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Molecular ion-pair states in ungerade H2
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Molecular ion-pair states are analogs of electronic Rydberg states, but with the electron replaced by a much
heavier ion. We calculate ab initio the long-range vibrational H+H− ion-pair states in H2 for ungerade 1�+

u

symmetry, corresponding to recent observations by Ekey and McCormack [Phys. Rev. A 84, 020501 (2011)].
The overall trends in the experiment are reproduced and many peaks can be assigned. The calculations yield
interloper resonances corresponding to vibrational states trapped inside the barriers on the potential-energy curves
5,6 1�+

u .
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I. INTRODUCTION

Rydberg states, characterized by long-range Coulomb
interactions, are normally associated with states consisting of
an electron and a positively charged atomic or molecular ion,
but can also occur as vibrational states in ionic bonds between
atoms. Compared to normal vibrational states these have
unusual properties, including extremely large internuclear
distances and, in principle, an infinity of states below the
ion-pair dissociation limit. In general, molecular ion-pair states
can participate in the dissociative photodynamics of a wide
range of molecules and are exploited in threshold ion-pair
product spectroscopy [1] to provide precise measurements of
positive ions otherwise difficult to study [2].

The ion-pair (heavy Rydberg) states can decay via nonadi-
abatic couplings that lead to electron transfer and subsequent
dissociation into neutral atoms. In the specific case of H2, it has
been suggested that mutual neutralization of H+H− may affect
the astrophysically important H2 formation rate [3,4], although
the abundance of H− in space is debated [5]. In addition,
in many molecules the ion-pair states are embedded in the
electronic Rydberg continuum with complicated coupling to
ionization.

A remarkable opportunity to unravel the dynamics of
ion-pair states comes from a series of recent energy-resolved
experiments. In the experiments, spectra of vibrational ion-pair
states have been observed in photoexcited H2, by Vieitez et al.
in the 1�+

g symmetry [6,7] and more recently in the 1�+
u

symmetry by Ekey and McCormack [8], while Mollet and
Merkt observed ion-pair states with quantum numbers beyond
1500 in Cl2 [9].

In this paper we provide an analysis of the experimental
spectra [8] of the ungerade H2 ion-pair states, bound by the
outer well of potential-energy curve 6 1�+

u . The observed
heavy Rydberg series is strongly perturbed; however, the
characteristic pattern in the resonance positions is reproduced
(see Fig. 4), including even some of the perturbations, by a
theory that does not take account of the coupling to ionization
and the Rydberg continuum. We find that nonadiabatic
couplings and interloper resonances play a stronger role than
in the gerade 1�+

g symmetry [10], especially for vibrational
states with a bias toward smaller internuclear distances.
A tentative assignment of interloper resonances is made
(see Table I).

The theory is essentially contained in Ref. [10]. We
calculate the ion-pair states, positions, and widths from
first principles using ab initio potential-energy curves and
nonadiabatic couplings [11,12]. The close-coupled equations
for nuclear motion [13] are solved by the log-derivative
method [14]. The main approximation is the exclusion of
the ionization and the electronic Rydberg continua and of
the nonhomogenous coupling to 1�u electronic states. These
effects become important at small internuclear distances,
approximately for R < 5 a.u.

II. THEORY

The ion-pair states are bound by the long-range Coulomb
potential (in a.u.) [15]

Eion(R) = DH+H− − 1

R
− αH−

2R4
, (1)

where DH+H− = −0.527 751 014 a.u. [16] is the ion-pair
dissociation energy and the polarizability of H−(1s2) is
αH− = 211.897 (a.u.)3 [17]. The energy levels in the Coulomb
potential are given by the Rydberg formula

En = DH+H− − [2hc Ry∞](M/me)

2[nIP − μ(E)]2
, (2)

where nIP is the principal quantum number and μ(E) is the
quantum defect. The quantity in square brackets [2hc Ry∞]
corresponds to 1 a.u. of energy. Furthermore, Ry∞ is the
infinite-mass Rydberg constant, M/me = 918.5761 is the
mass-scaling factor with M the reduced mass of H− and
me the mass of an electron. The quantum defect μ gives
the shift in the position of each Rydberg level compared
to a pure unperturbed Coulomb potential. The shifts are
caused by short-range interactions and, to some extent, by the
long-range polarizability of the ion-pair potential. For high
enough principal quantum numbers nIP, the quantum defect
becomes independent of energy. In heavy Rydberg systems,
such as H+H−, this occurs for much higher nIP than in a
typical electronic Rydberg system [10]. This relates to the fact
that the classical outer turning point Rtp for a Rydberg state is
approximately

Rtp ≈ 2n2
IP

M/me

(3)
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in atomic units. Consequently, for a given nIP, Rydberg states
with M/me � 1 are more compact and have a larger part of
the wave function in the short-range interaction region.

