPT = μ3α2(Zα)4

3π2m1m2

[
1 + aμ + m2

2m1
(1 + 2aμ)

] ∫ 1

0

f (v)dv

1 − v2

1(
1 + 2me

W
√

1−v2

)6

×
[

5
2me

W
√

1 − v2
+ 4

(
1 + 2me

W
√

1 − v2

)
ln

(
1 + 2me

W
√

1 − v2

)]
= 0.000026 meV. (90)

Two other contributions from amplitudes in Figs. 4(a) and 4(d)
have the similar integral structure. Their numerical values are
included in Table II.

There is also the correction to fine-structure splitting due
to nuclear structure. In the 1γ interaction it is related to the
charge form factor of the deuteron. The fine-structure potential
(81) is obtained for the point deuteron. In the case of a deuteron
of a finite size we can express the contribution of the nuclear-
structure to fine-structure splitting in terms of the charge radius
[68] as follows:

�Efs
str = −μ5(Zα)6

64m2
1

r2
d

[
1 + 2m1

m2
+ 2aμ

(
1 + m1

m2

)]

= −0.00028 meV. (91)

FIG. 11. Radiative corrections with the vacuum polarization
effects.

The calculation of the nuclear-structure corrections to the
energies of the P levels of order (Zα)6 was performed in
Ref. [22]. Our numerical result (91) for the fine-structure
splitting agrees with the calculation in Ref. [22].

VII. SUMMARY AND CONCLUSION

In this work, various corrections of orders α3, α4, α5,
and α6 are calculated for the Lamb shift (2P1/2-2S1/2) and
fine-structure splitting (2P3/2-2P1/2) in the muonic deuterium
atom. Contrary to earlier investigations of the energy spectra
of light muonic atoms in Refs. [1,2,18], we have used the
three-dimensional quasipotential approach for the description
of the two-particle bound state. Our analysis of the different
contributions to the Lamb shift accounts for the terms of two
groups. The first group contains the specific corrections for
muonic deuterium, connected with the electron vacuum polar-
ization effects, nuclear-structure and recoil effects in first- and
second-order perturbation theory. As a rule, the contributions
of this group are obtained in integral form over auxiliary
parameters and calculated numerically. The necessary order
corrections of the second group include analytical results
known from the corresponding calculation in the electronic
hydrogen Lamb shift. Recent advances in the physics of the
energy spectra of simple atoms are presented in Refs. [6,55,56]
which we have used in this study. Numerical values of
all corrections are written in Tables I and II, which also
contain basic references on the earlier performed investigations
(other references can be found in Refs. [1,2,6]). We compare
our intermediate results for the different corrections with
calculations given in Ref. [2]. Most of the results, including
the Uehling, Källen-Sabry, and Wichmann-Kroll corrections,
the muon Lamb shift contribution, the nuclear size and VP
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corrections, and the recoil terms, agree well. Our results for
the relativistic contributions to the vacuum polarization are in
agreement with those obtained in Ref. [5]. The second-order
VP correction [Eqs. (39) and (40)] agrees with the result
of Ref. [31] just as the three-loop VP contribution which is
determined in Table I by the three lines corresponding to the
one-photon interaction (0.0060 meV), the second-order PT
(0.0025 meV), and the third-order PT (0.0001 meV) agree.
The total numerical value, 202.4139 meV, of the Lamb shift
(2P -2S) in the muonic deuterium atom from Table I is in good
agreement with the theoretical result, 202.263 meV, reported
in Ref. [2]. Our result differs from that of Ref. [2] with regard
to the calculation of new contributions of higher order in α and
m1/m2, the proton structure and polarizability correction [51],
and the slightly different numerical value of the charge radius
of the deuteron rd used in this work. The two-loop vacuum
polarization contribution, 0.1720 meV, of order α2(Zα)2 in
the second-order PT is absent in Ref. [2]. In Ref. [2], the
value of the charge radius used is rd = 2.139(3) fm. The
fine-structure splitting (2P3/2-2P1/2) in Table II (8.86386
meV) agrees also with the result (8.864 meV) from Ref. [2].
An improved, recent analysis of the different corrections to
the Lamb shift in μD is performed in Ref. [3]. The total
value of the Lamb shift (2P1/2-2S1/2) for rd = 2.130 fm,
according to Table 4 from Ref. [3], is 202.9440 meV. This
value exceeds our result (202.7375 meV) by 0.2065 meV. In
our opinion, the only two essential differences between our
Table I and Ref. [3] are related by the Zemach correction
(0.4329 meV) and the polarizability correction (1.5 meV) [3].
It was shown in Ref. [51] that the Zemach correction is
canceled by the deuteron excited states contribution. As a
result, the nuclear-structure and polarizability contribution is
equal to 1.680 meV [51], which we use in our work.

As mentioned above, the numerical values of the corrections
are obtained with an accuracy of 0.0001 meV because certain
contributions to the Lamb shift (2P -2S) of order α6 attain the
value of 0.1 μeV. The theoretical error caused by uncertainties
in the fundamental parameters (e.g., the fine-structure constant
and particle masses) entering the leading-order contributions
is around 10−5 meV. The other part of the theoretical error
is related to the QED corrections of higher order. This part
can be estimated from the leading contribution of higher order
in α: m1α(Zα)6 ln(Zα)/πn3 ≈ 0.0001 meV. The theoretical
uncertainty connected with the nuclear-structure and polariz-
ability contributions is equal to 0.0160 meV [51]. We have
also a small theoretical uncertainty determined from the HVP
contribution which we estimate to be 5% (±0.0006 meV). This
estimation is based on the experimental uncertainty in the cross
section of e+e− annihilation into hadrons. The rounding errors

can amount to 0.0001 ÷ 0.0002 meV. Finally, the biggest
theoretical error, ±0.0550 meV [for rd = 0.1424(21) fm],
is related to the uncertainty of the deuteron charge radius.
Thereby, the total theoretical error of the calculation is equal
to ±0.0573 meV. To obtain this estimate, we add the above-
mentioned uncertainties in quadrature.

Let us summarize the basic particularities of the Lamb shift
calculation performed above.

(1) The numerical value of the specific parameter
me/μZα = 0.7 in the muonic deuterium atom is sufficiently
large, so the electron vacuum polarization effects play an
essential role in the interaction of the bound particles. We
have considered the one-loop, two-loop, and three-loop VP
contributions to the Lamb shift (2P1/2-2S1/2). A number of
important vacuum polarization contributions from the 1γ

interaction agree with the results obtained in Refs. [2,29–31].
(2) Nuclear-structure effects are expressed in the Lamb shift

of the muonic deuterium atom in terms of the deuteron charge
radius rd . We analyze complex effects due to nuclear structure
and vacuum polarization in the first and second orders of
perturbation theory. The elastic nuclear structure contribution
from two-photon exchange amplitudes is canceled by part of
the deuteron polarizability correction [51].

(3) Nuclear-structure and polarizability effects give the
largest theoretical uncertainty in the total value of the Lamb
shift (2P -2S). It is useful to express the final theoretical
value of the (2P -2S) Lamb shift in the form �ELs(2P -2S) =
(230.4511 − 6.108485r2

d ) meV with the value of the deuteron
charge radius defined in fm. Then, comparing this expression
with the experimental value of the Lamb shift measured to
0.01 meV (50 ppm), we can obtain a more accurate value of
rd with an accuracy of 0.0005 fm.
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