We solve the close-coupled equations for nonadiabatic
nuclear motion [13]

(
− 1

2MH2

[
1

d2

dR2
− 1

J (J + 1)

R2
+ A(R) + B(R)

d

dR

]

+ U(R) − 1E

)
�̃(R) = 0, (4)

where the value of the reduced mass for H2 is MH2 ≈ 918.0764
[11], U(R) contains the N ′ clamped-nuclei electronic energy
curves, E is the total energy, and A(R) and B(R) are the
N ′ × N ′ nonadiabatic coupling matrices. The required data
are obtained from Refs. [11,12]. The first-derivative coupling
term can be eliminated by a Cayley transform

[
1

d

dR
+ B(R)

]
C(R) = 0, (5)

with the boundary condition C(R → ∞) = 1. The matrix
C(R) defines the adiabatic-diabatic transformation. This al-
lows us to transform Eq. (4) to the standard form

� ′′(R) = W (R)�(R), (6)

where � is an N ′ × N ′ matrix, each column is a linearly
independent solution, � ′′ indicates the second derivative with
respect to R, and the matrix W consists of

W (R) = 2M

h̄2 V (R) − k2, (7)

where the N ′ × N ′ matrix V contains the diagonal potentials
(including the angular momentum components) and the off-
diagonal coupling elements. The diagonal matrix k contains
the asymptotic channel wave vectors k2 = (2M/h̄2)ε, where
ε has diagonal elements εi = E − Ei , with E the total energy
and Ei the threshold energy in each channel i.

Equation (6) is solved using the log-derivative method
[14,18], which propagates the log-derivative matrix Y (R) =
� ′(R)�−1(R) instead of propagating the wave function �

directly. This avoids numerical stability problems in clas-
sically forbidden regions. The matrix is propagated out to
the matching radius Rf , where it is used to calculate the
wave function in the form � = F − G K , where F and G
are diagonal N × N matrices containing energy normalized
Milne functions [19]. These coincide with analytic Coulomb
and Riccati-Bessel functions once the polarization term in
Eq. (1) vanishes. Note that N � N ′ since channels closed
already at Rf are excluded from �. The crucial entity is the
N×N reaction matrix K , which summarizes all interactions
for R < Rf . From the scattering matrix, we can calculate the
cumulative eigenphase for the half-collision scattering and the
energy derivative of the eigenphase gives the density of states.
The peaks in the density of states allow us to determine the
position of each resonance and hence the quantum defect via
Eq. (2). The predissociation width is obtained from the full
width at half maximum for each peak.
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FIG. 1. (Color online) Adiabatic ab initio potential-energy curves
1–6 1�+

u for H2 [11], with the energy in cm−1 relative to the
X 1�+

g (v = 0,J = 0) ground state. The analytic ion-pair potential
is included [see Eq. (1)] and open dissociation channels correspond
to H(n = 1) + H(n = 2,3). The closed n = 4 dissociation level is
also indicated. Interloper resonances trapped inside the barriers on
potential-energy curves 5,6 1�+

u are indicated by horizontal lines and
are labeled with quantum numbers v5 and v6, respectively. The ion-
pair outer-well states on 6 1�+

u are labeled by the principal quantum
number nIP [see Eq. (2)]. Note that Staszewska and Wolniewicz [11]
use quantum numbers v3, v1, and v2 rather than v5, v6, and nIP.

III. CALCULATION

Figure 1 shows the adiabatic ab initio potential-energy
curves for the 1�+

u symmetry of H2 calculated by Staszewska
and Wolniewicz [11]. The ion-pair states are bound by the
Coulomb potential given in Eq. (1), which is included in
Fig. 1. Between the dissociation limits n = 3 and 4, the energy
region currently of interest, the Coulomb potential matches the
external part of the outer well on the potential-energy curve
6 1�+

u . The open dissociation channels correspond to H(n =
1) + H(n = 2,3). The nonadiabatic couplings are taken from
Wolniewicz, Orlikowski, and Staszewska [12]. The couplings
are strongest for R < 20 a.u., but extend to R = 80 a.u. Since
the present calculations concern states with nIP � 215, with
relatively small classical turning points Rtp � 100 a.u., we do
not use the long-range channel elimination procedure outlined
in Ref. [10].

We solve the nonadiabatic equations for the nuclear
motion for energies 133 640–137 400 cm−1 and total angular
momentum J = 0–2. In the experiment [8] the J = 2 series
should be dominant. The calculated density of states is shown
in Fig. 2. The range of resonances corresponds to states with
principal quantum numbers nIP = 130–215. The first states
to appear with amplitude in the outer well on the potential-
energy curve 6 1�+

u are 133 641.50 cm−1 (nIP = 129.55),
133 640.93 cm−1 (nIP = 129.54), and 133 640.01 cm−1 (nIP =
129.53) for J = 0, 1, and 2, respectively. Note that for most
other resonances in the outer well, the J = 0 peaks appear at
the lowest energies and the J = 2 peaks at the highest. The
three calculated J = 0–2 ion-pair series are very similar. The
exceptions are the inside-the-barrier interlopers indicated in
Fig. 1 and shown in detail in Fig. 3. The short-range character
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FIG. 2. (Color online) Calculated resonances (density of states)
for H2

1�+
u with J = 0,1,2 plotted as a function of the energy in

cm−1 relative the H2 ground state. The progression of ion-pair states,
almost identical for the three J series, is perturbed by the presence
of interloper resonances. The regions where the interlopers are found
are labeled by the quantum number v6 and are shown in detail in
Fig. 3. The density of states is calculated from the derivative of the
cumulative eigenphase d

(∑
ρ πτρ(E)

)
/dE.

of the interlopers make them sensitive to the value of J

(see the large shifts between interlopers with different J in
Fig. 3). They can be assigned quantum numbers v6 = 8–12
and v5 = 9 by comparison to adiabatic (predissociated) levels
calculated on the single potential-energy curves 6 1�+

u and
5 1�+

u , respectively. Although no state is uniquely associated
with v6 = 10, this interloper perturbs the surrounding ion-pair
states, as can be seen in the quantum defects in Fig. 4. The
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FIG. 3. (Color online) Resonances from Fig. 2 in the regions
perturbed by interloper resonances. Most of the interlopers (indicated
by solid black arrows) originate from the 6 1�+

u potential-energy
curve, with inner-well quantum numbers v6 = 8–12, although the
states corresponding to v6 = 10 are strongly mixed with the ion-pair
resonances in the same region. The v5 = 9 interlopers (indicated by
vertical dashed arrows in the top panel) on 5 1�+

u occur in the same
region as v6 = 8. Unlabeled resonances correspond to outer-well (ion-
pair) states. All resonances appear in sets of 3, corresponding to
J = 0, 1, and 2.
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FIG. 4. (Color online) Comparison between calculated quantum
defects for J = 0–2 ion-pair states and quantum defects from
experimental term values [20] for the experiment in Ref. [8]. The
actual quantum defects for the interloper resonances are not included.
Initially, the quantum defects increase, similarly to what was observed
in 1�+

g [10], but for energies greater than 136 000 cm−1 they go flat
and then drop dramatically. The interlopers v6 = 10 − 12 leave an
imprint on the quantum defects by perturbing the progression of
ion-pair states, despite the fact that the v6 = 10 resonances do not
appear as unique states and are strongly mixed with the ion-pair
states in the same region (see Fig. 3).

v5 = 9 assignment is confirmed by a nonadiabatic calculation
without the 5 1�+

u potential, in which the surrounding peaks
remain essentially unaffected while the peak assigned to
v5 = 9 disappears. In adiabatic calculations v5 = 10 reso-
nances appear for J = 0 and 1, but these are absent when the
full set of coupled equations is solved. Interloper states with
v5 < 9 and v6 < 8 are below the n = 3 dissociation limit.

IV. RESULTS

Figure 4 compares the calculated quantum defects with
those corresponding to the experimental observations [20].
The quantum defects, defined by Eq. (2), give the deviation of
the actual ion-pair levels relative to an ideal Rydberg series.
As can be seen in Fig. 4, the calculations reproduce the main
trends in the experiment. The quantum defects show a strong
energy dependence. For less than 136 000 cm−1 (nIP < 170)
the quantum defects increase with energy in similar fashion to
the quantum defects calculated for the 1�+

g symmetry, but then,
essentially between v6 = 10 and 11, the 1�+

u quantum defects
go flat and for greater than 136 000 cm−1 (nIP > 185) there
is a sharp drop. The smooth increase in the quantum defects
for less than 136 000 cm−1 is associated with the short-range
dynamics on the B ′′B̄ potential-energy curve, but at higher
energies no simple interpretation is possible. The strong energy
dependence of the quantum defects is not surprising given that
the series consists of low-nIP members of the heavy Rydberg
states, which have H+H− character only during a small part
of the dynamics. Accounting for the mass scaling implied by
Eqs. (2) and (3), typical Rydberg behavior is not expected until
nIP � 500 [10].
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TABLE I. Positions and assignments of interlopers (see the text
and Figs. 1–3). The energies labeled Ecalc correspond to resonance
positions obtained from the full nonadiabatic calculations, while
Eadiab corresponds to adiabatic energies on 6 1�+

u (quantum number
v6) or on 5 1�+

u (quantum number v5). States are assigned by
vibrational quantum number and total angular momentum J . For
J = 2, we match the calculated levels with the closest experimental
level Eexpt [20]. The state v6 = 10 is strongly mixed with the ion-pair
resonances (see the text and Fig. 3). Energies are given in cm−1.

Ecalc Eadiab Assignment Eexpt

134193.52 134164.3 v5 = 9, J = 0
134222.16 134193.4 v5 = 9, J = 1
134279.16 134251.1 v5 = 9, J = 2 134290.0
134249.32 134242.3 v6 = 8, J = 0
134284.12 134276.7 v6 = 8, J = 1
134351.43 134344.1 v6 = 8, J = 2 134371.0
135361.21 135345.2 v6 = 9, J = 0
135388.88 135372.9 v6 = 9, J = 1
135443.49 135426.6 v6 = 9, J = 2 135446.5

136060.3 v6 = 10, J = 0
136081.4 v6 = 10, J = 1
136122.3 v6 = 10, J = 2

136711.68 136673.1 v6 = 11, J = 0
136718.61 136689.6 v6 = 11, J = 1
136732.11 136720.3 v6 = 11, J = 2 136729.0
136879.21 136872.0 v6 = 12, J = 0
136883.66 136879.9 v6 = 12, J = 1
136902.08 136892.3 v6 = 12, J = 2

The average fit between the calculated J = 2 ion-pair
resonances and all 72 levels observed in experiment is 7 cm−1.
Although this is not perfect, the energy range over which this fit
is valid and the large number of states (quantum numbers range
from nIP = 130 to 211) make the identification of the ion-pair
heavy Rydberg series convincing. The overall agreement with
the experimental quantum defects is also good, but clearly the
experimental spectra have substantial structure not captured
by the present dissociation-only calculations.

Although the quantum defects corresponding to the inter-
loper states are not explicitly shown in Fig. 4, the v6 = 10–12
interlopers leave a distinct perturbation in the quantum defects.
In Table I, which lists nonadiabatic and adiabatic energy levels,
an attempt is made to associate calculated interlopers for J = 2
with experimental levels by listing the closest experimental
level [20] that has not already been assigned to the ion-pair
Rydberg series. The agreement is not very good, especially
for v5 = 9 and v6 = 8, but the v6 = 9 and 11 assignments
are more believable with 
E ≈ 3 cm−1. The assignments are
particularly interesting because they are a first step towards
bridging the gap between observations in the inner and outer
wells of molecular hydrogen.

The widths of the resonances are not reported in the
experiment [8], but we are able to calculate them. The widths,
shown in Fig. 5, vary across the energy range and the interloper
resonances are broader, i.e., more dissociated, than the ion-pair
widths. This is in direct contrast to what was found in the
1�+

g symmetry [10], where the resonances were monotonically
decreasing in width and interlopers were sharper than ion-pair
resonances.
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FIG. 5. (Color online) Linewidths in cm−1 for the calculated
resonances in Fig. 2 with J = 0,1,2, obtained as the full width
at half maximum for each resonance peak. Compared to previous
calculations in 1�+

g [10], there is a significant modulation of the
linewidths and the interloper resonances (some of them labeled) are
wider than the ion-pair states instead of sharper.

The oscillations in the linewidths are similar to the
oscillations in the photodissociation cross section observed
in the B ′′B̄ 1�+

u potential at lower energies [21,22]. There the
oscillations could be attributed to the strong adiabatic correc-
tion lifting the barrier separating the inner and outer wells
on the B ′′B̄ electronic state, periodically localizing the wave
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FIG. 6. (Color online) Linewidths and nonadiabatic effects cor-
relate with the localization of the wave function at small or large
internuclear distances as measured by 
EJ , which is calculated as the
difference between the ion-pair resonance positions for J = 2 and 0.
The linewidths � (shown for J = 0 and 2, with interloper resonances
excluded) are largest when 
EJ is large and hence when the wave
functions skewed toward small internuclear distances. The curve
labeled 
EWol shows the effect of the nonadiabatic couplings on level
positions by calculating the difference between the positions of our
nonadiabatic resonances and the adiabatic (single potential-energy
curve) bound levels calculated by Staszewska and Wolniewicz [11].
The 
EWol curve has been multiplied by 0.2 and shifted by +10 cm−1.
Overall, the levels are most strongly shifted when the wave function
is skewed toward small internuclear distances. The units are cm−1

throughout.
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function at shorter distances. Although the present experiment
is above this barrier, we can nonetheless correlate the observed
modulation to the structure of the wave functions by calculat-
ing the difference 
EJ between the positions of the J = 2 and
0 ion-pair resonances. The value 
EJ gives an indication of
whether the wave function is skewed toward small (
EJ large)
or large (
EJ small) internuclear distances. This is because the
J (J + 1)/R2 term in the Hamiltonian exerts a stronger shift
on short-range states. In Fig. 6, 
EJ is shown together with
the �J=0,2 widths (excluding interlopers) and the difference

EWol between the adiabatic outer-well levels calculated by
Staszewska and Wolniewicz [11] and the level positions for
the full nonadiabatic calculations. Clearly, the variation in

EJ correlates with both the widths �J=0,2 and the error
in the adiabatic calculations 
EWol. This indicates that the
wave functions with a bias towards short internuclear distances
are most affected by nonadiabatic couplings and are more
predissociated. Similar conclusions regarding the widths of
resonances can be drawn in the context of autoionization [23].

V. CONCLUSION

Our nonadiabatic ab initio calculations reproduce the main
characteristics of recent spectra (see Fig. 4) of ungerade
1�+

u heavy Rydberg ion-pair series in molecular hydrogen
[8]. A tentative assignment (see Table I) of two inside-the-
barrier interloper resonances is made; these were predicted
also in the gerade 1�+

g spectrum [10], but no experimental
levels corresponding to such interlopers were identified. The

oscillations in the calculated predissociation widths for 1�+
u

are shown to relate to strong nonadiabatic couplings at short
internuclear distance and a periodic bias of the wave function
toward short distances. This is in accordance with other theory
and experiment for ungerade states in molecular hydrogen
[21,22]. Within the present framework of dissociation-only
nonadiabatic dynamics, it would be interesting to examine the
effect of the nonhomogenous coupling for J > 0, in particular
to 1�u electronic states.

The present treatment does not include coupling to the
ionization and the electronic Rydberg continua and there is
significant structure in the experimentally observed levels that
is not reproduced. It is hence possible that some of the peaks
in the experiment could belong to electronic Rydberg levels
corresponding to v+ = 5–8, N = 2 series [24]. Questions
regarding the interplay of electronic and heavy Rydberg series,
the intensities and line shapes, and perhaps most importantly
the actual excitation mechanism with which these states are
populated, since the direct Franck-Condon factors are small
[7], remain open, awaiting a full treatment that combines both
ionization and dissociation.
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